|   | Previous | Next | 
[dPPlus, dPMinus, dR, dS, dY] = ckbs_newton_step_L1(
      mu, s, y, r, b, d, Bdia, Hdia, Hlow,
      pPlus, pMinus)
 \mu
-relaxed affine robust L1 Kalman-Bucy smoother problem.
 \mu \in \B{R}_+
,
 s \in \B{R}^{m \times N}
,
 y \in \B{R}^{n \times N}
,
 r \in \B{R}^{m \times N}
,
 b \in \B{R}^{m \times N}
,
 d \in \B{R}^{n \times N}
,
 B \in \B{R}^{m \times n \times N}
,
 H \in \B{R}^{n \times n \times N}
,
 p^+ \in \B{R}^{m \times N}
,
 p^- \in \B{R}^{m \times N}
,
the 
 \mu
-relaxed affine L1 robust Kalman-Bucy smoother problem is:
 \[
\begin{array}{ll}
{\rm minimize}
& \frac{1}{2} y^\R{T} H(x) y + d(x)^\R{T} y
      + \sqrt{\B{2}}^\R{T} (p^+ + p^-) -\mu \sum_{i =
      1}^{mN} \log(p_i^+) - \sum_{i=1}^{mN} \mu \log(p_i^-)
   \;{\rm w.r.t} \;  y \in \B{R}^{nN}\; , \; p^+ \in \B{R}_+^{M} \; , \; p^- \in \B{R}_+^{M}
\\
{\rm subject \; to} &  b(x) + B(x) y - p^+ + p^- = 0
\end{array}
\] 
In addition, 
 H
 is symmetric block tri-diagonal with each block of
size 
 n \times n
 and
 B
 is block diagonal with each block of size 
 m \times n
 r, \; s \in \B{R}^{m \times N}
to denote 
 \mu /p^+\;,\; \mu/p^-
, respectively, and
we denote by 
 q
 the lagrange multiplier associated to the
equality constraint. We also use  
 \B{1}
to denote the vector of length 
 mN
 with all its components
equal to one, and 
 \B{\sqrt{2}}
 to denote the vector of
length 
 mN
 with all its components equal to 
\sqrt{2}
.
The corresponding Lagrangian is
 \[
L(p^+, p^-, y, q)  =
\frac{1}{2} y^\R{T} H y + d^\R{T} y + \B{\sqrt{2}}^T(p^+ + p^-)
- \mu \sum_{i=1}^{mN} \log(p_i^+) - \mu\sum_{i=1}^{mN}\log(p_i^-)
+ q^\R{T} (b + B y - p^+ + p^-)
\] 
The partial gradients of the Lagrangian are given by
 \[
\begin{array}{rcl}
\nabla_p^+ L(p^+, p^-, y, q ) & = & \B{\sqrt{2}} - q - r \\
\nabla_p^- L(p^+, p^-, y, q) & = & \B{\sqrt{2}} + q - s \\
\nabla_y L(p^+, p^-, y, q ) & = & H y + c + B^\R{T} q \\
\nabla_q L(p^+, p^-, y, q ) & = & b + B y - p^+ + p^- \\
\end{array}
\] 
From the first two of the above equations,
we have 
 q = (r - s)/2
.
 D(s)
to denote the diagonal matrix with 
 s
along its diagonal.
The Kuhn-Tucker Residual function
 F : \B{R}^{4mN + nN} \rightarrow \B{R}^{4mN + nN}
is defined by
 \[
F(p^+, p^-, r, s, y)
=
\left(
\begin{array}{c}
p^+ - p^- - b - B y       \\
D(p^-) D(s) \B{1} - \tau \B{1} \\
r + s - 2 \B{\sqrt{2}} \\
D(p^+) D(r ) \B{1} - \tau \B{1}   \\
H y + d + B^\R{T} (r - s)/2
\end{array}
\right)
\] 
The Kuhn-Tucker conditions for a solution of the
 \mu
-relaxed constrained affine Kalman-Bucy smoother problem is
 F(p^+, p^-, r, s, y) = 0 
.
 (p^+, p^-, r, s, y)
, the Newton step
 ( (\Delta p^+)^\R{T} , (\Delta p^-)^\R{T} , \Delta
r^\R{T}, \Delta s^\R{T}, \Delta y^\R{T} )^\R{T}
 solves the problem:
 \[
F_\mu^{(1)} (p^+, p^-, r, s, y)
\left( \begin{array}{c} \Delta p^+ \\ \Delta p^- \\ \Delta r \\
\Delta s \\ \Delta y \end{array} \right)
=
- F(p^+, p^-, r, s, y)
\] 
mu
 is a positive scalar specifying the
relaxation parameter 
 \mu
.
s
 is an array of size 
 m \times
N
.
All the elements of 
s
 are greater than zero.
y
 is an array of size 
 n \times
N
r
 is an array of size 
 m \times
N
. All the elements of 
r
 are greater than zero.
b
 is an array of size 
 m \times N
.
d
 is an array of size 
 n \times
N
.
Bdia
 is an 
 m \times n \times N
 array.
For 
 k = 1 , \ldots , N
 we define
 B_k \in \B{R}^{m \times n}
 by
 \[
      B_k = Bdia(:, :, k)
\] 
 B
 is defined by
 \[
B
=
\left( \begin{array}{cccc}
B_1 & 0      & 0      &           \\
0   & B_2    & 0      & 0         \\
0   & 0      & \ddots & 0         \\
    & 0      & 0      & B_N
\end{array} \right)
\] 
Hdia
 is an 
 n \times n \times N
 array.
For 
 k = 1 , \ldots , N
 we define
 H_k \in \B{R}^{n \times n}
 by
 \[
      H_k = Hdia(:, :, k)
\] 
Hlow
 is an 
 n \times n \times N
 array.
For 
 k = 1 , \ldots , N
 we define
 L_k \in \B{R}^{n \times n}
 by
 \[
      L_k = Hlow(:, :, k)
\] 
 H
 is defined by
 \[
H
=
\left( \begin{array}{cccc}
H_1 & L_2^\R{T} & 0         &           \\
L_2 & H_2       & L_3^\R{T} & 0         \\
0   & \ddots    & \ddots    & \ddots    \\
    & 0         & L_N       & H_N
\end{array} \right)
\] 
dPPlus
 is an array of size 
 m \times N
equal to the 
 \Delta p^+
 components of the Newton step.
dPMinus
 is an array of size 
 m \times N
equal to the 
 \Delta p^-
 components of the Newton step.
dR
 is an array of size 
 m \times N
equal to the 
 \Delta r
 components of the Newton step.
dS
 is an array of size 
 m \times N
equal to the 
 \Delta s
 components of the Newton step.
dY
 is an array of size 
 n \times N
equal to the 
 \Delta y
 components of the Newton step.
ckbs_newton_step_L1.
It returns true if ckbs_newton_step_L1 passes the test
and false otherwise.
 F
 is given by
 \[
F_\mu^{(1)} (p^+, p^-, r, s, y) =
\left(
\begin{array}{ccccccc}
I &  -I  & 0 & 0 & -B  \\
0 & D( s^- )   & 0   & D(p^-) & 0 \\
0 & 0 & I & I & 0 \\
D( s^+) & 0 & D( p^+ ) & 0 & 0 \\
0 & 0 & - 0.5 B^\R{T} & 0.5 B^\R{T} & C
\end{array}
\right)
\] 
Given the inputs
 p^+ , p^-, s^+ ,  s^- , y , B , b , C 
 and 
 c 
,
the following algorithm solves the Newton System for
 \Delta p^+ , \Delta p^- , \Delta s^+ , \Delta s^- 
,
and 
 \Delta y
:
\[
\begin{array}{cccccc}
\bar{d}  &= &  \tau \B{1} / s^+  - \tau \B{1} / s^- - b - B y + p^+
\\
\bar{e}  &= & B^\R{T} ( \sqrt{\B{2}} - s^- ) - C y - c
\\
\bar{f}  &= & \bar{d} - D( s^+ )^{-1} D( p^+ ) ( 2 \sqrt{\B{2}} - s^- )
\\
T        &= & D( s^+ )^{-1} D( p^+ ) + D( s^- )^{-1} D( p^- )
\\
\Delta y &= &
      [ C + B^\R{T}  T^{-1} B ]^{-1} ( \bar{e} + B^\R{T} T^{-1} \bar{f} )
\\
\Delta s^- &= &
      T^{-1} B \Delta y - T^{-1} \bar{f}
\\
\Delta s^+ &= &
      - \Delta s^- +  2 \sqrt{\B{2}} - s^+ - s^-
\\
\Delta p^- &= &
      D( s^- )^{-1} [  \tau \B{1} - D( p^- ) \Delta s^- ] - p^-
\\
\Delta p^+ &= &
      \Delta p^- + B \Delta y + b + B y - p^+ + p^-
\end{array}
\]
where the matrix 
 T
 is diagonal with positive elements,
and the matrix
 C + B^\R{T} T^{-1} B \in \B{R}^{N n \times N n }
 is
block tridiagonal positive definite.