|   | Previous | Next | 
[obj] = ckbs_L2L1_obj(
      x, z, g, h, dg, dh, qinv, rinv)
 \[
\begin{array}{rcl}
S ( x_1 , \ldots , x_N ) & = & \sum_{k=1}^N S_k ( x_k , x_{k-1} ) \\
S_k ( x_k , x_{k-1} )    & = &
\frac{1}{2}
\|R_k^{-1/2}( z_k - h_k - H_k * x_k )^\R{T}\|_1
\\
& + &
\frac{1}{2}
( x_k - g_k - G_k * x_{k-1} )^\R{T} * Q_k^{-1} * ( x_k - g_k - G_k * x_{k-1} )
\\
\end{array}
\] 
where the matrices 
 R_k
 and 
 Q_k
 are
symmetric positive definite and
 x_0
 is the constant zero.
x
 is a two dimensional array,
for 
 k = 1 , \ldots , N
,
 \[
x_k = x(:, k)
\] 
and 
x
 has size 
 n \times N
.
z
 is a two dimensional array,
for 
 k = 1 , \ldots , N
 \[
      z_k = z(:, k)
\]
and 
z
 has size 
 m \times N
.
g
 is a two dimensional array,
for 
 k = 1 , \ldots , N
 \[
      g_k = g(:, k)
\]
and 
g
 has size 
 n \times N
.
h
 is a two dimensional array,
for 
 k = 1 , \ldots , N
 \[
      h_k = h(:, k)
\]
and 
h
 has size 
 m \times N
.
dg
 is a three dimensional array,
for 
 k = 1 , \ldots , N
 \[
      G_k = dg(:,:,k)
\]
and 
dg
 has size 
 n \times n \times N
.
dh
 is a three dimensional array,
for 
 k = 1 , \ldots , N
 \[
      H_k = dh(:,:,k)
\]
and 
dh
 has size 
 m \times n \times N
.
qinv
 is a three dimensional array,
for 
 k = 1 , \ldots , N
 \[
      Q_k^{-1} = qinv(:,:, k)
\]
and 
qinv
 has size 
 n \times n \times N
.
rinv
 is a three dimensional array,
for 
 k = 1 , \ldots , N
 \[
      R_k^{-1} = rinv(:,:, k)
\]
and 
rinv
 has size 
 m \times m \times N
.
obj
 is a scalar given by
 \[
      obj = S ( x_1 , \ldots , x_N )
\] 
ckbs_L2L1_obj.
It returns true if ckbs_L2L1_obj passes the test
and false otherwise.