|
Previous | Next | _reference |
| A | |
|
affine_ok_box.m | ckbs_affine Box Constrained Smoothing Spline Example and Test |
|
affine_singular_ok.m | ckbs_affine_singular Singular Smoothing Spline Example and Test |
|
all_ok.m | Run All Correctness Tests |
| B | |
|
bib | Bibliography |
|
bidiag_solve_ok.m | ckbs_bidiag_solve Example and Test |
|
bidiag_solve_t_ok.m | ckbs_bidiag_solve_t Example and Test |
|
blkbidiag_mul_ok.m | blkbidiag_mul Example and Test |
|
blkbidiag_mul_t_ok.m | blkbidiag_mul_t Example and Test |
|
blkbidiag_symm_mul_ok.m | blkbidiag_symm_mul Example and Test |
|
blkdiag_mul_ok.m | blkdiag_mul Example and Test |
|
blkdiag_mul_t_ok.m | blkdiag_mul_t Example and Test |
|
blktridiag_mul_ok.m | blktridiag_mul Example and Test |
|
box_f.m | ckbs_nonlinear: Example of Box Constraints |
| C | |
|
ckbs | ckbs-0.20130204.0: Constrained/Robust Kalman-Bucy Smoothers |
|
ckbs_affine | Constrained Affine Kalman Bucy Smoother |
|
ckbs_affine_singular | Singular Affine Kalman Bucy Smoother |
|
ckbs_bidiag_solve | Block Bidiagonal Algorithm |
|
ckbs_bidiag_solve_t | Block Bidiagonal Algorithm |
|
ckbs_blkbidiag_mul | Packed Lower Block Bidiagonal Matrix Times a Vector |
|
ckbs_blkbidiag_mul_t | Packed Lower Block Bidiagonal Matrix Transpose Times a Vector |
|
ckbs_blkbidiag_symm_mul | Packed Block Bidiagonal Matrix Symmetric Multiply |
|
ckbs_blkdiag_mul | Packed Block Diagonal Matrix Times a Vector or Matrix |
|
ckbs_blkdiag_mul_t | Transpose of Packed Block Diagonal Matrix Times a Vector or Matrix |
|
ckbs_blktridiag_mul | Packed Block Tridiagonal Matrix Times a Vector |
|
ckbs_diag_solve | Block Diagonal Algorithm |
|
ckbs_kuhn_tucker | Compute Residual in Kuhn-Tucker Conditions |
|
ckbs_kuhn_tucker_L1 | Compute Residual in Kuhn-Tucker Conditions for Robust L1 |
|
ckbs_L1_affine | Robust L1 Affine Kalman Bucy Smoother |
|
ckbs_L1_nonlinear | The Nonlinear Constrained Kalman-Bucy Smoother |
|
ckbs_L2L1_obj | Affine Least Squares with Robust L1 Objective |
|
ckbs_newton_step | Affine Constrained Kalman Bucy Smoother Newton Step |
|
ckbs_newton_step_L1 | Affine Robust L1 Kalman Bucy Smoother Newton Step |
|
ckbs_nonlinear | The Nonlinear Constrained Kalman-Bucy Smoother |
|
ckbs_process_grad | Affine Residual Process Sum of Squares Gradient |
|
ckbs_process_hes | Affine Process Residual Sum of Squares Hessian |
|
ckbs_sumsq_grad | Affine Residual Sum of Squares Gradient |
|
ckbs_sumsq_hes | Affine Residual Sum of Squares Hessian |
|
ckbs_sumsq_obj | Affine Residual Sum of Squares Objective |
|
ckbs_t_general | The General Student's t Smoother |
|
ckbs_t_grad | Student's t Gradient |
|
ckbs_t_hess | Student's t Hessian |
|
ckbs_t_obj | Student's t Sum of Squares Objective |
|
ckbs_tridiag_solve | Symmetric Block Tridiagonal Algorithm |
|
ckbs_tridiag_solve_b | Symmetric Block Tridiagonal Algorithm (Backward version) |
|
ckbs_tridiag_solve_pcg | Symmetric Block Tridiagonal Algorithm (Conjugate Gradient version) |
| D | |
|
diag_solve_ok.m | ckbs_diag_solve Example and Test |
|
direct_h.m | ckbs_nonlinear: Example Direct Measurement Model |
|
distance_h.m | ckbs_nonlinear: Example of Distance Measurement Model |
| G | |
|
get_started_ok.m | ckbs_nonlinear: A Simple Example and Test |
| K | |
|
kuhn_tucker_L1_ok.m | ckbs_kuhn_tucker_L1 Example and Test |
|
kuhn_tucker_ok.m | ckbs_kuhn_tucker Example and Test |
| L | |
|
L1_affine_ok.m | ckbs_L1_affine Robust Smoothing Spline Example and Test |
|
L1_nonlinear_ok.m | ckbs_L1_nonlinear: Robust Nonlinear Transition Model Example and Test |
|
L2L1_obj_ok.m | ckbs_L2L1_obj Example and Test |
|
license | Your License to use the ckbs Software |
| N | |
|
newton_step_L1_ok.m | ckbs_newton_step_L1 Example and Test |
|
newton_step_ok.m | ckbs_newton_step Example and Test |
|
no_f.m | ckbs_nonlinear: Example of No Constraint |
|
nonlinear_utility | ckbs_nonlinear: General Purpose Utilities |
| P | |
|
persist_g.m | ckbs_nonlinear: Example of Persistence Transition Function |
|
pos_vel_g.m | ckbs_nonlinear: Example Position and Velocity Transition Model |
|
process_grad_ok.m | ckbs_process_grad Example and Test |
|
process_hes_ok.m | ckbs_process_hes Example and Test |
| S | |
|
sine_f.m | ckbs_nonlinear: Example of Nonlinear Constraint |
|
sine_wave_ok.m | ckbs_nonlinear: Example and Test of Tracking a Sine Wave |
|
sumsq_grad_ok.m | ckbs_sumsq_grad Example and Test |
|
sumsq_hes_ok.m | ckbs_sumsq_hes Example and Test |
|
sumsq_obj_ok.m | ckbs_sumsq_obj Example and Test |
| T | |
|
t_general_noisy_jump.m | ckbs_t_general Jump Tracking Example and Test |
|
t_general_ok.m | ckbs_t_general Jump Tracking Example and Test |
|
t_grad_ok.m | ckbs_t_grad Example and Test |
|
t_hess_ok.m | ckbs_t_hess Example and Test |
|
t_obj_ok.m | ckbs_t_obj Example and Test |
|
test_path.m | Set Up Path for Testing |
|
tridiag_solve_b_ok.m | ckbs_tridiag_solve_b Example and Test |
|
tridiag_solve_ok.m | ckbs_tridiag_solve Example and Test |
|
tridiag_solve_pcg_ok.m | ckbs_tridiag_solve_pcg Example and Test |
| U | |
|
utility | ckbs Utility Functions |
| V | |
|
vanderpol_g.m | ckbs_nonlinear: Vanderpol Transition Model Mean Example |
|
vanderpol_ok.m | ckbs_nonlinear: Unconstrained Nonlinear Transition Model Example and Test |
|
vanderpol_sim | Van der Pol Oscillator Simulation (No Noise) |
|
vanderpol_sim_ok.m | Example Use of vanderpol_sim |
| W | |
|
whatsnew | Changes and Additions to ckbs |
|
wishlist | List of Future Improvements to ckbs |