qpOASES  3.2.1
An Implementation of the Online Active Set Strategy
Public Member Functions | Protected Member Functions | Protected Attributes | Friends
SQProblem Class Reference

Implements the online active set strategy for QPs with varying matrices. More...

#include <SQProblem.hpp>

Inheritance diagram for SQProblem:
QProblem QProblemB SQProblemSchur

List of all members.

Public Member Functions

 SQProblem ()
 SQProblem (int_t _nV, int_t _nC, HessianType _hessianType=HST_UNKNOWN, BooleanType allocDenseMats=BT_TRUE)
 SQProblem (const SQProblem &rhs)
virtual ~SQProblem ()
virtual SQProblemoperator= (const SQProblem &rhs)
returnValue hotstart (SymmetricMatrix *H_new, const real_t *const g_new, Matrix *A_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0)
returnValue hotstart (const real_t *const H_new, const real_t *const g_new, const real_t *const A_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0)
returnValue hotstart (const char *const H_file, const char *const g_file, const char *const A_file, const char *const lb_file, const char *const ub_file, const char *const lbA_file, const char *const ubA_file, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0)
returnValue hotstart (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0)
returnValue hotstart (const char *const g_file, const char *const lb_file, const char *const ub_file, const char *const lbA_file, const char *const ubA_file, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0)
virtual returnValue reset ()
returnValue init (SymmetricMatrix *_H, const real_t *const _g, Matrix *_A, const real_t *const _lb, const real_t *const _ub, const real_t *const _lbA, const real_t *const _ubA, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0, const real_t *const _R=0)
returnValue init (const real_t *const _H, const real_t *const _g, const real_t *const _A, const real_t *const _lb, const real_t *const _ub, const real_t *const _lbA, const real_t *const _ubA, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0, const real_t *const _R=0)
returnValue init (const char *const H_file, const char *const g_file, const char *const A_file, const char *const lb_file, const char *const ub_file, const char *const lbA_file, const char *const ubA_file, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const Constraints *const guessedConstraints=0, const char *const R_file=0)
returnValue init (SymmetricMatrix *_H, const real_t *const _g, const real_t *const _lb, const real_t *const _ub, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const real_t *const _R=0)
returnValue init (const real_t *const _H, const real_t *const _g, const real_t *const _lb, const real_t *const _ub, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const real_t *const _R=0)
returnValue init (const char *const H_file, const char *const g_file, const char *const lb_file, const char *const ub_file, int_t &nWSR, real_t *const cputime=0, const real_t *const xOpt=0, const real_t *const yOpt=0, const Bounds *const guessedBounds=0, const char *const R_file=0)
returnValue hotstart (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0)
returnValue hotstart (const char *const g_file, const char *const lb_file, const char *const ub_file, int_t &nWSR, real_t *const cputime=0, const Bounds *const guessedBounds=0)
returnValue solveCurrentEQP (const int_t n_rhs, const real_t *g_in, const real_t *lb_in, const real_t *ub_in, const real_t *lbA_in, const real_t *ubA_in, real_t *x_out, real_t *y_out)
virtual returnValue getWorkingSet (real_t *workingSet)
virtual returnValue getWorkingSetBounds (real_t *workingSetB)
virtual returnValue getWorkingSetConstraints (real_t *workingSetC)
returnValue getConstraints (Constraints &_constraints) const
int_t getNC () const
int_t getNEC () const
int_t getNAC () const
int_t getNIAC () const
virtual int_t getNZ () const
virtual returnValue getDualSolution (real_t *const yOpt) const
returnValue setConstraintProduct (ConstraintProduct *const _constraintProduct)
virtual returnValue printProperties ()
returnValue getFreeVariablesFlags (BooleanType *varIsFree)
returnValue writeQpDataIntoMatFile (const char *const filename) const
returnValue writeQpWorkspaceIntoMatFile (const char *const filename)
returnValue getBounds (Bounds &_bounds) const
int_t getNV () const
int_t getNFR () const
int_t getNFX () const
int_t getNFV () const
real_t getObjVal () const
real_t getObjVal (const real_t *const _x) const
returnValue getPrimalSolution (real_t *const xOpt) const
QProblemStatus getStatus () const
BooleanType isInitialised () const
BooleanType isSolved () const
BooleanType isInfeasible () const
BooleanType isUnbounded () const
HessianType getHessianType () const
returnValue setHessianType (HessianType _hessianType)
BooleanType usingRegularisation () const
Options getOptions () const
returnValue setOptions (const Options &_options)
PrintLevel getPrintLevel () const
returnValue setPrintLevel (PrintLevel _printlevel)
uint_t getCount () const
returnValue resetCounter ()
returnValue printOptions () const

Protected Member Functions

virtual returnValue setupNewAuxiliaryQP (SymmetricMatrix *H_new, Matrix *A_new, const real_t *lb_new, const real_t *ub_new, const real_t *lbA_new, const real_t *ubA_new)
virtual returnValue setupNewAuxiliaryQP (const real_t *const H_new, const real_t *const A_new, const real_t *lb_new, const real_t *ub_new, const real_t *lbA_new, const real_t *ubA_new)
returnValue clear ()
returnValue copy (const QProblem &rhs)
returnValue copy (const QProblemB &rhs)
returnValue solveInitialQP (const real_t *const xOpt, const real_t *const yOpt, const Bounds *const guessedBounds, const Constraints *const guessedConstraints, const real_t *const _R, int_t &nWSR, real_t *const cputime)
returnValue solveQP (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new, int_t &nWSR, real_t *const cputime, int_t nWSRperformed=0, BooleanType isFirstCall=BT_TRUE)
returnValue solveRegularisedQP (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new, int_t &nWSR, real_t *const cputime, int_t nWSRperformed=0, BooleanType isFirstCall=BT_TRUE)
virtual returnValue updateActivitiesForHotstart (const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new)
virtual returnValue setupSubjectToType ()
virtual returnValue setupSubjectToType (const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new)
virtual returnValue setupSubjectToType (const real_t *const lb_new, const real_t *const ub_new)
virtual returnValue computeProjectedCholesky ()
virtual returnValue setupInitialCholesky ()
virtual returnValue setupTQfactorisation ()
returnValue obtainAuxiliaryWorkingSet (const real_t *const xOpt, const real_t *const yOpt, const Bounds *const guessedBounds, const Constraints *const guessedConstraints, Bounds *auxiliaryBounds, Constraints *auxiliaryConstraints) const
returnValue obtainAuxiliaryWorkingSet (const real_t *const xOpt, const real_t *const yOpt, const Bounds *const guessedBounds, Bounds *auxiliaryBounds) const
virtual returnValue setupAuxiliaryWorkingSet (const Bounds *const auxiliaryBounds, const Constraints *const auxiliaryConstraints, BooleanType setupAfresh)
returnValue setupAuxiliaryQPsolution (const real_t *const xOpt, const real_t *const yOpt)
returnValue setupAuxiliaryQPgradient ()
returnValue setupAuxiliaryQPbounds (const Bounds *const auxiliaryBounds, const Constraints *const auxiliaryConstraints, BooleanType useRelaxation)
virtual returnValue addConstraint (int_t number, SubjectToStatus C_status, BooleanType updateCholesky, BooleanType ensureLI=BT_TRUE)
virtual returnValue addConstraint_checkLI (int_t number)
virtual returnValue addConstraint_ensureLI (int_t number, SubjectToStatus C_status)
virtual returnValue addBound (int_t number, SubjectToStatus B_status, BooleanType updateCholesky, BooleanType ensureLI=BT_TRUE)
virtual returnValue addBound_checkLI (int_t number)
virtual returnValue addBound_ensureLI (int_t number, SubjectToStatus B_status)
virtual returnValue removeConstraint (int_t number, BooleanType updateCholesky, BooleanType allowFlipping=BT_FALSE, BooleanType ensureNZC=BT_FALSE)
virtual returnValue removeBound (int_t number, BooleanType updateCholesky, BooleanType allowFlipping=BT_FALSE, BooleanType ensureNZC=BT_FALSE)
returnValue performPlainRatioTest (int_t nIdx, const int_t *const idxList, const real_t *const num, const real_t *const den, real_t epsNum, real_t epsDen, real_t &t, int_t &BC_idx) const
returnValue ensureNonzeroCurvature (BooleanType removeBoundNotConstraint, int_t remIdx, BooleanType &exchangeHappened, BooleanType &addBoundNotConstraint, int_t &addIdx, SubjectToStatus &addStatus)
virtual returnValue backsolveT (const real_t *const b, BooleanType transposed, real_t *const a) const
returnValue determineDataShift (const real_t *const g_new, const real_t *const lbA_new, const real_t *const ubA_new, const real_t *const lb_new, const real_t *const ub_new, real_t *const delta_g, real_t *const delta_lbA, real_t *const delta_ubA, real_t *const delta_lb, real_t *const delta_ub, BooleanType &Delta_bC_isZero, BooleanType &Delta_bB_isZero)
returnValue determineDataShift (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, real_t *const delta_g, real_t *const delta_lb, real_t *const delta_ub, BooleanType &Delta_bB_isZero)
virtual returnValue determineStepDirection (const real_t *const delta_g, const real_t *const delta_lbA, const real_t *const delta_ubA, const real_t *const delta_lb, const real_t *const delta_ub, BooleanType Delta_bC_isZero, BooleanType Delta_bB_isZero, real_t *const delta_xFX, real_t *const delta_xFR, real_t *const delta_yAC, real_t *const delta_yFX)
returnValue performStep (const real_t *const delta_g, const real_t *const delta_lbA, const real_t *const delta_ubA, const real_t *const delta_lb, const real_t *const delta_ub, const real_t *const delta_xFX, const real_t *const delta_xFR, const real_t *const delta_yAC, const real_t *const delta_yFX, int_t &BC_idx, SubjectToStatus &BC_status, BooleanType &BC_isBound)
returnValue changeActiveSet (int_t BC_idx, SubjectToStatus BC_status, BooleanType BC_isBound)
real_t getRelativeHomotopyLength (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new, const real_t *const lbA_new, const real_t *const ubA_new)
real_t getRelativeHomotopyLength (const real_t *const g_new, const real_t *const lb_new, const real_t *const ub_new)
virtual returnValue performRamping ()
returnValue updateFarBounds (real_t curFarBound, int_t nRamp, const real_t *const lb_new, real_t *const lb_new_far, const real_t *const ub_new, real_t *const ub_new_far, const real_t *const lbA_new, real_t *const lbA_new_far, const real_t *const ubA_new, real_t *const ubA_new_far) const
returnValue updateFarBounds (real_t curFarBound, int_t nRamp, const real_t *const lb_new, real_t *const lb_new_far, const real_t *const ub_new, real_t *const ub_new_far) const
virtual returnValue performDriftCorrection ()
virtual returnValue setupAuxiliaryQP (const Bounds *const guessedBounds, const Constraints *const guessedConstraints)
virtual returnValue setupAuxiliaryQP (const Bounds *const guessedBounds)
BooleanType shallRefactorise (const Bounds *const guessedBounds, const Constraints *const guessedConstraints) const
returnValue setupQPdata (SymmetricMatrix *_H, const real_t *const _g, Matrix *_A, const real_t *const _lb, const real_t *const _ub, const real_t *const _lbA, const real_t *const _ubA)
returnValue setupQPdata (const real_t *const _H, const real_t *const _g, const real_t *const _A, const real_t *const _lb, const real_t *const _ub, const real_t *const _lbA, const real_t *const _ubA)
returnValue setupQPdata (SymmetricMatrix *_H, const real_t *const _g, const real_t *const _lb, const real_t *const _ub)
returnValue setupQPdata (const real_t *const _H, const real_t *const _g, const real_t *const _lb, const real_t *const _ub)
returnValue setupQPdataFromFile (const char *const H_file, const char *const g_file, const char *const A_file, const char *const lb_file, const char *const ub_file, const char *const lbA_file, const char *const ubA_file)
returnValue setupQPdataFromFile (const char *const H_file, const char *const g_file, const char *const lb_file, const char *const ub_file)
returnValue loadQPvectorsFromFile (const char *const g_file, const char *const lb_file, const char *const ub_file, const char *const lbA_file, const char *const ubA_file, real_t *const g_new, real_t *const lb_new, real_t *const ub_new, real_t *const lbA_new, real_t *const ubA_new) const
returnValue loadQPvectorsFromFile (const char *const g_file, const char *const lb_file, const char *const ub_file, real_t *const g_new, real_t *const lb_new, real_t *const ub_new) const
returnValue printIteration (int_t iter, int_t BC_idx, SubjectToStatus BC_status, BooleanType BC_isBound, real_t homotopyLength, BooleanType isFirstCall=BT_TRUE)
returnValue setA (Matrix *A_new)
returnValue setA (const real_t *const A_new)
returnValue setLBA (const real_t *const lbA_new)
returnValue setLBA (int_t number, real_t value)
returnValue setUBA (const real_t *const ubA_new)
returnValue setUBA (int_t number, real_t value)
returnValue dropInfeasibles (int_t BC_number, SubjectToStatus BC_status, BooleanType BC_isBound, real_t *xiB, real_t *xiC)
returnValue areBoundsConsistent (const real_t *const lb, const real_t *const ub, const real_t *const lbA, const real_t *const ubA) const
returnValue areBoundsConsistent (const real_t *const lb, const real_t *const ub) const
returnValue determineHessianType ()
virtual returnValue computeCholesky ()
virtual returnValue backsolveR (const real_t *const b, BooleanType transposed, real_t *const a) const
virtual returnValue backsolveR (const real_t *const b, BooleanType transposed, BooleanType removingBound, real_t *const a) const
returnValue setInfeasibilityFlag (returnValue returnvalue, BooleanType doThrowError=BT_FALSE)
BooleanType isCPUtimeLimitExceeded (const real_t *const cputime, real_t starttime, int_t nWSR) const
returnValue regulariseHessian ()
returnValue setH (SymmetricMatrix *H_new)
returnValue setH (const real_t *const H_new)
returnValue setG (const real_t *const g_new)
returnValue setLB (const real_t *const lb_new)
returnValue setLB (int_t number, real_t value)
returnValue setUB (const real_t *const ub_new)
returnValue setUB (int_t number, real_t value)
void computeGivens (real_t xold, real_t yold, real_t &xnew, real_t &ynew, real_t &c, real_t &s) const
void applyGivens (real_t c, real_t s, real_t nu, real_t xold, real_t yold, real_t &xnew, real_t &ynew) const
returnValue performRatioTest (int_t nIdx, const int_t *const idxList, const SubjectTo *const subjectTo, const real_t *const num, const real_t *const den, real_t epsNum, real_t epsDen, real_t &t, int_t &BC_idx) const
BooleanType isBlocking (real_t num, real_t den, real_t epsNum, real_t epsDen, real_t &t) const
SymSparseMatcreateDiagSparseMat (int_t n, real_t diagVal=1.0)

Protected Attributes

BooleanType freeConstraintMatrix
MatrixA
real_tlbA
real_tubA
Constraints constraints
real_tT
real_tQ
int_t sizeT
real_tAx
real_tAx_l
real_tAx_u
ConstraintProductconstraintProduct
real_ttempA
real_ttempB
real_tZFR_delta_xFRz
real_tdelta_xFRy
real_tdelta_xFRz
real_tdelta_yAC_TMP
real_ttempC
BooleanType freeHessian
SymmetricMatrixH
real_tg
real_tlb
real_tub
Bounds bounds
real_tR
BooleanType haveCholesky
real_tx
real_ty
real_t tau
QProblemStatus status
BooleanType infeasible
BooleanType unbounded
HessianType hessianType
real_t regVal
uint_t count
real_tdelta_xFR_TMP
real_t ramp0
real_t ramp1
int_t rampOffset
Options options
Flipper flipper
TabularOutput tabularOutput

Friends

class SolutionAnalysis

Detailed Description

A class for setting up and solving quadratic programs with varying QP matrices. The main feature is the possibily to use the newly developed online active set strategy for parametric quadratic programming.

Author:
Hans Joachim Ferreau, Andreas Potschka, Christian Kirches
Version:
3.2
Date:
2007-2017

Constructor & Destructor Documentation

Default constructor.

SQProblem::SQProblem ( int_t  _nV,
int_t  _nC,
HessianType  _hessianType = HST_UNKNOWN,
BooleanType  allocDenseMats = BT_TRUE 
)

Constructor which takes the QP dimension and Hessian type information. If the Hessian is the zero (i.e. HST_ZERO) or the identity matrix (i.e. HST_IDENTITY), respectively, no memory is allocated for it and a NULL pointer can be passed for it to the init() functions.

Parameters:
_nVNumber of variables.
_nCNumber of constraints.
_hessianTypeType of Hessian matrix.
allocDenseMatsEnable allocation of dense matrices.
SQProblem::SQProblem ( const SQProblem rhs)

Copy constructor (deep copy).

Parameters:
rhsRhs object.
SQProblem::~SQProblem ( ) [virtual]

Destructor.


Member Function Documentation

returnValue QProblem::addBound ( int_t  number,
SubjectToStatus  B_status,
BooleanType  updateCholesky,
BooleanType  ensureLI = BT_TRUE 
) [protected, virtual, inherited]
returnValue QProblem::addBound_checkLI ( int_t  number) [protected, virtual, inherited]

Checks if new active bound to be added is linearly dependent from from row of the active constraints matrix.

Returns:
RET_LINEARLY_DEPENDENT
RET_LINEARLY_INDEPENDENT
Parameters:
numberNumber of bound to be added to active set.

Reimplemented in SQProblemSchur.

References BT_FALSE, QProblem::determineStepDirection(), Options::enableFullLITests, Options::epsLITests, getAbs(), QProblem::getNAC(), QProblem::getNC(), QProblemB::getNFR(), QProblemB::getNFX(), QProblemB::getNV(), QProblem::getNZ(), QProblemB::options, QQ, real_t, RET_LINEARLY_DEPENDENT, RET_LINEARLY_INDEPENDENT, SUCCESSFUL_RETURN, and THROWINFO.

Referenced by QProblem::addBound_ensureLI(), QProblem::setupAuxiliaryWorkingSet(), and QProblem::updateActivitiesForHotstart().

returnValue QProblem::addBound_ensureLI ( int_t  number,
SubjectToStatus  B_status 
) [protected, virtual, inherited]

Ensures linear independence of constraint matrix when a new bound is added. To this end a bound or constraint is removed simultaneously if necessary.

Returns:
SUCCESSFUL_RETURN
RET_LI_RESOLVED
RET_ENSURELI_FAILED
RET_ENSURELI_FAILED_TQ
RET_ENSURELI_FAILED_NOINDEX
RET_REMOVE_FROM_ACTIVESET
Parameters:
numberNumber of bound to be added to active set.
B_statusStatus of new active bound.

Reimplemented in SQProblemSchur.

References __FILE__, __FUNC__, __LINE__, QProblem::A, QProblem::addBound_checkLI(), QProblem::backsolveT(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, QProblem::dropInfeasibles(), Options::enableDropInfeasibles, Options::epsDen, Options::epsNum, TabularOutput::excRemB, TabularOutput::excRemC, Constraints::getActive(), Bounds::getFixed(), Bounds::getFree(), getGlobalMessageHandler(), QProblem::getNAC(), QProblemB::getNFX(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), MAX_STRING_LENGTH, Options::maxDualJump, QProblemB::options, QProblemB::performRatioTest(), QQ, real_t, QProblem::removeBound(), QProblem::removeConstraint(), RET_ENSURELI_FAILED, RET_ENSURELI_FAILED_NOINDEX, RET_ENSURELI_FAILED_TQ, RET_INDEXLIST_CORRUPTED, RET_LI_RESOLVED, RET_LINEARLY_INDEPENDENT, RET_REMOVE_FROM_ACTIVESET, RET_REMOVE_FROM_ACTIVESET_FAILED, QProblemB::setInfeasibilityFlag(), ST_LOWER, SUCCESSFUL_RETURN, QProblemB::tabularOutput, THROWERROR, MessageHandling::throwInfo(), Matrix::transTimes(), VS_VISIBLE, and QProblemB::y.

Referenced by QProblem::addBound().

returnValue QProblem::addConstraint ( int_t  number,
SubjectToStatus  C_status,
BooleanType  updateCholesky,
BooleanType  ensureLI = BT_TRUE 
) [protected, virtual, inherited]

Adds a constraint to active set.

Returns:
SUCCESSFUL_RETURN
RET_ADDCONSTRAINT_FAILED
RET_ADDCONSTRAINT_FAILED_INFEASIBILITY
RET_ENSURELI_FAILED
Parameters:
numberNumber of constraint to be added to active set.
C_statusStatus of new active constraint.
updateCholeskyFlag indicating if Cholesky decomposition shall be updated.
ensureLIEnsure linear independence by exchange rules by default.

Reimplemented in SQProblemSchur.

References QProblem::A, QProblem::addConstraint_ensureLI(), QProblemB::applyGivens(), QProblemB::bounds, BT_TRUE, QProblemB::computeGivens(), QProblem::constraints, Bounds::getFree(), QProblem::getNAC(), Constraints::getNC(), QProblemB::getNFR(), Constraints::getNUC(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), Matrix::getRow(), SubjectTo::getStatus(), QProblemB::getStatus(), QProblemB::hessianType, HST_IDENTITY, HST_ZERO, TabularOutput::idxAddC, Constraints::moveInactiveToActive(), QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_NOTINITIALISED, QPS_SOLVED, QQ, real_t, RET_ADDCONSTRAINT_FAILED, RET_ADDCONSTRAINT_FAILED_INFEASIBILITY, RET_ALL_CONSTRAINTS_ACTIVE, RET_CONSTRAINT_ALREADY_ACTIVE, RET_ENSURELI_DROPPED, RET_ENSURELI_FAILED, RET_ENSURELI_FAILED_CYCLING, RET_ENSURELI_FAILED_NOINDEX, RET_LI_RESOLVED, RET_UNKNOWN_BUG, RR, QProblem::sizeT, ST_INACTIVE, SUCCESSFUL_RETURN, QProblemB::tabularOutput, THROWERROR, and TT.

Referenced by QProblem::changeActiveSet(), QProblem::removeBound(), QProblem::removeConstraint(), and QProblem::setupAuxiliaryWorkingSet().

returnValue QProblem::addConstraint_checkLI ( int_t  number) [protected, virtual, inherited]
returnValue QProblem::addConstraint_ensureLI ( int_t  number,
SubjectToStatus  C_status 
) [protected, virtual, inherited]

Ensures linear independence of constraint matrix when a new constraint is added. To this end a bound or constraint is removed simultaneously if necessary.

Returns:
SUCCESSFUL_RETURN
RET_LI_RESOLVED
RET_ENSURELI_FAILED
RET_ENSURELI_FAILED_TQ
RET_ENSURELI_FAILED_NOINDEX
RET_REMOVE_FROM_ACTIVESET
Parameters:
numberNumber of constraint to be added to active set.
C_statusStatus of new active bound.

Reimplemented in SQProblemSchur.

References __FILE__, __FUNC__, __LINE__, QProblem::A, QProblem::addConstraint_checkLI(), QProblem::backsolveT(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, QProblem::dropInfeasibles(), Options::enableDropInfeasibles, Options::epsDen, Options::epsNum, TabularOutput::excRemB, TabularOutput::excRemC, Constraints::getActive(), Bounds::getFixed(), Bounds::getFree(), getGlobalMessageHandler(), QProblem::getNAC(), QProblemB::getNFR(), QProblemB::getNFX(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), Matrix::getRow(), MAX_STRING_LENGTH, Options::maxDualJump, QProblemB::options, QProblemB::performRatioTest(), QQ, real_t, QProblem::removeBound(), QProblem::removeConstraint(), RET_ENSURELI_FAILED, RET_ENSURELI_FAILED_NOINDEX, RET_ENSURELI_FAILED_TQ, RET_INDEXLIST_CORRUPTED, RET_LI_RESOLVED, RET_LINEARLY_INDEPENDENT, RET_REMOVE_FROM_ACTIVESET, RET_REMOVE_FROM_ACTIVESET_FAILED, QProblemB::setInfeasibilityFlag(), ST_LOWER, SUCCESSFUL_RETURN, QProblemB::tabularOutput, THROWERROR, MessageHandling::throwInfo(), Matrix::transTimes(), VS_VISIBLE, and QProblemB::y.

Referenced by QProblem::addConstraint().

void QProblemB::applyGivens ( real_t  c,
real_t  s,
real_t  nu,
real_t  xold,
real_t  yold,
real_t xnew,
real_t ynew 
) const [inline, protected, inherited]

Applies Givens matrix determined by c and s (cf. computeGivens).

Returns:
SUCCESSFUL_RETURN
Parameters:
cCosine entry of Givens matrix.
sSine entry of Givens matrix.
nuFurther factor: s/(1+c).
xoldMatrix entry to be transformed corresponding to the normalised entry of the original matrix.
yoldMatrix entry to be transformed corresponding to the annihilated entry of the original matrix.
xnewOutput: Transformed matrix entry corresponding to the normalised entry of the original matrix.
ynewOutput: Transformed matrix entry corresponding to the annihilated entry of the original matrix.

Referenced by QProblem::addBound(), QProblemB::addBound(), QProblem::addConstraint(), SQProblemSchur::calcDetSchur(), QProblem::removeBound(), QProblem::removeConstraint(), and SQProblemSchur::updateSchurQR().

returnValue QProblemB::areBoundsConsistent ( const real_t *const  lb,
const real_t *const  ub 
) const [protected, inherited]

Decides if lower bounds are smaller than upper bounds

Returns:
SUCCESSFUL_RETURN
RET_QP_INFEASIBLE
Parameters:
lbVector of lower bounds
ubVector of upper bounds

References EPS, QProblemB::getNV(), RET_QP_INFEASIBLE, and SUCCESSFUL_RETURN.

Referenced by QProblem::areBoundsConsistent(), and QProblemB::hotstart().

returnValue QProblem::areBoundsConsistent ( const real_t *const  lb,
const real_t *const  ub,
const real_t *const  lbA,
const real_t *const  ubA 
) const [protected, inherited]

Decides if lower bounds are smaller than upper bounds

Returns:
SUCCESSFUL_RETURN
RET_QP_INFEASIBLE
Parameters:
lbVector of lower bounds
ubVector of upper bounds
lbAVector of lower constraints
ubAVector of upper constraints

References QProblemB::areBoundsConsistent(), EPS, QProblem::getNC(), RET_QP_INFEASIBLE, and SUCCESSFUL_RETURN.

Referenced by QProblem::hotstart().

returnValue QProblemB::backsolveR ( const real_t *const  b,
BooleanType  transposed,
real_t *const  a 
) const [protected, virtual, inherited]

Solves the system Ra = b or R^Ta = b where R is an upper triangular matrix.

Returns:
SUCCESSFUL_RETURN
RET_DIV_BY_ZERO
Parameters:
bRight hand side vector.
transposedIndicates if the transposed system shall be solved.
aOutput: Solution vector

Reimplemented in SQProblemSchur.

References BT_FALSE.

Referenced by QProblem::determineStepDirection(), QProblemB::determineStepDirection(), QProblem::removeBound(), QProblemB::removeBound(), and QProblem::removeConstraint().

returnValue QProblemB::backsolveR ( const real_t *const  b,
BooleanType  transposed,
BooleanType  removingBound,
real_t *const  a 
) const [protected, virtual, inherited]

Solves the system Ra = b or R^Ta = b where R is an upper triangular matrix.
Special variant for the case that this function is called from within "removeBound()".

Returns:
SUCCESSFUL_RETURN
RET_DIV_BY_ZERO
Parameters:
bRight hand side vector.
transposedIndicates if the transposed system shall be solved.
removingBoundIndicates if function is called from "removeBound()".
aOutput: Solution vector

Reimplemented in SQProblemSchur.

References BT_FALSE, BT_TRUE, getAbs(), QProblemB::getNV(), QProblemB::getNZ(), real_t, RET_DIV_BY_ZERO, RR, SUCCESSFUL_RETURN, THROWERROR, and ZERO.

returnValue QProblem::backsolveT ( const real_t *const  b,
BooleanType  transposed,
real_t *const  a 
) const [protected, virtual, inherited]

Solves the system Ta = b or T^Ta = b where T is a reverse upper triangular matrix.

Returns:
SUCCESSFUL_RETURN
RET_DIV_BY_ZERO
Parameters:
bRight hand side vector.
transposedIndicates if the transposed system shall be solved.
aOutput: Solution vector

Reimplemented in SQProblemSchur.

References BT_FALSE, EPS, getAbs(), QProblem::getNAC(), real_t, RET_DIV_BY_ZERO, QProblem::sizeT, SUCCESSFUL_RETURN, THROWERROR, and TT.

Referenced by QProblem::addBound_ensureLI(), QProblem::addConstraint_ensureLI(), and QProblem::determineStepDirection().

returnValue QProblem::changeActiveSet ( int_t  BC_idx,
SubjectToStatus  BC_status,
BooleanType  BC_isBound 
) [protected, inherited]
returnValue QProblem::clear ( ) [protected, inherited]
returnValue QProblemB::computeCholesky ( ) [protected, virtual, inherited]

Computes the Cholesky decomposition of the (simply projected) Hessian (i.e. R^T*R = Z^T*H*Z). It only works in the case where Z is a simple projection matrix! Note: If Hessian turns out not to be positive definite, the Hessian type is set to HST_SEMIDEF accordingly.

Returns:
SUCCESSFUL_RETURN
RET_HESSIAN_NOT_SPD
RET_INDEXLIST_CORRUPTED

References QProblemB::bounds, BT_TRUE, Options::epsRegularisation, getAbs(), Matrix::getCol(), Bounds::getFree(), getMin(), QProblemB::getNFR(), Indexlist::getNumberArray(), QProblemB::getNV(), getSqrt(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_SEMIDEF, HST_ZERO, QProblemB::options, POTRF, QProblemB::R, QProblemB::regVal, RET_CHOLESKY_OF_ZERO_HESSIAN, RET_HESSIAN_NOT_SPD, RR, SUCCESSFUL_RETURN, THROWERROR, and QProblemB::usingRegularisation().

Referenced by QProblem::computeProjectedCholesky(), QProblemB::setupAuxiliaryQP(), QProblemB::setupInitialCholesky(), and QProblemB::solveQP().

void QProblemB::computeGivens ( real_t  xold,
real_t  yold,
real_t xnew,
real_t ynew,
real_t c,
real_t s 
) const [inline, protected, inherited]

Computes parameters for the Givens matrix G for which [x,y]*G = [z,0]

Returns:
SUCCESSFUL_RETURN
Parameters:
xoldMatrix entry to be normalised.
yoldMatrix entry to be annihilated.
xnewOutput: Normalised matrix entry.
ynewOutput: Annihilated matrix entry.
cOutput: Cosine entry of Givens matrix.
sOutput: Sine entry of Givens matrix.

References BT_TRUE, getAbs(), getSqrt(), isZero(), and real_t.

Referenced by QProblem::addBound(), QProblemB::addBound(), QProblem::addConstraint(), SQProblemSchur::calcDetSchur(), QProblem::removeBound(), QProblem::removeConstraint(), and SQProblemSchur::updateSchurQR().

returnValue QProblem::computeProjectedCholesky ( ) [protected, virtual, inherited]
returnValue QProblem::copy ( const QProblem rhs) [protected, inherited]
returnValue QProblemB::copy ( const QProblemB rhs) [protected, inherited]
SymSparseMat * QProblemB::createDiagSparseMat ( int_t  n,
real_t  diagVal = 1.0 
) [protected, inherited]

Creates a sparse diagonal (square-)matrix which is a given multiple of the identity matrix.

Returns:
Diagonal matrix
Parameters:
nRow/column dimension of matrix to be created.
diagValValue of all diagonal entries.

References SparseMatrix::createDiagInfo(), Matrix::doFreeMemory(), and real_t.

Referenced by QProblem::computeProjectedCholesky().

returnValue QProblemB::determineDataShift ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
real_t *const  delta_g,
real_t *const  delta_lb,
real_t *const  delta_ub,
BooleanType Delta_bB_isZero 
) [protected, inherited]

Determines step direction of the shift of the QP data.

Returns:
SUCCESSFUL_RETURN
Parameters:
g_newNew gradient vector.
lb_newNew lower bounds.
ub_newNew upper bounds.
delta_gOutput: Step direction of gradient vector.
delta_lbOutput: Step direction of lower bounds.
delta_ubOutput: Step direction of upper bounds.
Delta_bB_isZeroOutput: Indicates if active bounds are to be shifted.

References QProblemB::bounds, BT_FALSE, BT_TRUE, EPS, QProblemB::g, getAbs(), Bounds::getFixed(), QProblemB::getNFX(), Indexlist::getNumberArray(), QProblemB::getNV(), INFTY, QProblemB::lb, SUCCESSFUL_RETURN, and QProblemB::ub.

Referenced by QProblemB::solveQP().

returnValue QProblem::determineDataShift ( const real_t *const  g_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
real_t *const  delta_g,
real_t *const  delta_lbA,
real_t *const  delta_ubA,
real_t *const  delta_lb,
real_t *const  delta_ub,
BooleanType Delta_bC_isZero,
BooleanType Delta_bB_isZero 
) [protected, inherited]

Determines step direction of the shift of the QP data.

Returns:
SUCCESSFUL_RETURN
Parameters:
g_newNew gradient vector.
lbA_newNew lower constraints' bounds.
ubA_newNew upper constraints' bounds.
lb_newNew lower bounds.
ub_newNew upper bounds.
delta_gOutput: Step direction of gradient vector.
delta_lbAOutput: Step direction of lower constraints' bounds.
delta_ubAOutput: Step direction of upper constraints' bounds.
delta_lbOutput: Step direction of lower bounds.
delta_ubOutput: Step direction of upper bounds.
Delta_bC_isZeroOutput: Indicates if active constraints' bounds are to be shifted.
Delta_bB_isZeroOutput: Indicates if active bounds are to be shifted.

References QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, EPS, getAbs(), Constraints::getActive(), Bounds::getFixed(), QProblem::getNAC(), QProblem::getNC(), Indexlist::getNumberArray(), INFTY, QProblem::lbA, SUCCESSFUL_RETURN, and QProblem::ubA.

Referenced by QProblem::solveQP().

returnValue QProblemB::determineHessianType ( ) [protected, inherited]
returnValue QProblem::determineStepDirection ( const real_t *const  delta_g,
const real_t *const  delta_lbA,
const real_t *const  delta_ubA,
const real_t *const  delta_lb,
const real_t *const  delta_ub,
BooleanType  Delta_bC_isZero,
BooleanType  Delta_bB_isZero,
real_t *const  delta_xFX,
real_t *const  delta_xFR,
real_t *const  delta_yAC,
real_t *const  delta_yFX 
) [protected, virtual, inherited]

Determines step direction of the homotopy path.

Returns:
SUCCESSFUL_RETURN
RET_STEPDIRECTION_FAILED_TQ
RET_STEPDIRECTION_FAILED_CHOLESKY
Parameters:
delta_gStep direction of gradient vector.
delta_lbAStep direction of lower constraints' bounds.
delta_ubAStep direction of upper constraints' bounds.
delta_lbStep direction of lower bounds.
delta_ubStep direction of upper bounds.
Delta_bC_isZeroIndicates if active constraints' bounds are to be shifted.
Delta_bB_isZeroIndicates if active bounds are to be shifted.
delta_xFXOutput: Primal homotopy step direction of fixed variables.
delta_xFROutput: Primal homotopy step direction of free variables.
delta_yACOutput: Dual homotopy step direction of active constraints' multiplier.
delta_yFXOutput: Dual homotopy step direction of fixed variables' multiplier.

Reimplemented in SQProblemSchur.

References QProblem::A, QProblemB::backsolveR(), QProblem::backsolveT(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, QProblemB::delta_xFR_TMP, QProblem::delta_xFRy, QProblem::delta_xFRz, QProblem::delta_yAC_TMP, Options::epsIterRef, getAbs(), Constraints::getActive(), Bounds::getFixed(), Bounds::getFree(), QProblem::getNAC(), QProblemB::getNFR(), QProblemB::getNFX(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), SubjectTo::getStatus(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_ZERO, Options::numRefinementSteps, QProblemB::options, QQ, real_t, QProblemB::regVal, RET_STEPDIRECTION_FAILED_CHOLESKY, RET_STEPDIRECTION_FAILED_TQ, RET_UNKNOWN_BUG, ST_LOWER, SUCCESSFUL_RETURN, QProblem::tempA, QProblem::tempB, THROWERROR, Matrix::times(), Matrix::transTimes(), QProblemB::usingRegularisation(), and QProblem::ZFR_delta_xFRz.

Referenced by QProblem::addBound_checkLI(), QProblem::addConstraint_checkLI(), QProblem::ensureNonzeroCurvature(), SolutionAnalysis::getVarianceCovariance(), QProblem::solveCurrentEQP(), and QProblem::solveQP().

returnValue QProblem::dropInfeasibles ( int_t  BC_number,
SubjectToStatus  BC_status,
BooleanType  BC_isBound,
real_t xiB,
real_t xiC 
) [protected, inherited]

Drops the blocking bound/constraint that led to infeasibility, or finds another bound/constraint to drop according to drop priorities.

Returns:
SUCCESSFUL_RETURN
Parameters:
BC_numberNumber of the bound or constraint to be added.
BC_statusNew status of the bound or constraint to be added.
BC_isBoundWhether a bound or a constraint is to be added.
xiB(not yet documented)
xiC(not yet documented)

References QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, Options::dropBoundPriority, Options::dropEqConPriority, Options::dropIneqConPriority, Options::epsDen, getAbs(), Constraints::getActive(), Bounds::getFixed(), QProblem::getNAC(), QProblemB::getNFX(), Indexlist::getNumberArray(), SubjectTo::getStatus(), SubjectTo::getType(), QProblemB::options, QProblem::removeBound(), QProblem::removeConstraint(), RET_ENSURELI_DROPPED, SubjectTo::setStatus(), ST_BOUNDED, ST_EQUALITY, ST_INFEASIBLE_LOWER, ST_INFEASIBLE_UPPER, ST_LOWER, and SUCCESSFUL_RETURN.

Referenced by SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), SQProblemSchur::addConstraint_ensureLI(), and QProblem::addConstraint_ensureLI().

returnValue QProblem::ensureNonzeroCurvature ( BooleanType  removeBoundNotConstraint,
int_t  remIdx,
BooleanType exchangeHappened,
BooleanType addBoundNotConstraint,
int_t addIdx,
SubjectToStatus addStatus 
) [protected, inherited]
BEGIN_NAMESPACE_QPOASES returnValue QProblemB::getBounds ( Bounds _bounds) const [inline, inherited]

Returns current bounds object of the QP (deep copy).

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
_boundsOutput: Bounds object.

References QProblemB::bounds, QProblemB::getNV(), RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by SolutionAnalysis::checkCurvatureOnStronglyActiveConstraints().

BEGIN_NAMESPACE_QPOASES returnValue QProblem::getConstraints ( Constraints _constraints) const [inline, inherited]

Returns current constraints object of the QP (deep copy).

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
_constraintsOutput: Constraints object.

References QProblem::constraints, QProblemB::getNV(), RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

uint_t QProblemB::getCount ( ) const [inline, inherited]

Returns the current number of QP problems solved.

Returns:
Number of QP problems solved.

References QProblemB::count.

returnValue QProblem::getDualSolution ( real_t *const  yOpt) const [virtual, inherited]

Returns the dual solution vector (deep copy).

Returns:
SUCCESSFUL_RETURN
RET_QP_NOT_SOLVED
Parameters:
yOptOutput: Dual solution vector (if QP has been solved).

Reimplemented from QProblemB.

References QProblem::getNC(), QProblemB::getNV(), QProblemB::getStatus(), QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_SOLVED, RET_QP_NOT_SOLVED, SUCCESSFUL_RETURN, and QProblemB::y.

Referenced by main(), and solveOqpBenchmark().

Set the incoming array to true for each variable entry that is in the set of free variables

References QProblemB::bounds, BT_FALSE, BT_TRUE, Bounds::getFree(), QProblemB::getNFR(), Indexlist::getNumberArray(), QProblemB::getNV(), and SUCCESSFUL_RETURN.

HessianType QProblemB::getHessianType ( ) const [inline, inherited]

Returns Hessian type flag (type is not determined due to this call!).

Returns:
Hessian type.

References QProblemB::hessianType.

Referenced by SolutionAnalysis::getKktViolation().

int_t QProblem::getNAC ( ) const [inline, inherited]
int_t QProblem::getNC ( ) const [inline, inherited]

Returns the number of constraints.

Returns:
Number of constraints.

References QProblem::constraints, and Constraints::getNC().

Referenced by QProblem::addBound_checkLI(), SQProblemSchur::addBound_checkLISchur(), QProblem::addConstraint_checkLI(), SQProblemSchur::addConstraint_checkLISchur(), QProblem::areBoundsConsistent(), QProblem::copy(), QProblem::determineDataShift(), QProblem::ensureNonzeroCurvature(), QProblem::getDualSolution(), SolutionAnalysis::getKktViolation(), QProblem::getRelativeHomotopyLength(), SolutionAnalysis::getVarianceCovariance(), QProblem::getWorkingSetConstraints(), hotstart(), QProblem::hotstart(), QProblem::init(), QProblem::loadQPvectorsFromFile(), QProblem::obtainAuxiliaryWorkingSet(), QProblem::performDriftCorrection(), QProblem::performRamping(), QProblem::performStep(), QProblem::printIteration(), QProblem::printProperties(), QProblem::reset(), QProblem::setA(), QProblem::setLBA(), QProblem::setUBA(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPbounds(), QProblem::setupAuxiliaryQPgradient(), QProblem::setupAuxiliaryQPsolution(), SQProblemSchur::setupAuxiliaryWorkingSet(), QProblem::setupAuxiliaryWorkingSet(), setupNewAuxiliaryQP(), QProblem::setupQPdata(), QProblem::setupQPdataFromFile(), QProblem::setupSubjectToType(), QProblem::shallRefactorise(), QProblem::solveCurrentEQP(), QProblem::solveInitialQP(), QProblem::solveQP(), QProblem::updateFarBounds(), QProblem::writeQpDataIntoMatFile(), and QProblem::writeQpWorkspaceIntoMatFile().

int_t QProblem::getNEC ( ) const [inline, inherited]

Returns the number of (implicitly defined) equality constraints.

Returns:
Number of (implicitly defined) equality constraints.

References QProblem::constraints, and Constraints::getNEC().

Referenced by QProblem::printProperties().

int_t QProblemB::getNFR ( ) const [inline, inherited]
int_t QProblemB::getNFV ( ) const [inline, inherited]

Returns the number of implicitly fixed variables.

Returns:
Number of implicitly fixed variables.

References QProblemB::bounds, and Bounds::getNFV().

Referenced by QProblemB::setupInitialCholesky(), and QProblem::setupInitialCholesky().

int_t QProblemB::getNFX ( ) const [inline, inherited]
int_t QProblem::getNIAC ( ) const [inline, inherited]

Returns the number of inactive constraints.

Returns:
Number of inactive constraints.

References QProblem::constraints, and Constraints::getNIAC().

Referenced by QProblem::ensureNonzeroCurvature(), QProblem::performStep(), and QProblem::writeQpWorkspaceIntoMatFile().

int_t QProblemB::getNV ( ) const [inline, inherited]

Returns the number of variables.

Returns:
Number of variables.

References QProblemB::bounds, and Bounds::getNV().

Referenced by QProblem::addBound(), QProblemB::addBound(), QProblem::addBound_checkLI(), SQProblemSchur::addBound_checkLISchur(), SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), QProblem::addConstraint(), QProblem::addConstraint_checkLI(), SQProblemSchur::addConstraint_checkLISchur(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), QProblemB::areBoundsConsistent(), QProblemB::backsolveR(), QProblem::changeActiveSet(), QProblemB::computeCholesky(), QProblem::computeProjectedCholesky(), QProblem::copy(), QProblemB::copy(), QProblemB::determineDataShift(), QProblemB::determineHessianType(), QProblem::determineStepDirection(), QProblem::ensureNonzeroCurvature(), QProblemB::getBounds(), QProblem::getConstraints(), QProblemB::getDualSolution(), QProblem::getDualSolution(), QProblem::getFreeVariablesFlags(), SolutionAnalysis::getKktViolation(), QProblemB::getObjVal(), QProblemB::getPrimalSolution(), QProblemB::getRelativeHomotopyLength(), SolutionAnalysis::getVarianceCovariance(), QProblem::getWorkingSet(), QProblemB::getWorkingSetBounds(), hotstart(), QProblemB::hotstart(), QProblem::hotstart(), QProblemB::init(), QProblem::init(), QProblemB::loadQPvectorsFromFile(), QProblemB::obtainAuxiliaryWorkingSet(), QProblem::obtainAuxiliaryWorkingSet(), QProblem::performDriftCorrection(), QProblemB::performDriftCorrection(), QProblemB::performRamping(), QProblem::performRamping(), QProblem::performStep(), QProblemB::performStep(), QProblem::printIteration(), QProblemB::printIteration(), QProblem::printProperties(), QProblemB::printProperties(), QProblemB::regulariseHessian(), QProblem::removeBound(), QProblemB::removeBound(), QProblem::removeConstraint(), QProblem::reset(), QProblemB::reset(), QProblem::setA(), QProblemB::setG(), QProblemB::setH(), QProblemB::setLB(), QProblem::setLBA(), QProblemB::setUB(), QProblem::setUBA(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), QProblemB::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPbounds(), QProblemB::setupAuxiliaryQPbounds(), QProblem::setupAuxiliaryQPgradient(), QProblemB::setupAuxiliaryQPgradient(), QProblem::setupAuxiliaryQPsolution(), QProblemB::setupAuxiliaryQPsolution(), SQProblemSchur::setupAuxiliaryWorkingSet(), QProblem::setupAuxiliaryWorkingSet(), QProblemB::setupAuxiliaryWorkingSet(), QProblemB::setupInitialCholesky(), QProblem::setupInitialCholesky(), setupNewAuxiliaryQP(), QProblem::setupQPdata(), QProblemB::setupQPdataFromFile(), QProblem::setupQPdataFromFile(), QProblemB::setupSubjectToType(), QProblem::setupTQfactorisation(), QProblem::shallRefactorise(), QProblemB::shallRefactorise(), QProblem::solveCurrentEQP(), QProblem::solveInitialQP(), QProblemB::solveInitialQP(), QProblem::solveQP(), QProblemB::solveQP(), QProblem::solveRegularisedQP(), QProblemB::solveRegularisedQP(), QProblem::updateActivitiesForHotstart(), QProblemB::updateFarBounds(), QProblem::updateFarBounds(), QProblem::writeQpDataIntoMatFile(), and QProblem::writeQpWorkspaceIntoMatFile().

int_t QProblem::getNZ ( ) const [virtual, inherited]
real_t QProblemB::getObjVal ( ) const [inherited]

Returns the optimal objective function value.

Returns:
finite value: Optimal objective function value (QP was solved)
+infinity: QP was not yet solved

References QProblemB::getStatus(), INFTY, QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_SOLVED, real_t, and QProblemB::x.

Referenced by main().

real_t QProblemB::getObjVal ( const real_t *const  _x) const [inherited]

Returns the objective function value at an arbitrary point x.

Returns:
Objective function value at point x
Parameters:
_xPoint at which the objective function shall be evaluated.

References BT_TRUE, QProblemB::g, QProblemB::getNV(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_ZERO, real_t, QProblemB::regVal, Matrix::times(), and QProblemB::usingRegularisation().

Options QProblemB::getOptions ( ) const [inline, inherited]

Returns current options struct.

Returns:
Current options struct.

References QProblemB::options.

returnValue QProblemB::getPrimalSolution ( real_t *const  xOpt) const [inherited]

Returns the primal solution vector.

Returns:
SUCCESSFUL_RETURN
RET_QP_NOT_SOLVED
Parameters:
xOptOutput: Primal solution vector (if QP has been solved).

References QProblemB::getNV(), QProblemB::getStatus(), QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_SOLVED, RET_QP_NOT_SOLVED, SUCCESSFUL_RETURN, and QProblemB::x.

Referenced by main(), and solveOqpBenchmark().

PrintLevel QProblemB::getPrintLevel ( ) const [inline, inherited]

Returns the print level.

Returns:
Print level.

References QProblemB::options, and Options::printLevel.

real_t QProblemB::getRelativeHomotopyLength ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new 
) [protected, inherited]

Compute relative length of homotopy in data space for termination criterion.

Returns:
Relative length in data space.
Parameters:
g_newFinal gradient.
lb_newFinal lower variable bounds.
ub_newFinal upper variable bounds.

References QProblemB::g, getAbs(), QProblemB::getNV(), QProblemB::lb, real_t, and QProblemB::ub.

Referenced by QProblemB::solveQP().

real_t QProblem::getRelativeHomotopyLength ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new 
) [protected, inherited]

Compute relative length of homotopy in data space for termination criterion.

Returns:
Relative length in data space.
Parameters:
g_newFinal gradient.
lb_newFinal lower variable bounds.
ub_newFinal upper variable bounds.
lbA_newFinal lower constraint bounds.
ubA_newFinal upper constraint bounds.

References getAbs(), QProblem::getNC(), QProblem::lbA, real_t, and QProblem::ubA.

Referenced by QProblem::solveQP().

QProblemStatus QProblemB::getStatus ( ) const [inline, inherited]
returnValue QProblem::getWorkingSet ( real_t workingSet) [virtual, inherited]

Writes a vector with the state of the working set

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
workingSetOutput: array containing state of the working set.

Reimplemented from QProblemB.

References QProblemB::getNV(), QProblem::getWorkingSetBounds(), QProblem::getWorkingSetConstraints(), RET_INVALID_ARGUMENTS, SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblem::getWorkingSetBounds ( real_t workingSetB) [virtual, inherited]

Writes a vector with the state of the working set of bounds

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
workingSetBOutput: array containing state of the working set of bounds.

Reimplemented from QProblemB.

Referenced by SolutionAnalysis::getKktViolation(), and QProblem::getWorkingSet().

returnValue QProblem::getWorkingSetConstraints ( real_t workingSetC) [virtual, inherited]

Writes a vector with the state of the working set of constraints

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
workingSetCOutput: array containing state of the working set of constraints.

Reimplemented from QProblemB.

References QProblem::constraints, QProblem::getNC(), SubjectTo::getStatus(), RET_INVALID_ARGUMENTS, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by SolutionAnalysis::getKktViolation(), and QProblem::getWorkingSet().

returnValue SQProblem::hotstart ( SymmetricMatrix H_new,
const real_t *const  g_new,
Matrix A_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0 
)

Solves an initialised QP sequence with matrix shift using the online active set strategy.

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_MATRIX_SHIFT_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_SETUP_AUXILIARYQP_FAILED
Parameters:
H_newHessian matrix of neighbouring QP to be solved (a shallow copy is made).
If Hessian matrix is trivial, a NULL pointer can be passed.
g_newGradient of neighbouring QP to be solved.
A_newConstraint matrix of neighbouring QP to be solved (a shallow copy is made).
If QP sequence does not involve constraints, a NULL pointer can be passed.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_newLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newUpper constraints' bounds of neighbouring QP to be solved.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spen for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of bounds is kept!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of constraints is kept!)

References getCPUtime(), QProblemB::getStatus(), QPS_NOTINITIALISED, QPS_PERFORMINGHOMOTOPY, QPS_PREPARINGAUXILIARYQP, real_t, RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED, RET_SETUP_AUXILIARYQP_FAILED, setupNewAuxiliaryQP(), SUCCESSFUL_RETURN, and THROWERROR.

Referenced by hotstart(), and main().

returnValue SQProblem::hotstart ( const real_t *const  H_new,
const real_t *const  g_new,
const real_t *const  A_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0 
)

Solves an initialised QP sequence with matrix shift using the online active set strategy.

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_MATRIX_SHIFT_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_SETUP_AUXILIARYQP_FAILED
Parameters:
H_newHessian matrix of neighbouring QP to be solved (a shallow copy is made).
If Hessian matrix is trivial, a NULL pointer can be passed.
g_newGradient of neighbouring QP to be solved.
A_newConstraint matrix of neighbouring QP to be solved (a shallow copy is made).
If QP sequence does not involve constraints, a NULL pointer can be passed.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_newLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newUpper constraints' bounds of neighbouring QP to be solved.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of bounds is kept!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of constraints is kept!)

References getCPUtime(), QProblemB::getStatus(), hotstart(), QPS_NOTINITIALISED, QPS_PERFORMINGHOMOTOPY, QPS_PREPARINGAUXILIARYQP, real_t, RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED, RET_SETUP_AUXILIARYQP_FAILED, setupNewAuxiliaryQP(), SUCCESSFUL_RETURN, and THROWERROR.

returnValue SQProblem::hotstart ( const char *const  H_file,
const char *const  g_file,
const char *const  A_file,
const char *const  lb_file,
const char *const  ub_file,
const char *const  lbA_file,
const char *const  ubA_file,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0 
)

Solves an initialised QP sequence with matrix shift using the online active set strategy, where QP data is read from files.

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_MATRIX_SHIFT_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_SETUP_AUXILIARYQP_FAILED
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
Parameters:
H_fileName of file where Hessian matrix is stored.
If Hessian matrix is trivial, a NULL pointer can be passed.
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
A_fileName of file where constraint matrix is stored.
If QP sequence does not involve constraints, a NULL pointer can be passed.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
lbA_fileName of file where lower constraints' bounds, of neighbouring QP to be solved, is stored.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_fileName of file where upper constraints' bounds, of neighbouring QP to be solved, is stored.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of bounds is kept!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of constraints is kept!)

References QProblem::getNC(), QProblemB::getNV(), hotstart(), QProblem::loadQPvectorsFromFile(), readFromFile(), real_t, RET_INVALID_ARGUMENTS, RET_UNABLE_TO_READ_FILE, SUCCESSFUL_RETURN, and THROWERROR.

returnValue SQProblem::hotstart ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0 
)

Solves an initialised QP sequence (without matrix shift) using the online active set strategy. By default, QP solution is started from previous solution. If a guess for the working set is provided, an initialised homotopy is performed.

Note: This functions just forwards to the corresponding QProblem::hotstart member function.

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
Parameters:
g_newGradient of neighbouring QP to be solved.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_newLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newUpper constraints' bounds of neighbouring QP to be solved.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of bounds is kept!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of constraints is kept!)

Reimplemented from QProblem.

References hotstart().

returnValue QProblemB::hotstart ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0 
) [inherited]

Solves an initialised QP sequence using the online active set strategy. By default, QP solution is started from previous solution. If a guess for the working set is provided, an initialised homotopy is performed.

Note: This function internally calls solveQP/solveRegularisedQP for solving an initialised QP!

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_SETUP_AUXILIARYQP_FAILED
Parameters:
g_newGradient of neighbouring QP to be solved.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set is kept!)

References QProblemB::areBoundsConsistent(), Options::boundTolerance, BT_FALSE, BT_TRUE, QProblemB::count, Options::enableFarBounds, getAbs(), getCPUtime(), QProblemB::getNV(), Options::growFarBounds, QProblemB::haveCholesky, QProblemB::infeasible, INFTY, Options::initialFarBounds, QProblemB::options, QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_SOLVED, QProblemB::rampOffset, real_t, RET_HOTSTART_STOPPED_INFEASIBILITY, RET_HOTSTART_STOPPED_UNBOUNDEDNESS, RET_QPOBJECT_NOT_SETUP, RET_SETUP_AUXILIARYQP_FAILED, QProblemB::setInfeasibilityFlag(), QProblemB::setupAuxiliaryQP(), QProblemB::setupInitialCholesky(), QProblemB::solveRegularisedQP(), QProblemB::status, SUCCESSFUL_RETURN, THROWERROR, QProblemB::unbounded, QProblemB::updateFarBounds(), and QProblemB::x.

Referenced by QProblemB::hotstart(), main(), QProblemB::solveInitialQP(), and solveOqpBenchmark().

returnValue SQProblem::hotstart ( const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file,
const char *const  lbA_file,
const char *const  ubA_file,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0 
)

Solves an initialised QP sequence (without matrix shift) using the online active set strategy, where QP data is read from files. By default, QP solution is started from previous solution. If a guess for the working set is provided, an initialised homotopy is performed.

Note: This functions just forwards to the corresponding QProblem::hotstart member function.

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
Parameters:
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
lbA_fileName of file where lower constraints' bounds, of neighbouring QP to be solved, is stored.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_fileName of file where upper constraints' bounds, of neighbouring QP to be solved, is stored.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of bounds is kept!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set of constraints is kept!)

Reimplemented from QProblem.

References hotstart().

returnValue QProblemB::hotstart ( const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file,
int_t nWSR,
real_t *const  cputime = 0,
const Bounds *const  guessedBounds = 0 
) [inherited]

Solves an initialised QP sequence using the online active set strategy, where QP data is read from files. By default, QP solution is started from previous solution. If a guess for the working set is provided, an initialised homotopy is performed.

Note: This function internally calls solveQP/solveRegularisedQP for solving an initialised QP!

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
RET_UNABLE_TO_READ_FILE
RET_SETUP_AUXILIARYQP_FAILED
RET_INVALID_ARGUMENTS
Parameters:
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, the previous working set is kept!)

References QProblemB::getNV(), QProblemB::hotstart(), QProblemB::loadQPvectorsFromFile(), real_t, RET_INVALID_ARGUMENTS, RET_QPOBJECT_NOT_SETUP, RET_UNABLE_TO_READ_FILE, SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblemB::init ( SymmetricMatrix _H,
const real_t *const  _g,
const real_t *const  _lb,
const real_t *const  _ub,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const real_t *const  _R = 0 
) [inherited]

Initialises a simply bounded QP problem with given QP data and tries to solve it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB from yOpt != 0,
4. 0, 0, gB: starts with xOpt = 0, yOpt = 0 and gB,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB from yOpt != 0,
6. xOpt, 0, gB: starts with xOpt, yOpt = 0 and gB,
7. xOpt, yOpt, gB: starts with xOpt, yOpt and gB (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_INVALID_ARGUMENTS
Parameters:
_HHessian matrix (a shallow copy is made).
_gGradient vector.
_lbLower bounds (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bounds (on variables).
If no upper bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy.
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
_RPre-computed (upper triangular) Cholesky factor of Hessian matrix. The Cholesky factor must be stored in a real_t array of size nV*nV in row-major format. Note: Only used if xOpt/yOpt and gB are NULL!
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblemB::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, QProblemB::setupQPdata(), QProblemB::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

Referenced by main(), and solveOqpBenchmark().

returnValue QProblem::init ( SymmetricMatrix _H,
const real_t *const  _g,
Matrix _A,
const real_t *const  _lb,
const real_t *const  _ub,
const real_t *const  _lbA,
const real_t *const  _ubA,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0,
const real_t *const  _R = 0 
) [inherited]

Initialises a QP problem with given QP data and tries to solve it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB/gC empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB/gC by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB/gC from yOpt != 0,
4. 0, 0, gB/gC: starts with xOpt = 0, yOpt = 0 and gB/gC,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB/gC from yOpt != 0,
6. xOpt, 0, gB/gC: starts with xOpt, yOpt = 0 and gB/gC,
7. xOpt, yOpt, gB/gC: starts with xOpt, yOpt and gB/gC (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_TQ
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_INVALID_ARGUMENTS
Parameters:
_HHessian matrix (a shallow copy is made).
_gGradient vector.
_AConstraint matrix (a shallow copy is made).
_lbLower bound vector (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bound vector (on variables).
If no upper bounds exist, a NULL pointer can be passed.
_lbALower constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
_ubAUpper constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy. Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, all constraints are assumed inactive!)
_RPre-computed (upper triangular) Cholesky factor of Hessian matrix. The Cholesky factor must be stored in a real_t array of size nV*nV in row-major format. Note: Only used if xOpt/yOpt and gB are NULL!
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblem::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, QProblem::setupQPdata(), QProblem::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

Referenced by main(), and solveOqpBenchmark().

returnValue QProblemB::init ( const real_t *const  _H,
const real_t *const  _g,
const real_t *const  _lb,
const real_t *const  _ub,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const real_t *const  _R = 0 
) [inherited]

Initialises a simply bounded QP problem with given QP data and tries to solve it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB from yOpt != 0,
4. 0, 0, gB: starts with xOpt = 0, yOpt = 0 and gB,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB from yOpt != 0,
6. xOpt, 0, gB: starts with xOpt, yOpt = 0 and gB,
7. xOpt, yOpt, gB: starts with xOpt, yOpt and gB (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_INVALID_ARGUMENTS
Parameters:
_HHessian matrix (a shallow copy is made).
If Hessian matrix is trivial, a NULL pointer can be passed.
_gGradient vector.
_lbLower bounds (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bounds (on variables).
If no upper bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy.
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
_RPre-computed (upper triangular) Cholesky factor of Hessian matrix. The Cholesky factor must be stored in a real_t array of size nV*nV in row-major format. Note: Only used if xOpt/yOpt and gB are NULL!
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblemB::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, QProblemB::setupQPdata(), QProblemB::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

returnValue QProblem::init ( const real_t *const  _H,
const real_t *const  _g,
const real_t *const  _A,
const real_t *const  _lb,
const real_t *const  _ub,
const real_t *const  _lbA,
const real_t *const  _ubA,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0,
const real_t *const  _R = 0 
) [inherited]

Initialises a QP problem with given QP data and tries to solve it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB/gC empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB/gC by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB/gC from yOpt != 0,
4. 0, 0, gB/gC: starts with xOpt = 0, yOpt = 0 and gB/gC,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB/gC from yOpt != 0,
6. xOpt, 0, gB/gC: starts with xOpt, yOpt = 0 and gB/gC,
7. xOpt, yOpt, gB/gC: starts with xOpt, yOpt and gB/gC (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_TQ
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_INVALID_ARGUMENTS
Parameters:
_HHessian matrix (a shallow copy is made).
If Hessian matrix is trivial, a NULL pointer can be passed.
_gGradient vector.
_AConstraint matrix (a shallow copy is made).
_lbLower bound vector (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bound vector (on variables).
If no upper bounds exist, a NULL pointer can be passed.
_lbALower constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
_ubAUpper constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy. Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, all constraints are assumed inactive!)
_RPre-computed (upper triangular) Cholesky factor of Hessian matrix. The Cholesky factor must be stored in a real_t array of size nV*nV in row-major format. Note: Only used if xOpt/yOpt and gB are NULL!
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblem::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, QProblem::setupQPdata(), QProblem::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

returnValue QProblemB::init ( const char *const  H_file,
const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const char *const  R_file = 0 
) [inherited]

Initialises a simply bounded QP problem with given QP data to be read from files and solves it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB from yOpt != 0,
4. 0, 0, gB: starts with xOpt = 0, yOpt = 0 and gB,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB from yOpt != 0,
6. xOpt, 0, gB: starts with xOpt, yOpt = 0 and gB,
7. xOpt, yOpt, gB: starts with xOpt, yOpt and gB (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_UNABLE_TO_READ_FILE
Parameters:
H_fileName of file where Hessian matrix is stored.
If Hessian matrix is trivial, a NULL pointer can be passed.
g_fileName of file where gradient vector is stored.
lb_fileName of file where lower bound vector.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bound vector.
If no upper bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy.
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector. A NULL pointer can be passed.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
R_fileName of the file where a pre-computed (upper triangular) Cholesky factor of the Hessian matrix is stored.
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblemB::R, readFromFile(), QProblemB::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, RET_UNABLE_TO_READ_FILE, QProblemB::setupQPdataFromFile(), QProblemB::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

returnValue QProblem::init ( const char *const  H_file,
const char *const  g_file,
const char *const  A_file,
const char *const  lb_file,
const char *const  ub_file,
const char *const  lbA_file,
const char *const  ubA_file,
int_t nWSR,
real_t *const  cputime = 0,
const real_t *const  xOpt = 0,
const real_t *const  yOpt = 0,
const Bounds *const  guessedBounds = 0,
const Constraints *const  guessedConstraints = 0,
const char *const  R_file = 0 
) [inherited]

Initialises a QP problem with given data to be read from files and solves it using at most nWSR iterations. Depending on the parameter constellation it:
1. 0, 0, 0 : starts with xOpt = 0, yOpt = 0 and gB/gC empty (or all implicit equality bounds),
2. xOpt, 0, 0 : starts with xOpt, yOpt = 0 and obtain gB/gC by "clipping",
3. 0, yOpt, 0 : starts with xOpt = 0, yOpt and obtain gB/gC from yOpt != 0,
4. 0, 0, gB/gC: starts with xOpt = 0, yOpt = 0 and gB/gC,
5. xOpt, yOpt, 0 : starts with xOpt, yOpt and obtain gB/gC from yOpt != 0,
6. xOpt, 0, gB/gC: starts with xOpt, yOpt = 0 and gB/gC,
7. xOpt, yOpt, gB/gC: starts with xOpt, yOpt and gB/gC (assume them to be consistent!)

Note: This function internally calls solveInitialQP for initialisation!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_TQ
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
Parameters:
H_fileName of file where Hessian matrix is stored.
If Hessian matrix is trivial, a NULL pointer can be passed.
g_fileName of file where gradient vector is stored.
A_fileName of file where constraint matrix is stored.
lb_fileName of file where lower bound vector.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bound vector.
If no upper bounds exist, a NULL pointer can be passed.
lbA_fileName of file where lower constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_fileName of file where upper constraints' bound vector.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations when using initial homotopy. Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP initialisation.
Output: CPU time spent for QP initialisation (if pointer passed).
xOptOptimal primal solution vector.
(If a null pointer is passed, the old primal solution is kept!)
yOptOptimal dual solution vector.
(If a null pointer is passed, the old dual solution is kept!)
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
(If a null pointer is passed, all bounds are assumed inactive!)
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
(If a null pointer is passed, all constraints are assumed inactive!)
R_fileName of the file where a pre-computed (upper triangular) Cholesky factor of the Hessian matrix is stored.
(If a null pointer is passed, Cholesky decomposition is computed internally!)

References BT_TRUE, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::isInitialised(), QProblemB::R, readFromFile(), QProblem::reset(), RET_INVALID_ARGUMENTS, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RET_QP_ALREADY_INITIALISED, RET_QPOBJECT_NOT_SETUP, RET_UNABLE_TO_READ_FILE, QProblem::setupQPdataFromFile(), QProblem::solveInitialQP(), ST_UNDEFINED, SUCCESSFUL_RETURN, THROWERROR, and THROWWARNING.

BooleanType QProblemB::isBlocking ( real_t  num,
real_t  den,
real_t  epsNum,
real_t  epsDen,
real_t t 
) const [inline, protected, inherited]

Checks whether given ratio is blocking, i.e. limits the maximum step length along the homotopy path to a value lower than given one.

Returns:
SUCCESSFUL_RETURN
Parameters:
numNumerator for performing the ratio test.
denDenominator for performing the ratio test.
epsNumNumerator tolerance.
epsDenDenominator tolerance.
tInput: Current maximum step length along the homotopy path, Output: Updated maximum possible step length along the homotopy path.

References BT_FALSE, and BT_TRUE.

Referenced by QProblemB::performRatioTest().

BooleanType QProblemB::isCPUtimeLimitExceeded ( const real_t *const  cputime,
real_t  starttime,
int_t  nWSR 
) const [protected, inherited]

Determines if next QP iteration can be performed within given CPU time limit.

Returns:
BT_TRUE: CPU time limit is exceeded, stop QP solution.
BT_FALSE: Sufficient CPU time for next QP iteration.
Parameters:
cputimeMaximum CPU time allowed for QP solution.
starttimeStart time of current QP solution.
nWSRNumber of working set recalculations performed so far.

References BT_FALSE, BT_TRUE, getCPUtime(), and real_t.

Referenced by QProblem::solveQP(), and QProblemB::solveQP().

BooleanType QProblemB::isInfeasible ( ) const [inline, inherited]

Returns if the QP is infeasible.

Returns:
BT_TRUE: QP infeasible
BT_FALSE: QP feasible (or not known to be infeasible!)

References QProblemB::infeasible.

Referenced by QProblem::solveInitialQP(), QProblemB::solveInitialQP(), and QProblem::solveQP().

BooleanType QProblemB::isInitialised ( ) const [inline, inherited]

Returns if the QProblem object is initialised.

Returns:
BT_TRUE: QProblemB initialised
BT_FALSE: QProblemB not initialised

References BT_FALSE, BT_TRUE, QPS_NOTINITIALISED, and QProblemB::status.

Referenced by QProblemB::init(), and QProblem::init().

BooleanType QProblemB::isSolved ( ) const [inline, inherited]

Returns if the QP has been solved.

Returns:
BT_TRUE: QProblemB solved
BT_FALSE: QProblemB not solved

References BT_FALSE, BT_TRUE, QPS_SOLVED, and QProblemB::status.

BooleanType QProblemB::isUnbounded ( ) const [inline, inherited]

Returns if the QP is unbounded.

Returns:
BT_TRUE: QP unbounded
BT_FALSE: QP unbounded (or not known to be unbounded!)

References QProblemB::unbounded.

Referenced by QProblem::solveInitialQP(), and QProblemB::solveInitialQP().

returnValue QProblemB::loadQPvectorsFromFile ( const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file,
real_t *const  g_new,
real_t *const  lb_new,
real_t *const  ub_new 
) const [protected, inherited]

Loads new QP vectors from files (internal members are not affected!).

Returns:
SUCCESSFUL_RETURN
RET_UNABLE_TO_OPEN_FILE
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
Parameters:
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
g_newOutput: Gradient of neighbouring QP to be solved.
lb_newOutput: Lower bounds of neighbouring QP to be solved
ub_newOutput: Upper bounds of neighbouring QP to be solved

References QProblemB::getNV(), readFromFile(), RET_INVALID_ARGUMENTS, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblemB::hotstart().

returnValue QProblem::loadQPvectorsFromFile ( const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file,
const char *const  lbA_file,
const char *const  ubA_file,
real_t *const  g_new,
real_t *const  lb_new,
real_t *const  ub_new,
real_t *const  lbA_new,
real_t *const  ubA_new 
) const [protected, inherited]

Loads new QP vectors from files (internal members are not affected!).

Returns:
SUCCESSFUL_RETURN
RET_UNABLE_TO_OPEN_FILE
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
Parameters:
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
lbA_fileName of file where lower constraints' bounds, of neighbouring QP to be solved, is stored.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_fileName of file where upper constraints' bounds, of neighbouring QP to be solved, is stored.
If no upper constraints' bounds exist, a NULL pointer can be passed.
g_newOutput: Gradient of neighbouring QP to be solved.
lb_newOutput: Lower bounds of neighbouring QP to be solved
ub_newOutput: Upper bounds of neighbouring QP to be solved
lbA_newOutput: Lower constraints' bounds of neighbouring QP to be solved
ubA_newOutput: Upper constraints' bounds of neighbouring QP to be solved

References QProblem::getNC(), readFromFile(), RET_INVALID_ARGUMENTS, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by hotstart(), and QProblem::hotstart().

returnValue QProblemB::obtainAuxiliaryWorkingSet ( const real_t *const  xOpt,
const real_t *const  yOpt,
const Bounds *const  guessedBounds,
Bounds auxiliaryBounds 
) const [protected, inherited]

Obtains the desired working set for the auxiliary initial QP in accordance with the user specifications

Returns:
SUCCESSFUL_RETURN
RET_OBTAINING_WORKINGSET_FAILED
RET_INVALID_ARGUMENTS
Parameters:
xOptOptimal primal solution vector. If a NULL pointer is passed, all entries are assumed to be zero.
yOptOptimal dual solution vector. If a NULL pointer is passed, all entries are assumed to be zero.
guessedBoundsGuessed working set for solution (xOpt,yOpt).
auxiliaryBoundsInput: Allocated bound object.
Output: Working set for auxiliary QP.

References QProblemB::bounds, Options::boundTolerance, EPS, QProblemB::getNV(), SubjectTo::getStatus(), SubjectTo::getType(), Options::initialStatusBounds, QProblemB::lb, QProblemB::options, RET_INVALID_ARGUMENTS, RET_OBTAINING_WORKINGSET_FAILED, Bounds::setupBound(), ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UNBOUNDED, ST_UPPER, SUCCESSFUL_RETURN, THROWERROR, and QProblemB::ub.

Referenced by QProblem::obtainAuxiliaryWorkingSet(), and QProblemB::solveInitialQP().

returnValue QProblem::obtainAuxiliaryWorkingSet ( const real_t *const  xOpt,
const real_t *const  yOpt,
const Bounds *const  guessedBounds,
const Constraints *const  guessedConstraints,
Bounds auxiliaryBounds,
Constraints auxiliaryConstraints 
) const [protected, inherited]

Obtains the desired working set for the auxiliary initial QP in accordance with the user specifications (assumes that member AX has already been initialised!)

Returns:
SUCCESSFUL_RETURN
RET_OBTAINING_WORKINGSET_FAILED
RET_INVALID_ARGUMENTS
Parameters:
xOptOptimal primal solution vector. If a NULL pointer is passed, all entries are assumed to be zero.
yOptOptimal dual solution vector. If a NULL pointer is passed, all entries are assumed to be zero.
guessedBoundsGuessed working set of bounds for solution (xOpt,yOpt).
guessedConstraintsGuessed working set for solution (xOpt,yOpt).
auxiliaryBoundsInput: Allocated bound object.
Ouput: Working set of constraints for auxiliary QP.
auxiliaryConstraintsInput: Allocated bound object.
Ouput: Working set for auxiliary QP.

References QProblem::Ax, QProblem::Ax_u, Options::boundTolerance, QProblem::constraints, EPS, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), SubjectTo::getType(), QProblem::lbA, QProblemB::obtainAuxiliaryWorkingSet(), QProblemB::options, RET_INVALID_ARGUMENTS, RET_OBTAINING_WORKINGSET_FAILED, Constraints::setupConstraint(), ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, THROWERROR, and QProblem::ubA.

Referenced by QProblem::solveInitialQP().

SQProblem & SQProblem::operator= ( const SQProblem rhs) [virtual]

Assignment operator (deep copy).

Parameters:
rhsRhs object.
returnValue QProblem::performDriftCorrection ( ) [protected, virtual, inherited]
returnValue QProblem::performPlainRatioTest ( int_t  nIdx,
const int_t *const  idxList,
const real_t *const  num,
const real_t *const  den,
real_t  epsNum,
real_t  epsDen,
real_t t,
int_t BC_idx 
) const [protected, inherited]

Performs robustified ratio test yield the maximum possible step length along the homotopy path.

Returns:
SUCCESSFUL_RETURN
Parameters:
nIdxNumber of ratios to be checked.
idxListArray containing the indices of all ratios to be checked.
numArray containing all numerators for performing the ratio test.
denArray containing all denominators for performing the ratio test.
epsNumNumerator tolerance.
epsDenDenominator tolerance.
tOutput: Maximum possible step length along the homotopy path.
BC_idxOutput: Index of blocking constraint.

References SUCCESSFUL_RETURN.

Referenced by QProblem::ensureNonzeroCurvature().

returnValue QProblem::performRamping ( ) [protected, virtual, inherited]
returnValue QProblemB::performRatioTest ( int_t  nIdx,
const int_t *const  idxList,
const SubjectTo *const  subjectTo,
const real_t *const  num,
const real_t *const  den,
real_t  epsNum,
real_t  epsDen,
real_t t,
int_t BC_idx 
) const [protected, inherited]

Performs robustified ratio test yield the maximum possible step length along the homotopy path.

Returns:
SUCCESSFUL_RETURN
Parameters:
nIdxNumber of ratios to be checked.
idxListArray containing the indices of all ratios to be checked.
subjectToBound/Constraint object corresponding to ratios to be checked.
numArray containing all numerators for performing the ratio test.
denArray containing all denominators for performing the ratio test.
epsNumNumerator tolerance.
epsDenDenominator tolerance.
tOutput: Maximum possible step length along the homotopy path.
BC_idxOutput: Index of blocking constraint.

References BT_TRUE, SubjectTo::getStatus(), SubjectTo::getType(), QProblemB::isBlocking(), ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UPPER, and SUCCESSFUL_RETURN.

Referenced by SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), QProblem::performStep(), and QProblemB::performStep().

returnValue QProblem::performStep ( const real_t *const  delta_g,
const real_t *const  delta_lbA,
const real_t *const  delta_ubA,
const real_t *const  delta_lb,
const real_t *const  delta_ub,
const real_t *const  delta_xFX,
const real_t *const  delta_xFR,
const real_t *const  delta_yAC,
const real_t *const  delta_yFX,
int_t BC_idx,
SubjectToStatus BC_status,
BooleanType BC_isBound 
) [protected, inherited]

Determines the maximum possible step length along the homotopy path and performs this step (without changing working set).

Returns:
SUCCESSFUL_RETURN
RET_ERROR_IN_CONSTRAINTPRODUCT
RET_QP_INFEASIBLE
Parameters:
delta_gStep direction of gradient.
delta_lbAStep direction of lower constraints' bounds.
delta_ubAStep direction of upper constraints' bounds.
delta_lbStep direction of lower bounds.
delta_ubStep direction of upper bounds.
delta_xFXPrimal homotopy step direction of fixed variables.
delta_xFRPrimal homotopy step direction of free variables.
delta_yACDual homotopy step direction of active constraints' multiplier.
delta_yFXDual homotopy step direction of fixed variables' multiplier.
BC_idxOutput: Index of blocking constraint.
BC_statusOutput: Status of blocking constraint.
BC_isBoundOutput: Indicates if blocking constraint is a bound.

References __FILE__, __FUNC__, __LINE__, QProblem::A, QProblem::Ax, QProblem::Ax_l, QProblem::Ax_u, QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraintProduct, QProblem::constraints, Options::epsDen, Options::epsNum, QProblemB::g, Constraints::getActive(), Bounds::getFixed(), Bounds::getFree(), getGlobalMessageHandler(), Constraints::getInactive(), getMax(), QProblem::getNAC(), QProblem::getNC(), QProblemB::getNFR(), QProblemB::getNFX(), QProblem::getNIAC(), Indexlist::getNumberArray(), QProblemB::getNV(), SubjectTo::getType(), SubjectTo::hasNoLower(), SubjectTo::hasNoUpper(), QProblemB::lb, QProblem::lbA, MAX_STRING_LENGTH, QProblemB::options, QProblemB::performRatioTest(), real_t, RET_ERROR_IN_CONSTRAINTPRODUCT, RET_STEPSIZE, RET_STEPSIZE_NONPOSITIVE, ST_INACTIVE, ST_LOWER, ST_UNBOUNDED, ST_UNDEFINED, ST_UPPER, SUCCESSFUL_RETURN, QProblemB::tau, THROWERROR, MessageHandling::throwInfo(), MessageHandling::throwWarning(), Matrix::times(), QProblemB::ub, QProblem::ubA, VS_VISIBLE, QProblemB::x, QProblemB::y, and ZERO.

Referenced by QProblem::solveQP().

returnValue QProblem::printIteration ( int_t  iter,
int_t  BC_idx,
SubjectToStatus  BC_status,
BooleanType  BC_isBound,
real_t  homotopyLength,
BooleanType  isFirstCall = BT_TRUE 
) [protected, inherited]

Prints concise information on the current iteration.

Returns:
SUCCESSFUL_RETURN
Parameters:
iterNumber of current iteration.
BC_idxIndex of blocking constraint.
BC_statusStatus of blocking constraint.
BC_isBoundIndicates if blocking constraint is a bound.
homotopyLengthCurrent homotopy distance.
isFirstCallIndicating whether this is the first call for current QP.

References QProblem::A, BT_TRUE, QProblemB::count, EPS, TabularOutput::excAddB, TabularOutput::excAddC, TabularOutput::excRemB, TabularOutput::excRemC, QProblemB::g, getAbs(), QProblem::getNAC(), QProblem::getNC(), QProblemB::getNFX(), QProblemB::getNV(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_ZERO, TabularOutput::idxAddB, TabularOutput::idxAddC, TabularOutput::idxRemB, TabularOutput::idxRemC, QProblemB::lb, QProblem::lbA, MAX_STRING_LENGTH, myPrintf(), QProblemB::options, PL_DEBUG_ITER, PL_MEDIUM, PL_TABULAR, Options::printLevel, real_t, QProblemB::regVal, RET_INVALID_ARGUMENTS, QProblem::sizeT, ST_INACTIVE, ST_UNDEFINED, SUCCESSFUL_RETURN, QProblemB::tabularOutput, QProblemB::tau, THROWERROR, Matrix::times(), Matrix::transTimes(), TT, QProblemB::ub, QProblem::ubA, QProblemB::x, and QProblemB::y.

Referenced by QProblem::solveQP().

returnValue QProblemB::printOptions ( ) const [inherited]

Prints a list of all options and their current values.

Returns:
SUCCESSFUL_RETURN

References QProblemB::options, and Options::print().

Referenced by main().

returnValue QProblem::printProperties ( ) [virtual, inherited]
returnValue QProblemB::regulariseHessian ( ) [protected, inherited]
returnValue QProblem::removeBound ( int_t  number,
BooleanType  updateCholesky,
BooleanType  allowFlipping = BT_FALSE,
BooleanType  ensureNZC = BT_FALSE 
) [protected, virtual, inherited]

Removes a bounds from active set.

Returns:
SUCCESSFUL_RETURN
RET_BOUND_NOT_ACTIVE
RET_HESSIAN_NOT_SPD
RET_REMOVEBOUND_FAILED
Parameters:
numberNumber of bound to be removed from active set.
updateCholeskyFlag indicating if Cholesky decomposition shall be updated.
allowFlippingFlag indicating if flipping bounds are allowed.
ensureNZCFlag indicating if non-zero curvature is ensured by exchange rules.

Reimplemented in SQProblemSchur.

References QProblem::A, QProblem::addBound(), QProblem::addConstraint(), QProblemB::applyGivens(), QProblemB::backsolveR(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblemB::computeGivens(), QProblem::constraints, Matrix::diag(), Options::enableFlippingBounds, QProblem::ensureNonzeroCurvature(), EPS, Options::epsFlipping, TabularOutput::excAddB, TabularOutput::excAddC, Bounds::flipFixed(), QProblemB::flipper, Flipper::get(), Constraints::getActive(), Matrix::getCol(), Bounds::getFree(), QProblem::getNAC(), QProblemB::getNFR(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), getSqrt(), SubjectTo::getStatus(), QProblemB::getStatus(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_SEMIDEF, HST_ZERO, TabularOutput::idxAddB, TabularOutput::idxRemB, QProblemB::lb, Bounds::moveFixedToFree(), QProblemB::options, QProblem::Q, QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_NOTINITIALISED, QPS_SOLVED, QQ, QProblemB::R, real_t, RET_BOUND_NOT_ACTIVE, RET_HESSIAN_NOT_SPD, RET_MOVING_BOUND_FAILED, RET_REMOVEBOUND_FAILED, RET_UNKNOWN_BUG, RR, Flipper::set(), QProblem::sizeT, ST_INACTIVE, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, QProblem::T, QProblemB::tabularOutput, THROWERROR, Matrix::times(), TT, QProblemB::ub, and ZERO.

Referenced by QProblem::addBound_ensureLI(), QProblem::addConstraint_ensureLI(), QProblem::changeActiveSet(), QProblem::dropInfeasibles(), QProblem::setupAuxiliaryWorkingSet(), and QProblem::updateActivitiesForHotstart().

returnValue QProblem::removeConstraint ( int_t  number,
BooleanType  updateCholesky,
BooleanType  allowFlipping = BT_FALSE,
BooleanType  ensureNZC = BT_FALSE 
) [protected, virtual, inherited]

Removes a constraint from active set.

Returns:
SUCCESSFUL_RETURN
RET_CONSTRAINT_NOT_ACTIVE
RET_REMOVECONSTRAINT_FAILED
RET_HESSIAN_NOT_SPD
Parameters:
numberNumber of constraint to be removed from active set.
updateCholeskyFlag indicating if Cholesky decomposition shall be updated.
allowFlippingFlag indicating if flipping bounds are allowed.
ensureNZCFlag indicating if non-zero curvature is ensured by exchange rules.

Reimplemented in SQProblemSchur.

References QProblem::addBound(), QProblem::addConstraint(), QProblemB::applyGivens(), QProblem::Ax_l, QProblem::Ax_u, QProblemB::backsolveR(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblemB::computeGivens(), QProblem::constraints, Options::enableFlippingBounds, QProblem::ensureNonzeroCurvature(), EPS, Options::epsFlipping, TabularOutput::excAddB, TabularOutput::excAddC, Constraints::flipFixed(), QProblemB::flipper, Flipper::get(), Constraints::getActive(), Bounds::getFree(), Indexlist::getIndex(), QProblem::getNAC(), QProblemB::getNFR(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::getNZ(), getSqrt(), SubjectTo::getStatus(), QProblemB::getStatus(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_SEMIDEF, HST_ZERO, TabularOutput::idxAddC, TabularOutput::idxRemC, QProblem::lbA, Constraints::moveActiveToInactive(), QProblemB::options, QProblem::Q, QPS_AUXILIARYQPSOLVED, QPS_HOMOTOPYQPSOLVED, QPS_NOTINITIALISED, QPS_SOLVED, QQ, QProblemB::R, real_t, RET_CONSTRAINT_NOT_ACTIVE, RET_HESSIAN_NOT_SPD, RET_MOVING_BOUND_FAILED, RET_REMOVECONSTRAINT_FAILED, RET_UNKNOWN_BUG, RR, Flipper::set(), QProblem::sizeT, ST_INACTIVE, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, QProblem::T, QProblemB::tabularOutput, THROWERROR, Matrix::times(), TT, QProblem::ubA, and ZERO.

Referenced by QProblem::addBound_ensureLI(), QProblem::addConstraint_ensureLI(), QProblem::changeActiveSet(), QProblem::dropInfeasibles(), and QProblem::setupAuxiliaryWorkingSet().

returnValue QProblem::reset ( ) [virtual, inherited]
returnValue QProblemB::resetCounter ( ) [inline, inherited]

Resets QP problem counter (to zero).

Returns:
SUCCESSFUL_RETURN.

References QProblemB::count, and SUCCESSFUL_RETURN.

returnValue QProblem::setA ( Matrix A_new) [inline, protected, inherited]
returnValue QProblem::setA ( const real_t *const  A_new) [inline, protected, inherited]

Sets dense constraint matrix of the QP.
Note: Also internal vector Ax is recomputed!

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
A_newNew dense constraint matrix (with correct dimension!), a shallow copy is made.

References QProblem::A, QProblem::Ax, QProblem::Ax_l, QProblem::Ax_u, BT_TRUE, QProblem::freeConstraintMatrix, QProblem::getNC(), QProblemB::getNV(), QProblem::lbA, real_t, RET_INVALID_ARGUMENTS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, THROWERROR, Matrix::times(), QProblem::ubA, and QProblemB::x.

returnValue QProblem::setConstraintProduct ( ConstraintProduct *const  _constraintProduct) [inherited]

Defines user-defined routine for calculating the constraint product A*x

Returns:
SUCCESSFUL_RETURN

References QProblem::constraintProduct, and SUCCESSFUL_RETURN.

Referenced by main().

returnValue QProblemB::setG ( const real_t *const  g_new) [inline, protected, inherited]

Changes gradient vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
g_newNew gradient vector (with correct dimension!).

References QProblemB::g, QProblemB::getNV(), real_t, RET_INVALID_ARGUMENTS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblemB::copy(), and QProblemB::setupQPdata().

returnValue QProblemB::setH ( SymmetricMatrix H_new) [inline, protected, inherited]

Sets Hessian matrix of the QP.

Returns:
SUCCESSFUL_RETURN
Parameters:
H_newNew Hessian matrix (a shallow copy is made).

References BT_FALSE, BT_TRUE, QProblemB::freeHessian, QProblemB::H, and SUCCESSFUL_RETURN.

Referenced by SQProblemSchur::setupAuxiliaryQP(), setupNewAuxiliaryQP(), QProblemB::setupQPdata(), and QProblemB::setupQPdataFromFile().

returnValue QProblemB::setH ( const real_t *const  H_new) [inline, protected, inherited]

Sets dense Hessian matrix of the QP. If a null pointer is passed and a) hessianType is HST_IDENTITY, nothing is done, b) hessianType is not HST_IDENTITY, Hessian matrix is set to zero.

Returns:
SUCCESSFUL_RETURN
Parameters:
H_newNew dense Hessian matrix (with correct dimension!), a shallow copy is made.

References BT_FALSE, BT_TRUE, QProblemB::freeHessian, QProblemB::getNV(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_ZERO, real_t, and SUCCESSFUL_RETURN.

returnValue QProblemB::setHessianType ( HessianType  _hessianType) [inline, inherited]

Changes the print level.

Returns:
SUCCESSFUL_RETURN
Parameters:
_hessianTypeNew Hessian type.

References QProblemB::hessianType, and SUCCESSFUL_RETURN.

returnValue QProblemB::setInfeasibilityFlag ( returnValue  returnvalue,
BooleanType  doThrowError = BT_FALSE 
) [protected, inherited]

Sets internal infeasibility flag and throws given error in case the far bound strategy is not enabled (as QP might actually not be infeasible in this case).

Returns:
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_ENSURELI_FAILED_CYCLING
RET_ENSURELI_FAILED_NOINDEX
Parameters:
returnvalueReturnvalue to be tunneled.
doThrowErrorFlag forcing to throw an error.

References BT_FALSE, BT_TRUE, Options::enableFarBounds, QProblemB::infeasible, QProblemB::options, and THROWERROR.

Referenced by SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), QProblemB::hotstart(), QProblem::hotstart(), QProblem::solveQP(), and QProblemB::solveQP().

returnValue QProblemB::setLB ( const real_t *const  lb_new) [inline, protected, inherited]

Changes lower bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
lb_newNew lower bound vector (with correct dimension!).

References QProblemB::getNV(), INFTY, QProblemB::lb, real_t, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblemB::copy(), and QProblemB::setupQPdata().

returnValue QProblemB::setLB ( int_t  number,
real_t  value 
) [inline, protected, inherited]

Changes single entry of lower bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
RET_INDEX_OUT_OF_BOUNDS
Parameters:
numberNumber of entry to be changed.
valueNew value for entry of lower bound vector.

References QProblemB::getNV(), QProblemB::lb, RET_INDEX_OUT_OF_BOUNDS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblem::setLBA ( const real_t *const  lbA_new) [inline, protected, inherited]

Sets constraints' lower bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
lbA_newNew constraints' lower bound vector (with correct dimension!).

References QProblem::getNC(), QProblemB::getNV(), INFTY, QProblem::lbA, real_t, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblem::copy(), and QProblem::setupQPdata().

returnValue QProblem::setLBA ( int_t  number,
real_t  value 
) [inline, protected, inherited]

Changes single entry of lower constraints' bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
RET_INDEX_OUT_OF_BOUNDS
Parameters:
numberNumber of entry to be changed.
valueNew value for entry of lower constraints' bound vector (with correct dimension!).

References QProblem::getNC(), QProblemB::getNV(), QProblem::lbA, RET_INDEX_OUT_OF_BOUNDS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblemB::setOptions ( const Options _options) [inline, inherited]

Overrides current options with given ones.

Returns:
SUCCESSFUL_RETURN
Parameters:
_optionsNew options.

References Options::ensureConsistency(), QProblemB::options, Options::printLevel, QProblemB::setPrintLevel(), and SUCCESSFUL_RETURN.

Referenced by main(), and solveOqpBenchmark().

returnValue QProblemB::setPrintLevel ( PrintLevel  _printlevel) [inherited]
returnValue QProblemB::setUB ( const real_t *const  ub_new) [inline, protected, inherited]

Changes upper bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
ub_newNew upper bound vector (with correct dimension!).

References QProblemB::getNV(), INFTY, real_t, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, THROWERROR, and QProblemB::ub.

Referenced by QProblemB::copy(), and QProblemB::setupQPdata().

returnValue QProblemB::setUB ( int_t  number,
real_t  value 
) [inline, protected, inherited]

Changes single entry of upper bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
RET_INDEX_OUT_OF_BOUNDS
Parameters:
numberNumber of entry to be changed.
valueNew value for entry of upper bound vector.

References QProblemB::getNV(), RET_INDEX_OUT_OF_BOUNDS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, THROWERROR, and QProblemB::ub.

returnValue QProblem::setUBA ( const real_t *const  ubA_new) [inline, protected, inherited]

Sets constraints' upper bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
Parameters:
ubA_newNew constraints' upper bound vector (with correct dimension!).

References QProblem::getNC(), QProblemB::getNV(), INFTY, real_t, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, THROWERROR, and QProblem::ubA.

Referenced by QProblem::copy(), and QProblem::setupQPdata().

returnValue QProblem::setUBA ( int_t  number,
real_t  value 
) [inline, protected, inherited]

Changes single entry of upper constraints' bound vector of the QP.

Returns:
SUCCESSFUL_RETURN
RET_QPOBJECT_NOT_SETUP
RET_INDEX_OUT_OF_BOUNDS
Parameters:
numberNumber of entry to be changed.
valueNew value for entry of upper constraints' bound vector (with correct dimension!).

References QProblem::getNC(), QProblemB::getNV(), RET_INDEX_OUT_OF_BOUNDS, RET_QPOBJECT_NOT_SETUP, SUCCESSFUL_RETURN, THROWERROR, and QProblem::ubA.

returnValue QProblem::setupAuxiliaryQP ( const Bounds *const  guessedBounds,
const Constraints *const  guessedConstraints 
) [protected, virtual, inherited]
returnValue QProblemB::setupAuxiliaryQP ( const Bounds *const  guessedBounds) [protected, virtual, inherited]

Updates QP vectors, working sets and internal data structures in order to start from an optimal solution corresponding to initial guesses of the working set for bounds

Returns:
SUCCESSFUL_RETURN
RET_SETUP_AUXILIARYQP_FAILED
Parameters:
guessedBoundsInitial guess for working set of bounds.

References QProblemB::bounds, BT_FALSE, BT_TRUE, QProblemB::computeCholesky(), QProblemB::getNV(), SubjectTo::getStatus(), Bounds::init(), QPS_PREPARINGAUXILIARYQP, RET_SETUP_AUXILIARYQP_FAILED, Bounds::setupAllFree(), QProblemB::setupAuxiliaryQPbounds(), QProblemB::setupAuxiliaryQPgradient(), QProblemB::setupAuxiliaryWorkingSet(), QProblemB::setupSubjectToType(), QProblemB::shallRefactorise(), ST_INACTIVE, QProblemB::status, SUCCESSFUL_RETURN, THROWERROR, and QProblemB::y.

Referenced by QProblemB::hotstart().

returnValue QProblem::setupAuxiliaryQPbounds ( const Bounds *const  auxiliaryBounds,
const Constraints *const  auxiliaryConstraints,
BooleanType  useRelaxation 
) [protected, inherited]

Sets up (constraints') bounds of the auxiliary initial QP for given optimal primal/dual solution and given initial working set (assumes that members X, Y and BOUNDS, CONSTRAINTS have already been initialised!).

Returns:
SUCCESSFUL_RETURN
RET_UNKNOWN_BUG
Parameters:
auxiliaryBoundsWorking set of bounds for auxiliary QP.
auxiliaryConstraintsWorking set of constraints for auxiliary QP.
useRelaxationFlag indicating if inactive (constraints') bounds shall be relaxed.

References QProblem::Ax_l, QProblem::Ax_u, Options::boundRelaxation, QProblemB::bounds, BT_TRUE, QProblem::constraints, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), SubjectTo::getType(), QProblemB::lb, QProblem::lbA, QProblemB::options, RET_UNKNOWN_BUG, ST_EQUALITY, ST_INACTIVE, ST_INFEASIBLE_LOWER, ST_INFEASIBLE_UPPER, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, THROWERROR, QProblemB::ub, QProblem::ubA, and QProblemB::x.

Referenced by SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), setupNewAuxiliaryQP(), and QProblem::solveInitialQP().

returnValue QProblem::setupAuxiliaryQPgradient ( ) [protected, inherited]

Sets up gradient of the auxiliary initial QP for given optimal primal/dual solution and given initial working set (assumes that members X, Y and BOUNDS, CONSTRAINTS have already been initialised!).

Returns:
SUCCESSFUL_RETURN

Reimplemented from QProblemB.

References QProblem::A, BT_FALSE, QProblemB::g, QProblem::getNC(), QProblemB::getNV(), QProblemB::H, QProblemB::hessianType, HST_IDENTITY, HST_ZERO, QProblemB::regVal, SUCCESSFUL_RETURN, Matrix::times(), Matrix::transTimes(), QProblemB::usingRegularisation(), QProblemB::x, and QProblemB::y.

Referenced by QProblem::performDriftCorrection(), QProblem::performRamping(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), setupNewAuxiliaryQP(), and QProblem::solveInitialQP().

returnValue QProblem::setupAuxiliaryQPsolution ( const real_t *const  xOpt,
const real_t *const  yOpt 
) [protected, inherited]

Sets up the optimal primal/dual solution of the auxiliary initial QP.

Returns:
SUCCESSFUL_RETURN
Parameters:
xOptOptimal primal solution vector. If a NULL pointer is passed, all entries are set to zero.
yOptOptimal dual solution vector. If a NULL pointer is passed, all entries are set to zero.

Reimplemented from QProblemB.

References QProblem::A, QProblem::Ax, QProblem::Ax_l, QProblem::Ax_u, QProblem::getNC(), QProblemB::getNV(), SUCCESSFUL_RETURN, Matrix::times(), QProblemB::x, and QProblemB::y.

Referenced by QProblem::solveInitialQP().

returnValue QProblem::setupAuxiliaryWorkingSet ( const Bounds *const  auxiliaryBounds,
const Constraints *const  auxiliaryConstraints,
BooleanType  setupAfresh 
) [protected, virtual, inherited]

Sets up bound and constraints data structures according to auxiliaryBounds/Constraints. (If the working set shall be setup afresh, make sure that bounds and constraints data structure have been resetted and the TQ factorisation has been initialised!)

Returns:
SUCCESSFUL_RETURN
RET_SETUP_WORKINGSET_FAILED
RET_INVALID_ARGUMENTS
RET_UNKNOWN_BUG
Parameters:
auxiliaryBoundsWorking set of bounds for auxiliary QP.
auxiliaryConstraintsWorking set of constraints for auxiliary QP.
setupAfreshFlag indicating if given working set shall be setup afresh or by updating the current one.

Reimplemented in SQProblemSchur.

References QProblem::addBound(), QProblem::addBound_checkLI(), QProblem::addConstraint(), QProblem::addConstraint_checkLI(), QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, Options::enableFullLITests, Options::enableNZCTests, Options::epsLITests, QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), SubjectTo::getType(), Bounds::moveFreeToFixed(), QProblemB::options, real_t, QProblem::removeBound(), QProblem::removeConstraint(), RET_INVALID_ARGUMENTS, RET_LINEARLY_INDEPENDENT, RET_SETUP_WORKINGSET_FAILED, RET_UNKNOWN_BUG, SubjectTo::setType(), ST_BOUNDED, ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UNDEFINED, ST_UPPER, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblem::setupAuxiliaryQP(), setupNewAuxiliaryQP(), and QProblem::solveInitialQP().

returnValue QProblem::setupInitialCholesky ( ) [protected, virtual, inherited]

Computes initial Cholesky decomposition of the projected Hessian making use of the function computeCholesky() or computeProjectedCholesky().

Returns:
SUCCESSFUL_RETURN
RET_HESSIAN_NOT_SPD
RET_INDEXLIST_CORRUPTED

Reimplemented from QProblemB.

References BT_TRUE, QProblem::computeProjectedCholesky(), Options::enableRegularisation, QProblemB::getNFR(), QProblemB::getNFV(), QProblemB::getNV(), QProblemB::haveCholesky, QProblemB::options, QProblemB::regulariseHessian(), RET_HESSIAN_NOT_SPD, RET_INIT_FAILED_CHOLESKY, RET_INIT_FAILED_REGULARISATION, and SUCCESSFUL_RETURN.

Referenced by QProblem::hotstart().

returnValue SQProblem::setupNewAuxiliaryQP ( SymmetricMatrix H_new,
Matrix A_new,
const real_t lb_new,
const real_t ub_new,
const real_t lbA_new,
const real_t ubA_new 
) [protected, virtual]

Sets new matrices and calculates their factorisations. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one. Afterwards, all QP vectors are transformed in order to start from an optimal solution.

Returns:
SUCCESSFUL_RETURN
RET_MATRIX_FACTORISATION_FAILED
RET_NO_HESSIAN_SPECIFIED
Parameters:
H_newNew Hessian matrix.
If Hessian matrix is trivial, a NULL pointer can be passed.
A_newNew constraint matrix.
If QP sequence does not involve constraints, a NULL pointer can be passed.
lb_newNew lower bounds.
If no lower bounds exist, a NULL pointer can be passed.
ub_newNew upper bounds.
If no lower bounds exist, a NULL pointer can be passed.
lbA_newNew lower constraints' bounds.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newNew lower constraints' bounds.
If no lower constraints' bounds exist, a NULL pointer can be passed.

References QProblem::Ax, QProblem::Ax_l, QProblem::Ax_u, QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::computeProjectedCholesky(), QProblem::constraints, QProblemB::determineHessianType(), QProblem::getNC(), QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::getStatus(), SubjectTo::getType(), QProblemB::H, QProblemB::hessianType, HST_SEMIDEF, HST_UNKNOWN, HST_ZERO, Bounds::init(), Constraints::init(), Options::initialStatusBounds, QProblem::lbA, QProblemB::options, QPS_AUXILIARYQPSOLVED, QPS_NOTINITIALISED, QPS_PERFORMINGHOMOTOPY, QPS_PREPARINGAUXILIARYQP, QProblemB::regulariseHessian(), QProblemB::regVal, RET_INVALID_ARGUMENTS, RET_NO_HESSIAN_SPECIFIED, RET_SETUP_AUXILIARYQP_FAILED, RET_UPDATEMATRICES_FAILED_AS_QP_NOT_SOLVED, QProblem::setA(), QProblemB::setH(), SubjectTo::setStatus(), Bounds::setupAllFree(), Constraints::setupAllInactive(), QProblem::setupAuxiliaryQPbounds(), QProblem::setupAuxiliaryQPgradient(), QProblem::setupAuxiliaryWorkingSet(), QProblem::setupSubjectToType(), QProblem::setupTQfactorisation(), ST_BOUNDED, ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UPPER, QProblemB::status, SUCCESSFUL_RETURN, THROWERROR, QProblem::ubA, QProblemB::usingRegularisation(), and QProblemB::y.

Referenced by hotstart(), and setupNewAuxiliaryQP().

returnValue SQProblem::setupNewAuxiliaryQP ( const real_t *const  H_new,
const real_t *const  A_new,
const real_t lb_new,
const real_t ub_new,
const real_t lbA_new,
const real_t ubA_new 
) [protected, virtual]

Sets new matrices and calculates their factorisations. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one. Afterwards, all QP vectors are transformed in order to start from an optimal solution.

Returns:
SUCCESSFUL_RETURN
RET_MATRIX_FACTORISATION_FAILED
RET_NO_HESSIAN_SPECIFIED
Parameters:
H_newNew Hessian matrix.
If Hessian matrix is trivial, a NULL pointer can be passed.
A_newNew constraint matrix.
If QP sequence does not involve constraints, a NULL pointer can be passed.
lb_newNew lower bounds.
If no lower bounds exist, a NULL pointer can be passed.
ub_newNew upper bounds.
If no lower bounds exist, a NULL pointer can be passed.
lbA_newNew lower constraints' bounds.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newNew lower constraints' bounds.
If no lower constraints' bounds exist, a NULL pointer can be passed.

References BT_TRUE, QProblem::freeConstraintMatrix, QProblemB::freeHessian, QProblem::getNC(), QProblemB::getNV(), real_t, RET_INVALID_ARGUMENTS, setupNewAuxiliaryQP(), and THROWERROR.

returnValue QProblemB::setupQPdata ( SymmetricMatrix _H,
const real_t *const  _g,
const real_t *const  _lb,
const real_t *const  _ub 
) [protected, inherited]

Sets up internal QP data.

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
Parameters:
_HHessian matrix.
_gGradient vector.
_lbLower bounds (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bounds (on variables).
If no upper bounds exist, a NULL pointer can be passed.

References RET_INVALID_ARGUMENTS, QProblemB::setG(), QProblemB::setH(), QProblemB::setLB(), QProblemB::setUB(), SUCCESSFUL_RETURN, and THROWERROR.

Referenced by QProblemB::init(), and QProblem::setupQPdata().

returnValue QProblemB::setupQPdata ( const real_t *const  _H,
const real_t *const  _g,
const real_t *const  _lb,
const real_t *const  _ub 
) [protected, inherited]

Sets up internal QP data. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one.

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
RET_NO_HESSIAN_SPECIFIED
Parameters:
_HHessian matrix.
If Hessian matrix is trivial,a NULL pointer can be passed.
_gGradient vector.
_lbLower bounds (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bounds (on variables).
If no upper bounds exist, a NULL pointer can be passed.

References RET_INVALID_ARGUMENTS, QProblemB::setG(), QProblemB::setH(), QProblemB::setLB(), QProblemB::setUB(), SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblem::setupQPdata ( SymmetricMatrix _H,
const real_t *const  _g,
Matrix _A,
const real_t *const  _lb,
const real_t *const  _ub,
const real_t *const  _lbA,
const real_t *const  _ubA 
) [protected, inherited]

Sets up internal QP data.

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
RET_UNKNONW_BUG
Parameters:
_HHessian matrix.
If Hessian matrix is trivial,a NULL pointer can be passed.
_gGradient vector.
_AConstraint matrix.
_lbLower bound vector (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bound vector (on variables).
If no upper bounds exist, a NULL pointer can be passed.
_lbALower constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
_ubAUpper constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.

References getMax(), getMin(), QProblem::getNC(), QProblemB::getNV(), RET_INVALID_ARGUMENTS, QProblem::setA(), QProblem::setLBA(), QProblem::setUBA(), QProblemB::setupQPdata(), SUCCESSFUL_RETURN, THROWERROR, and Matrix::writeToFile().

Referenced by QProblem::init().

returnValue QProblem::setupQPdata ( const real_t *const  _H,
const real_t *const  _g,
const real_t *const  _A,
const real_t *const  _lb,
const real_t *const  _ub,
const real_t *const  _lbA,
const real_t *const  _ubA 
) [protected, inherited]

Sets up dense internal QP data. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one.

Returns:
SUCCESSFUL_RETURN
RET_INVALID_ARGUMENTS
RET_UNKNONW_BUG
Parameters:
_HHessian matrix.
If Hessian matrix is trivial,a NULL pointer can be passed.
_gGradient vector.
_AConstraint matrix.
_lbLower bound vector (on variables).
If no lower bounds exist, a NULL pointer can be passed.
_ubUpper bound vector (on variables).
If no upper bounds exist, a NULL pointer can be passed.
_lbALower constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.
_ubAUpper constraints' bound vector.
If no lower constraints' bounds exist, a NULL pointer can be passed.

References QProblem::getNC(), RET_INVALID_ARGUMENTS, QProblem::setA(), QProblem::setLBA(), QProblem::setUBA(), QProblemB::setupQPdata(), SUCCESSFUL_RETURN, and THROWERROR.

returnValue QProblemB::setupQPdataFromFile ( const char *const  H_file,
const char *const  g_file,
const char *const  lb_file,
const char *const  ub_file 
) [protected, inherited]

Sets up internal QP data by loading it from files. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one.

Returns:
SUCCESSFUL_RETURN
RET_UNABLE_TO_OPEN_FILE
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
RET_NO_HESSIAN_SPECIFIED
Parameters:
H_fileName of file where Hessian matrix, of neighbouring QP to be solved, is stored.
If Hessian matrix is trivial,a NULL pointer can be passed.
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.

References Matrix::doFreeMemory(), QProblemB::g, QProblemB::getNV(), QProblemB::H, INFTY, QProblemB::lb, readFromFile(), real_t, RET_INVALID_ARGUMENTS, QProblemB::setH(), SUCCESSFUL_RETURN, THROWERROR, and QProblemB::ub.

Referenced by QProblemB::init().

returnValue QProblem::setupQPdataFromFile ( const char *const  H_file,
const char *const  g_file,
const char *const  A_file,
const char *const  lb_file,
const char *const  ub_file,
const char *const  lbA_file,
const char *const  ubA_file 
) [protected, inherited]

Sets up internal QP data by loading it from files. If the current Hessian is trivial (i.e. HST_ZERO or HST_IDENTITY) but a non-trivial one is given, memory for Hessian is allocated and it is set to the given one.

Returns:
SUCCESSFUL_RETURN
RET_UNABLE_TO_OPEN_FILE
RET_UNABLE_TO_READ_FILE
RET_INVALID_ARGUMENTS
RET_UNKNONW_BUG
Parameters:
H_fileName of file where Hessian matrix, of neighbouring QP to be solved, is stored.
If Hessian matrix is trivial,a NULL pointer can be passed.
g_fileName of file where gradient, of neighbouring QP to be solved, is stored.
A_fileName of file where constraint matrix, of neighbouring QP to be solved, is stored.
lb_fileName of file where lower bounds, of neighbouring QP to be solved, is stored.
If no lower bounds exist, a NULL pointer can be passed.
ub_fileName of file where upper bounds, of neighbouring QP to be solved, is stored.
If no upper bounds exist, a NULL pointer can be passed.
lbA_fileName of file where lower constraints' bounds, of neighbouring QP to be solved, is stored.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_fileName of file where upper constraints' bounds, of neighbouring QP to be solved, is stored.
If no upper constraints' bounds exist, a NULL pointer can be passed.

References QProblem::A, Matrix::doFreeMemory(), QProblem::getNC(), QProblemB::getNV(), INFTY, QProblem::lbA, readFromFile(), real_t, RET_INVALID_ARGUMENTS, QProblem::setA(), SUCCESSFUL_RETURN, THROWERROR, and QProblem::ubA.

Referenced by QProblem::init().

returnValue QProblemB::setupSubjectToType ( const real_t *const  lb_new,
const real_t *const  ub_new 
) [protected, virtual, inherited]

Determines type of new constraints and bounds (i.e. implicitly fixed, unbounded etc.).

Returns:
SUCCESSFUL_RETURN
RET_SETUPSUBJECTTOTYPE_FAILED
Parameters:
lb_newNew lower bounds.
ub_newNew upper bounds.

References QProblemB::bounds, Options::boundTolerance, BT_FALSE, BT_TRUE, Options::enableEqualities, Options::enableFarBounds, QProblemB::getNV(), INFTY, QProblemB::lb, QProblemB::options, SubjectTo::setNoLower(), SubjectTo::setNoUpper(), SubjectTo::setType(), ST_BOUNDED, ST_EQUALITY, ST_UNBOUNDED, SUCCESSFUL_RETURN, and QProblemB::ub.

returnValue QProblem::setupSubjectToType ( ) [protected, virtual, inherited]

Determines type of existing constraints and bounds (i.e. implicitly fixed, unbounded etc.).

Returns:
SUCCESSFUL_RETURN
RET_SETUPSUBJECTTOTYPE_FAILED

Reimplemented from QProblemB.

References QProblemB::lb, QProblem::lbA, QProblemB::ub, and QProblem::ubA.

Referenced by SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), setupNewAuxiliaryQP(), and QProblem::solveInitialQP().

returnValue QProblem::setupSubjectToType ( const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new 
) [protected, virtual, inherited]
returnValue QProblem::setupTQfactorisation ( ) [protected, virtual, inherited]

Initialises TQ factorisation of A (i.e. A*Q = [0 T]) if NO constraint is active.

Returns:
SUCCESSFUL_RETURN
RET_INDEXLIST_CORRUPTED

Reimplemented in SQProblemSchur.

References QProblemB::bounds, Bounds::getFree(), QProblemB::getNFR(), Indexlist::getNumberArray(), QProblemB::getNV(), QProblem::Q, QQ, QProblem::sizeT, SUCCESSFUL_RETURN, and QProblem::T.

Referenced by QProblem::setupAuxiliaryQP(), setupNewAuxiliaryQP(), and QProblem::solveInitialQP().

BooleanType QProblem::shallRefactorise ( const Bounds *const  guessedBounds,
const Constraints *const  guessedConstraints 
) const [protected, inherited]

Determines if it is more efficient to refactorise the matrices when hotstarting or not (i.e. better to update the existing factorisations).

Returns:
BT_TRUE iff matrices shall be refactorised afresh
Parameters:
guessedBoundsGuessed new working set of bounds.
guessedConstraintsGuessed new working set of constraints.

References QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, Constraints::getNAC(), QProblem::getNC(), Bounds::getNFX(), QProblemB::getNV(), SubjectTo::getStatus(), QProblemB::hessianType, HST_INDEF, and HST_SEMIDEF.

Referenced by QProblem::setupAuxiliaryQP().

returnValue QProblem::solveCurrentEQP ( const int_t  n_rhs,
const real_t g_in,
const real_t lb_in,
const real_t ub_in,
const real_t lbA_in,
const real_t ubA_in,
real_t x_out,
real_t y_out 
) [inherited]

Solves an equality-constrained QP problem resulting from the current working set.

Returns:
SUCCESSFUL_RETURN
RET_STEPDIRECTION_FAILED_TQ
RET_STEPDIRECTION_FAILED_CHOLESKY
RET_INVALID_ARGUMENTS
Parameters:
n_rhsNumber of consecutive right hand sides
g_inGradient of neighbouring QP to be solved.
lb_inLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_inUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_inLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_inUpper constraints' bounds of neighbouring QP to be solved.
x_outOutput: Primal solution
y_outOutput: Dual solution

References QProblemB::bounds, BT_FALSE, QProblem::constraints, QProblem::determineStepDirection(), Constraints::getActive(), Bounds::getFixed(), Bounds::getFree(), QProblem::getNAC(), QProblem::getNC(), QProblemB::getNFR(), QProblemB::getNFX(), Indexlist::getNumberArray(), QProblemB::getNV(), real_t, RET_INVALID_ARGUMENTS, SUCCESSFUL_RETURN, and THROWERROR.

Referenced by main().

returnValue QProblem::solveInitialQP ( const real_t *const  xOpt,
const real_t *const  yOpt,
const Bounds *const  guessedBounds,
const Constraints *const  guessedConstraints,
const real_t *const  _R,
int_t nWSR,
real_t *const  cputime 
) [protected, inherited]

Solves a QProblem whose QP data is assumed to be stored in the member variables. A guess for its primal/dual optimal solution vectors and the corresponding working sets of bounds and constraints can be provided. Note: This function is internally called by all init functions!

Returns:
SUCCESSFUL_RETURN
RET_INIT_FAILED
RET_INIT_FAILED_CHOLESKY
RET_INIT_FAILED_TQ
RET_INIT_FAILED_HOTSTART
RET_INIT_FAILED_INFEASIBILITY
RET_INIT_FAILED_UNBOUNDEDNESS
RET_MAX_NWSR_REACHED
Parameters:
xOptOptimal primal solution vector.
yOptOptimal dual solution vector.
guessedBoundsOptimal working set of bounds for solution (xOpt,yOpt).
guessedConstraintsOptimal working set of constraints for solution (xOpt,yOpt).
_RPre-computed (upper triangular) Cholesky factor of Hessian matrix.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).

References QProblemB::bounds, BT_FALSE, BT_TRUE, QProblem::constraints, QProblemB::determineHessianType(), Options::enableRamping, QProblemB::g, getCPUtime(), QProblem::getNC(), QProblemB::getNV(), QProblemB::haveCholesky, QProblemB::hessianType, QProblem::hotstart(), HST_SEMIDEF, HST_ZERO, Options::initialStatusBounds, QProblemB::isInfeasible(), QProblemB::isUnbounded(), QProblemB::lb, QProblem::lbA, QProblem::obtainAuxiliaryWorkingSet(), QProblemB::options, QProblem::performRamping(), QPS_AUXILIARYQPSOLVED, QPS_NOTINITIALISED, QPS_PREPARINGAUXILIARYQP, QProblemB::R, real_t, QProblemB::regulariseHessian(), RET_INIT_FAILED, RET_INIT_FAILED_HOTSTART, RET_INIT_FAILED_INFEASIBILITY, RET_INIT_FAILED_REGULARISATION, RET_INIT_FAILED_TQ, RET_INIT_FAILED_UNBOUNDEDNESS, RET_INIT_SUCCESSFUL, RET_MAX_NWSR_REACHED, RET_NO_CHOLESKY_WITH_INITIAL_GUESS, RR, Bounds::setupAllFree(), Constraints::setupAllInactive(), QProblem::setupAuxiliaryQPbounds(), QProblem::setupAuxiliaryQPgradient(), QProblem::setupAuxiliaryQPsolution(), QProblem::setupAuxiliaryWorkingSet(), QProblem::setupSubjectToType(), QProblem::setupTQfactorisation(), ST_INACTIVE, QProblemB::status, SUCCESSFUL_RETURN, THROWERROR, THROWINFO, THROWWARNING, QProblemB::ub, and QProblem::ubA.

Referenced by QProblem::init().

returnValue QProblem::solveQP ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
int_t nWSR,
real_t *const  cputime,
int_t  nWSRperformed = 0,
BooleanType  isFirstCall = BT_TRUE 
) [protected, inherited]

Solves QProblem using online active set strategy. Note: This function is internally called by all hotstart functions!

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
Parameters:
g_newGradient of neighbouring QP to be solved.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_newLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newUpper constraints' bounds of neighbouring QP to be solved.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
nWSRperformedNumber of working set recalculations already performed to solve this QP within previous solveQP() calls. This number is always zero, except for successive calls from solveRegularisedQP() or when using the far bound strategy.
isFirstCallIndicating whether this is the first call for current QP.

References __FILE__, __FUNC__, __LINE__, BT_FALSE, BT_TRUE, QProblem::changeActiveSet(), QProblem::computeProjectedCholesky(), QProblem::determineDataShift(), QProblem::determineStepDirection(), Options::enableCholeskyRefactorisation, Options::enableDriftCorrection, Options::enableRamping, EPS, TabularOutput::excAddB, TabularOutput::excAddC, TabularOutput::excRemB, TabularOutput::excRemC, getCPUtime(), getGlobalMessageHandler(), QProblem::getNC(), QProblemB::getNV(), QProblem::getRelativeHomotopyLength(), QProblemB::getStatus(), TabularOutput::idxAddB, TabularOutput::idxAddC, TabularOutput::idxRemB, TabularOutput::idxRemC, QProblemB::infeasible, QProblemB::isCPUtimeLimitExceeded(), QProblemB::isInfeasible(), MAX_STRING_LENGTH, QProblemB::options, QProblem::performDriftCorrection(), QProblem::performRamping(), QProblem::performStep(), PL_HIGH, QProblem::printIteration(), Options::printLevel, QPS_HOMOTOPYQPSOLVED, QPS_NOTINITIALISED, QPS_PERFORMINGHOMOTOPY, QPS_PREPARINGAUXILIARYQP, QPS_SOLVED, real_t, RET_HOMOTOPY_STEP_FAILED, RET_HOTSTART_FAILED, RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED, RET_HOTSTART_STOPPED_INFEASIBILITY, RET_HOTSTART_STOPPED_UNBOUNDEDNESS, RET_ITERATION_STARTED, RET_MAX_NWSR_REACHED, RET_OPTIMAL_SOLUTION_FOUND, RET_PRINT_ITERATION_FAILED, RET_SHIFT_DETERMINATION_FAILED, RET_STEPDIRECTION_DETERMINATION_FAILED, RET_STEPLENGTH_DETERMINATION_FAILED, QProblemB::setInfeasibilityFlag(), ST_UNDEFINED, QProblemB::status, SUCCESSFUL_RETURN, QProblemB::tabularOutput, QProblemB::tau, Options::terminationTolerance, THROWERROR, MessageHandling::throwInfo(), THROWINFO, MessageHandling::throwWarning(), QProblemB::unbounded, QProblem::updateActivitiesForHotstart(), and VS_VISIBLE.

Referenced by QProblem::solveRegularisedQP().

returnValue QProblem::solveRegularisedQP ( const real_t *const  g_new,
const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new,
int_t nWSR,
real_t *const  cputime,
int_t  nWSRperformed = 0,
BooleanType  isFirstCall = BT_TRUE 
) [protected, inherited]

Solves QProblem using online active set strategy. Note: This function is internally called by all hotstart functions!

Returns:
SUCCESSFUL_RETURN
RET_MAX_NWSR_REACHED
RET_HOTSTART_FAILED_AS_QP_NOT_INITIALISED
RET_HOTSTART_FAILED
RET_SHIFT_DETERMINATION_FAILED
RET_STEPDIRECTION_DETERMINATION_FAILED
RET_STEPLENGTH_DETERMINATION_FAILED
RET_HOMOTOPY_STEP_FAILED
RET_HOTSTART_STOPPED_INFEASIBILITY
RET_HOTSTART_STOPPED_UNBOUNDEDNESS
Parameters:
g_newGradient of neighbouring QP to be solved.
lb_newLower bounds of neighbouring QP to be solved.
If no lower bounds exist, a NULL pointer can be passed.
ub_newUpper bounds of neighbouring QP to be solved.
If no upper bounds exist, a NULL pointer can be passed.
lbA_newLower constraints' bounds of neighbouring QP to be solved.
If no lower constraints' bounds exist, a NULL pointer can be passed.
ubA_newUpper constraints' bounds of neighbouring QP to be solved.
If no upper constraints' bounds exist, a NULL pointer can be passed.
nWSRInput: Maximum number of working set recalculations;
Output: Number of performed working set recalculations.
cputimeInput: Maximum CPU time allowed for QP solution.
Output: CPU time spent for QP solution (or to perform nWSR iterations).
nWSRperformedNumber of working set recalculations already performed to solve this QP within previous solveRegularisedQP() calls. This number is always zero, except for successive calls when using the far bound strategy.
isFirstCallIndicating whether this is the first call for current QP.

References BT_FALSE, QProblemB::g, QProblemB::getNV(), Options::numRegularisationSteps, QProblemB::options, real_t, QProblemB::regVal, RET_FEWER_REGSTEPS_NWSR, RET_MAX_NWSR_REACHED, RET_NO_REGSTEP_NWSR, QProblem::solveQP(), SUCCESSFUL_RETURN, THROWWARNING, QProblemB::usingRegularisation(), and QProblemB::x.

Referenced by QProblem::hotstart().

returnValue QProblem::updateActivitiesForHotstart ( const real_t *const  lb_new,
const real_t *const  ub_new,
const real_t *const  lbA_new,
const real_t *const  ubA_new 
) [protected, virtual, inherited]

Update activities in a hot start if some of the bounds have become infinity or if variables have become fixed.

Parameters:
lb_newNew lower bounds.
ub_newNew upper bounds.
lbA_newNew lower constraints' bounds.
ubA_newNew upper constraints' bounds.

References QProblem::addBound(), QProblem::addBound_checkLI(), Options::boundRelaxation, QProblemB::bounds, BT_FALSE, BT_TRUE, Options::enableNZCTests, QProblemB::g, QProblemB::getNV(), SubjectTo::getStatus(), SubjectTo::getType(), INFTY, QProblemB::lb, QProblemB::options, QProblem::removeBound(), RET_LINEARLY_INDEPENDENT, RET_SETUPSUBJECTTOTYPE_FAILED, QProblemB::setupSubjectToType(), ST_EQUALITY, ST_INACTIVE, ST_LOWER, ST_UPPER, SUCCESSFUL_RETURN, THROWERROR, QProblemB::ub, QProblemB::x, and QProblemB::y.

Referenced by QProblem::solveQP().

returnValue QProblemB::updateFarBounds ( real_t  curFarBound,
int_t  nRamp,
const real_t *const  lb_new,
real_t *const  lb_new_far,
const real_t *const  ub_new,
real_t *const  ub_new_far 
) const [protected, inherited]

...

Parameters:
curFarBound...
nRamp...
lb_new...
lb_new_far...
ub_new...
ub_new_far...

References BT_TRUE, Options::enableRamping, getMax(), getMin(), QProblemB::getNV(), QProblemB::options, QProblemB::ramp0, QProblemB::ramp1, QProblemB::rampOffset, real_t, and SUCCESSFUL_RETURN.

Referenced by QProblemB::hotstart().

returnValue QProblem::updateFarBounds ( real_t  curFarBound,
int_t  nRamp,
const real_t *const  lb_new,
real_t *const  lb_new_far,
const real_t *const  ub_new,
real_t *const  ub_new_far,
const real_t *const  lbA_new,
real_t *const  lbA_new_far,
const real_t *const  ubA_new,
real_t *const  ubA_new_far 
) const [protected, inherited]

...

Parameters:
curFarBound...
nRamp...
lb_new...
lb_new_far...
ub_new...
ub_new_far...
lbA_new...
lbA_new_far...
ubA_new...
ubA_new_far...

References BT_TRUE, Options::enableRamping, getMax(), getMin(), QProblem::getNC(), QProblemB::getNV(), QProblemB::options, QProblemB::ramp0, QProblemB::ramp1, QProblemB::rampOffset, real_t, and SUCCESSFUL_RETURN.

Referenced by QProblem::hotstart().

BooleanType QProblemB::usingRegularisation ( ) const [inline, inherited]
returnValue QProblem::writeQpDataIntoMatFile ( const char *const  filename) const [inherited]
returnValue QProblem::writeQpWorkspaceIntoMatFile ( const char *const  filename) [inherited]

Member Data Documentation

Matrix* QProblem::A [protected, inherited]
real_t* QProblem::Ax [protected, inherited]
real_t* QProblem::Ax_l [protected, inherited]
real_t* QProblem::Ax_u [protected, inherited]
Bounds QProblemB::bounds [protected, inherited]

Data structure for problem's bounds.

Referenced by SQProblemSchur::addBound(), QProblem::addBound(), QProblemB::addBound(), SQProblemSchur::addBound_checkLISchur(), SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), QProblem::addConstraint(), QProblem::addConstraint_checkLI(), SQProblemSchur::addConstraint_checkLISchur(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), SolutionAnalysis::checkCurvatureOnStronglyActiveConstraints(), QProblemB::computeCholesky(), QProblem::computeProjectedCholesky(), QProblemB::copy(), SQProblemSchur::correctInertia(), QProblemB::determineDataShift(), QProblem::determineDataShift(), QProblem::determineStepDirection(), QProblemB::determineStepDirection(), SQProblemSchur::determineStepDirection2(), QProblem::dropInfeasibles(), QProblem::ensureNonzeroCurvature(), QProblemB::getBounds(), QProblem::getFreeVariablesFlags(), QProblemB::getNFR(), QProblemB::getNFV(), QProblemB::getNFX(), QProblemB::getNV(), SolutionAnalysis::getVarianceCovariance(), QProblemB::getWorkingSetBounds(), QProblem::hotstart(), QProblemB::obtainAuxiliaryWorkingSet(), QProblem::performDriftCorrection(), QProblemB::performDriftCorrection(), QProblemB::performRamping(), QProblem::performRamping(), QProblem::performStep(), QProblemB::performStep(), QProblem::printProperties(), QProblemB::printProperties(), QProblemB::QProblemB(), SQProblemSchur::removeBound(), QProblem::removeBound(), QProblemB::removeBound(), QProblem::removeConstraint(), SQProblemSchur::repairSingularWorkingSet(), QProblemB::reset(), SQProblemSchur::resetSchurComplement(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), QProblemB::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPbounds(), QProblemB::setupAuxiliaryQPbounds(), SQProblemSchur::setupAuxiliaryWorkingSet(), QProblem::setupAuxiliaryWorkingSet(), QProblemB::setupAuxiliaryWorkingSet(), setupNewAuxiliaryQP(), QProblemB::setupSubjectToType(), QProblem::setupTQfactorisation(), QProblem::shallRefactorise(), QProblemB::shallRefactorise(), QProblem::solveCurrentEQP(), QProblem::solveInitialQP(), QProblemB::solveInitialQP(), QProblem::updateActivitiesForHotstart(), and QProblem::writeQpWorkspaceIntoMatFile().

Constraints QProblem::constraints [protected, inherited]

Data structure for problem's constraints.

Referenced by SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), SQProblemSchur::addConstraint(), QProblem::addConstraint(), QProblem::addConstraint_checkLI(), SQProblemSchur::addConstraint_checkLISchur(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), QProblem::computeProjectedCholesky(), QProblem::copy(), QProblem::determineDataShift(), QProblem::determineStepDirection(), SQProblemSchur::determineStepDirection2(), QProblem::dropInfeasibles(), QProblem::ensureNonzeroCurvature(), QProblem::getConstraints(), QProblem::getNAC(), QProblem::getNC(), QProblem::getNEC(), QProblem::getNIAC(), SolutionAnalysis::getVarianceCovariance(), QProblem::getWorkingSetConstraints(), QProblem::hotstart(), QProblem::obtainAuxiliaryWorkingSet(), QProblem::performDriftCorrection(), QProblem::performRamping(), QProblem::performStep(), QProblem::printProperties(), QProblem::QProblem(), QProblem::removeBound(), SQProblemSchur::removeConstraint(), QProblem::removeConstraint(), SQProblemSchur::repairSingularWorkingSet(), QProblem::reset(), SQProblemSchur::resetSchurComplement(), QProblem::setA(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPbounds(), SQProblemSchur::setupAuxiliaryWorkingSet(), QProblem::setupAuxiliaryWorkingSet(), setupNewAuxiliaryQP(), QProblem::setupSubjectToType(), QProblem::shallRefactorise(), QProblem::solveCurrentEQP(), QProblem::solveInitialQP(), and QProblem::writeQpWorkspaceIntoMatFile().

uint_t QProblemB::count [protected, inherited]
real_t* QProblemB::delta_xFR_TMP [protected, inherited]
real_t* QProblem::delta_xFRy [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().

real_t* QProblem::delta_xFRz [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().

real_t* QProblem::delta_yAC_TMP [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().

Flipper QProblemB::flipper [protected, inherited]

Flag indicating whether the constraint matrix needs to be de-allocated.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::QProblem(), QProblem::setA(), and setupNewAuxiliaryQP().

BooleanType QProblemB::freeHessian [protected, inherited]

Flag indicating whether the Hessian matrix needs to be de-allocated.

Referenced by QProblemB::clear(), QProblemB::copy(), QProblemB::QProblemB(), QProblemB::setH(), and setupNewAuxiliaryQP().

real_t* QProblemB::g [protected, inherited]
SymmetricMatrix* QProblemB::H [protected, inherited]
BooleanType QProblemB::haveCholesky [protected, inherited]
HessianType QProblemB::hessianType [protected, inherited]
BooleanType QProblemB::infeasible [protected, inherited]
real_t* QProblemB::lb [protected, inherited]
real_t* QProblem::lbA [protected, inherited]
Options QProblemB::options [protected, inherited]

Struct containing all user-defined options for solving QPs.

Referenced by SQProblemSchur::addBound(), QProblem::addBound_checkLI(), SQProblemSchur::addBound_checkLISchur(), SQProblemSchur::addBound_ensureLI(), QProblem::addBound_ensureLI(), SQProblemSchur::addConstraint(), QProblem::addConstraint_checkLI(), SQProblemSchur::addConstraint_checkLISchur(), SQProblemSchur::addConstraint_ensureLI(), QProblem::addConstraint_ensureLI(), SQProblemSchur::addToSchurComplement(), QProblem::changeActiveSet(), QProblemB::computeCholesky(), QProblem::computeProjectedCholesky(), QProblemB::copy(), SQProblemSchur::correctInertia(), SQProblemSchur::deleteFromSchurComplement(), QProblemB::determineHessianType(), QProblem::determineStepDirection(), QProblemB::determineStepDirection(), SQProblemSchur::determineStepDirection2(), QProblem::dropInfeasibles(), QProblem::ensureNonzeroCurvature(), QProblemB::getOptions(), QProblemB::getPrintLevel(), QProblemB::hotstart(), QProblem::hotstart(), QProblemB::obtainAuxiliaryWorkingSet(), QProblem::obtainAuxiliaryWorkingSet(), QProblem::performStep(), QProblemB::performStep(), QProblem::printIteration(), QProblemB::printIteration(), QProblemB::printOptions(), QProblem::printProperties(), QProblemB::printProperties(), QProblemB::QProblemB(), QProblemB::regulariseHessian(), SQProblemSchur::removeBound(), QProblem::removeBound(), QProblemB::removeBound(), SQProblemSchur::removeConstraint(), QProblem::removeConstraint(), SQProblemSchur::repairSingularWorkingSet(), QProblemB::reset(), SQProblemSchur::resetSchurComplement(), QProblemB::setInfeasibilityFlag(), QProblemB::setOptions(), QProblemB::setPrintLevel(), SQProblemSchur::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPbounds(), QProblemB::setupAuxiliaryQPbounds(), SQProblemSchur::setupAuxiliaryWorkingSet(), QProblem::setupAuxiliaryWorkingSet(), QProblemB::setupInitialCholesky(), QProblem::setupInitialCholesky(), setupNewAuxiliaryQP(), QProblemB::setupSubjectToType(), QProblem::setupSubjectToType(), QProblem::solveInitialQP(), QProblemB::solveInitialQP(), QProblem::solveQP(), QProblemB::solveQP(), QProblem::solveRegularisedQP(), QProblemB::solveRegularisedQP(), SQProblemSchur::undoDeleteFromSchurComplement(), QProblem::updateActivitiesForHotstart(), QProblemB::updateFarBounds(), QProblem::updateFarBounds(), and SQProblemSchur::updateSchurQR().

real_t* QProblem::Q [protected, inherited]
real_t* QProblemB::R [protected, inherited]
real_t QProblemB::ramp0 [protected, inherited]
real_t QProblemB::ramp1 [protected, inherited]
int_t QProblemB::rampOffset [protected, inherited]
real_t QProblemB::regVal [protected, inherited]
int_t QProblem::sizeT [protected, inherited]
QProblemStatus QProblemB::status [protected, inherited]
real_t* QProblem::T [protected, inherited]
TabularOutput QProblemB::tabularOutput [protected, inherited]
real_t QProblemB::tau [protected, inherited]
real_t* QProblem::tempA [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().

real_t* QProblem::tempB [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().

real_t* QProblem::tempC [protected, inherited]

Temporary for constraint types.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::QProblem(), and QProblem::setA().

real_t* QProblemB::ub [protected, inherited]
real_t* QProblem::ubA [protected, inherited]
BooleanType QProblemB::unbounded [protected, inherited]
real_t* QProblemB::x [protected, inherited]
real_t* QProblemB::y [protected, inherited]
real_t* QProblem::ZFR_delta_xFRz [protected, inherited]

Temporary for determineStepDirection.

Referenced by QProblem::clear(), QProblem::copy(), QProblem::determineStepDirection(), and QProblem::QProblem().


The documentation for this class was generated from the following files: