Previous Next

Student's t Sum of Squares Objective

Syntax
[obj] = ckbs_t_obj(
      x
zg_funh_funqinvrinvparams)


Purpose
This routine computes the value of the Student's t objective function.

Notation
The affine Kalman-Bucy smoother residual sum of squares is defined by  \[
\begin{array}{rcl}
S ( x_1 , \ldots , x_N ) & = & \sum_{k=1}^N S_k ( x_k , x_{k-1} ) \\
S_k ( x_k , x_{k-1} )    & = &
\frac{1}{2}
( z_k - h_k - H_k * x_k )^\R{T} * R_k^{-1} * ( z_k - h_k - H_k * x_k )
\\
& + &
\frac{1}{2}
( x_k - g_k - G_k * x_{k-1} )^\R{T} * Q_k^{-1} * ( x_k - g_k - G_k * x_{k-1} )
\\
\end{array}
\] 
where the matrices  R_k and  Q_k are symmetric positive definite and  x_0 is the constant zero.

x
The argument x is a two dimensional array, for  k = 1 , \ldots , N  \[
      x_k = x(:, k)
\]
and x has size  n \times N .

z
The argument z is a two dimensional array, for  k = 1 , \ldots , N  \[
      z_k = z(:, k)
\]
and z has size  m \times N .

g_fun
The argument g_fun is a function handle to the process model.

h_fun
The argument h_fun is a function handle to the measurement model.

qinv
The argument qinv is a three dimensional array, for  k = 1 , \ldots , N  \[
      Q_k^{-1} = qinv(:,:, k)
\]
and qinv has size  n \times n \times N .

rinv
The argument rinv is a three dimensional array, for  k = 1 , \ldots , N  \[
      R_k^{-1} = rinv(:,:, k)
\]
and rinv has size  m \times m \times N .

obj
The result obj is a scalar given by  \[
      obj = S ( x_1 , \ldots , x_N )
\] 


Example
The file t_obj_ok.m contains an example and test of ckbs_t_obj. It returns true if ckbs_t_obj passes the test and false otherwise.
Input File: src/ckbs_t_obj.m