![]() |
Previous | Next |
[ds, dy, du] = ckbs_newton_step(
mu, s, y, u, b, d, Bdia, Hdia, Hlow)
\mu
-relaxed affine constrained Kalman-Bucy smoother problem.
\mu \in \B{R}_+
,
H \in \B{R}^{p \times p}
,
d \in \B{R}^p
,
b \in \B{R}^r
, and
B \in \B{R}^{r \times p}
,
the
\mu
-relaxed affine constrained Kalman-Bucy smoother problem is:
\[
\begin{array}{rl}
{\rm minimize} & \frac{1}{2} y^\R{T} H y + d^\R{T} y
- \mu \sum_{i=1}^r \log(s_i)
\; {\rm w.r.t} \; y \in \B{R}^p \; , \; s \in \B{R}_+^r
\\
{\rm subject \; to} & s + b + B y = 0
\end{array}
\]
In addition,
H
is symmetric block tri-diagonal with each block of
size
n \times n
and
B
is block diagonal with each block of size
m \times n
(there is an integer
N
such that
p = n * N
and
r = m * N
).
u \in \B{R}^r
to denote the Lagrange multipliers corresponding to the constraint equation.
The corresponding Lagrangian is
\[
L(y, s, u) =
\frac{1}{2} y^\R{T} H y + d^\R{T} y
- \mu \sum_{i=1}^r \log(s_i)
+ u^\R{T} (s + b + B y)
\]
The partial gradients of the Lagrangian are given by
\[
\begin{array}{rcl}
\nabla_y L(y, s, u ) & = & H y + B^\R{T} u + d \\
\nabla_s L(y, s, u ) & = & u - \mu / s \\
\nabla_u L(y, s, u ) & = & s + b + B y \\
\end{array}
\]
where
\mu / s
is the component by component division of
\mu
by the components of the
s
.
Note, from the second equation, that we only need consider
u \geq 0
because
s \geq 0
.
D(s)
to denote the diagonal matrix with
s
along its diagonal and
1_r
to denote the vector, of length
r
with all its components
equal to one.
We define
F : \B{R}^{r + p + r} \rightarrow \B{R}^{r + p + r}
by
\[
F(s, u, y)
=
\left(
\begin{array}{c}
s + b + B y \\
D(s) D(u) 1_r - \mu 1_r\\
H y + B^\R{T} u + d
\end{array}
\right)
\]
The Kuhn-Tucker conditions for a solution of the
\mu
-relaxed constrained affine Kalman-Bucy smoother problem is
F(s, u, y) = 0
.
(s, u, y)
, the Newton step
( \Delta s^\R{T} , \Delta u^\R{T} , \Delta y^\R{T} )^\R{T}
solves the problem:
\[
F^{(1)} (s, u, y)
\left( \begin{array}{c} \Delta s \\ \Delta u \\ \Delta y \end{array} \right)
=
- F(s, u, y)
\]
mu
is a positive scalar specifying the
relaxation parameter
\mu
.
s
is a column vector of length
r
.
All the elements of
s
are greater than zero.
y
is a column vector of length
p
u
is a column vector of length
r
.
All the elements of
s
are greater than zero.
b
is a column vector of length
r
.
d
is a column vector of length
p
Bdia
is an
m \times n \times N
array.
For
k = 1 , \ldots , N
we define
B_k \in \B{R}^{m \times n}
by
\[
B_k = Bdia(:, :, k)
\]
B
is defined by
\[
B
=
\left( \begin{array}{cccc}
B_1 & 0 & 0 & \\
0 & B_2 & 0 & 0 \\
0 & 0 & \ddots & 0 \\
& 0 & 0 & B_N
\end{array} \right)
\]
Hdia
is an
n \times n \times N
array.
For
k = 1 , \ldots , N
we define
H_k \in \B{R}^{n \times n}
by
\[
H_k = Hdia(:, :, k)
\]
Hlow
is an
n \times n \times N
array.
For
k = 1 , \ldots , N
we define
L_k \in \B{R}^{n \times n}
by
\[
L_k = Hlow(:, :, k)
\]
H
is defined by
\[
H
=
\left( \begin{array}{cccc}
H_1 & L_2^\R{T} & 0 & \\
L_2 & H_2 & L_3^\R{T} & 0 \\
0 & \ddots & \ddots & \ddots \\
& 0 & L_N & H_N
\end{array} \right)
\]
ds
is a column vector of length
r
equal to the
\Delta s
components of the Newton step.
dy
is a column vector of length
p
equal to the
\Delta y
components of the Newton step.
du
is a column vector of length
r
equal to the
\Delta u
components of the Newton step.
ckbs_newton_step
.
It returns true if ckbs_newton_step
passes the test
and false otherwise.
F
is given by
\[
F^{(1)} (s, y, u) =
\left(
\begin{array}{ccccc}
D( 1_r ) & 0 & B \\
D( u ) & 0 & D(s) \\
0 & B^\R{T} & H
\end{array}
\right)
\]
It follows that
\[
\left(\begin{array}{ccc}
I & 0 & B \\
U & S & 0\\
0 & B^T & C \\
\end{array}\right)
\left(\begin{array}{ccc}
\Delta s \\ \Delta y \\ \Delta u
\end{array}\right)
=
-
\left(\begin{array}{ccc}
s + b + By \\
SU\B{1} - \mu\B{1}\\
Cy + B^Tu + d
\end{array}\right)\;.
\]
Below,
r_i
refers to row
i
.
Applying the row operations
\[
\begin{array}{ccc}
r_2 &=& r_2 - U r_1 \\
r_3 &=& r_3 - B^T S^{-1} r_2
\end{array}\;,
\]
we obtain the equivalent system
\[
\left(\begin{array}{ccc}
I & 0 & B \\
0 & S & -UB\\
0 & 0 & C + B^T S^{-1} U B
\end{array}\right)
\left(\begin{array}{ccc}
\Delta s \\ \Delta y \\ \Delta u
\end{array}\right)
=
-
\left(\begin{array}{ccc}
s + b + B y \\
-U(b + B y) - \mu\B{1}\\
Cy + B^T u + d + B^T S^{-1}
\left(U(b + B y) + \mu \B{1}
\right)
\end{array}\right)\;.
\]
\Delta y
is obtained
from a single block tridiagonal solve (see third row of system).
Then we immediately have
\[
\Delta u = US^{-1}(b + B(y + \Delta y)) + \frac{\mu}{s}
\]
and
\[
\Delta s = -s -b -B(y + \Delta y)\;.
\]
.