![]() |
Previous | Next | _reference |
A | |
affine_ok_box.m | ckbs_affine Box Constrained Smoothing Spline Example and Test |
affine_singular_ok.m | ckbs_affine_singular Singular Smoothing Spline Example and Test |
all_ok.m | Run All Correctness Tests |
B | |
bib | Bibliography |
bidiag_solve_ok.m | ckbs_bidiag_solve Example and Test |
bidiag_solve_t_ok.m | ckbs_bidiag_solve_t Example and Test |
blkbidiag_mul_ok.m | blkbidiag_mul Example and Test |
blkbidiag_mul_t_ok.m | blkbidiag_mul_t Example and Test |
blkbidiag_symm_mul_ok.m | blkbidiag_symm_mul Example and Test |
blkdiag_mul_ok.m | blkdiag_mul Example and Test |
blkdiag_mul_t_ok.m | blkdiag_mul_t Example and Test |
blktridiag_mul_ok.m | blktridiag_mul Example and Test |
box_f.m | ckbs_nonlinear: Example of Box Constraints |
C | |
ckbs | ckbs-0.20130204.0: Constrained/Robust Kalman-Bucy Smoothers |
ckbs_affine | Constrained Affine Kalman Bucy Smoother |
ckbs_affine_singular | Singular Affine Kalman Bucy Smoother |
ckbs_bidiag_solve | Block Bidiagonal Algorithm |
ckbs_bidiag_solve_t | Block Bidiagonal Algorithm |
ckbs_blkbidiag_mul | Packed Lower Block Bidiagonal Matrix Times a Vector |
ckbs_blkbidiag_mul_t | Packed Lower Block Bidiagonal Matrix Transpose Times a Vector |
ckbs_blkbidiag_symm_mul | Packed Block Bidiagonal Matrix Symmetric Multiply |
ckbs_blkdiag_mul | Packed Block Diagonal Matrix Times a Vector or Matrix |
ckbs_blkdiag_mul_t | Transpose of Packed Block Diagonal Matrix Times a Vector or Matrix |
ckbs_blktridiag_mul | Packed Block Tridiagonal Matrix Times a Vector |
ckbs_diag_solve | Block Diagonal Algorithm |
ckbs_kuhn_tucker | Compute Residual in Kuhn-Tucker Conditions |
ckbs_kuhn_tucker_L1 | Compute Residual in Kuhn-Tucker Conditions for Robust L1 |
ckbs_L1_affine | Robust L1 Affine Kalman Bucy Smoother |
ckbs_L1_nonlinear | The Nonlinear Constrained Kalman-Bucy Smoother |
ckbs_L2L1_obj | Affine Least Squares with Robust L1 Objective |
ckbs_newton_step | Affine Constrained Kalman Bucy Smoother Newton Step |
ckbs_newton_step_L1 | Affine Robust L1 Kalman Bucy Smoother Newton Step |
ckbs_nonlinear | The Nonlinear Constrained Kalman-Bucy Smoother |
ckbs_process_grad | Affine Residual Process Sum of Squares Gradient |
ckbs_process_hes | Affine Process Residual Sum of Squares Hessian |
ckbs_sumsq_grad | Affine Residual Sum of Squares Gradient |
ckbs_sumsq_hes | Affine Residual Sum of Squares Hessian |
ckbs_sumsq_obj | Affine Residual Sum of Squares Objective |
ckbs_t_general | The General Student's t Smoother |
ckbs_t_grad | Student's t Gradient |
ckbs_t_hess | Student's t Hessian |
ckbs_t_obj | Student's t Sum of Squares Objective |
ckbs_tridiag_solve | Symmetric Block Tridiagonal Algorithm |
ckbs_tridiag_solve_b | Symmetric Block Tridiagonal Algorithm (Backward version) |
ckbs_tridiag_solve_pcg | Symmetric Block Tridiagonal Algorithm (Conjugate Gradient version) |
D | |
diag_solve_ok.m | ckbs_diag_solve Example and Test |
direct_h.m | ckbs_nonlinear: Example Direct Measurement Model |
distance_h.m | ckbs_nonlinear: Example of Distance Measurement Model |
G | |
get_started_ok.m | ckbs_nonlinear: A Simple Example and Test |
K | |
kuhn_tucker_L1_ok.m | ckbs_kuhn_tucker_L1 Example and Test |
kuhn_tucker_ok.m | ckbs_kuhn_tucker Example and Test |
L | |
L1_affine_ok.m | ckbs_L1_affine Robust Smoothing Spline Example and Test |
L1_nonlinear_ok.m | ckbs_L1_nonlinear: Robust Nonlinear Transition Model Example and Test |
L2L1_obj_ok.m | ckbs_L2L1_obj Example and Test |
license | Your License to use the ckbs Software |
N | |
newton_step_L1_ok.m | ckbs_newton_step_L1 Example and Test |
newton_step_ok.m | ckbs_newton_step Example and Test |
no_f.m | ckbs_nonlinear: Example of No Constraint |
nonlinear_utility | ckbs_nonlinear: General Purpose Utilities |
P | |
persist_g.m | ckbs_nonlinear: Example of Persistence Transition Function |
pos_vel_g.m | ckbs_nonlinear: Example Position and Velocity Transition Model |
process_grad_ok.m | ckbs_process_grad Example and Test |
process_hes_ok.m | ckbs_process_hes Example and Test |
S | |
sine_f.m | ckbs_nonlinear: Example of Nonlinear Constraint |
sine_wave_ok.m | ckbs_nonlinear: Example and Test of Tracking a Sine Wave |
sumsq_grad_ok.m | ckbs_sumsq_grad Example and Test |
sumsq_hes_ok.m | ckbs_sumsq_hes Example and Test |
sumsq_obj_ok.m | ckbs_sumsq_obj Example and Test |
T | |
t_general_noisy_jump.m | ckbs_t_general Jump Tracking Example and Test |
t_general_ok.m | ckbs_t_general Jump Tracking Example and Test |
t_grad_ok.m | ckbs_t_grad Example and Test |
t_hess_ok.m | ckbs_t_hess Example and Test |
t_obj_ok.m | ckbs_t_obj Example and Test |
test_path.m | Set Up Path for Testing |
tridiag_solve_b_ok.m | ckbs_tridiag_solve_b Example and Test |
tridiag_solve_ok.m | ckbs_tridiag_solve Example and Test |
tridiag_solve_pcg_ok.m | ckbs_tridiag_solve_pcg Example and Test |
U | |
utility | ckbs Utility Functions |
V | |
vanderpol_g.m | ckbs_nonlinear: Vanderpol Transition Model Mean Example |
vanderpol_ok.m | ckbs_nonlinear: Unconstrained Nonlinear Transition Model Example and Test |
vanderpol_sim | Van der Pol Oscillator Simulation (No Noise) |
vanderpol_sim_ok.m | Example Use of vanderpol_sim |
W | |
whatsnew | Changes and Additions to ckbs |
wishlist | List of Future Improvements to ckbs |