#include <OSBearcatSolverXkij.h>
Classes | |
class | Factory |
Public Member Functions | |
virtual OSInstance * | getInitialRestrictedMaster () |
OSInstance* OSBearcatSolverXkij::getInitialRestrictedMaster( ){. More... | |
OSInstance * | getSeparationInstance () |
double | qrouteCost (const int &k, const int &l, const double *c, int *kountVar) |
kipp – document More... | |
void | getOptL (double **c) |
void | getCutsTheta (const double *thetaVar, const int numThetaVar, int &numNewRows, int *&numNonz, int **&colIdx, double **&values, double *&rowLB, double *&rowUB) |
RETURN VALUES: int numNewRows – number of new rows generated int* numNonz – number of nonzeros in each row int** colIdx – vectors column indexes of new rows double** values – vectors of matrix coefficient values of new rows double* rowLB – vector of row lower bounds double* rowUB – vector of row upper bounds. More... | |
void | getCutsX (const double *xVar, const int numXVar, int &numNewRows, int *&numNonz, int **&colIdx, double **&values, double *&rowLB, double *&rowUB) |
RETURN VALUES: int numNewRows – number of new rows generated int* numNonz – number of nonzeros in each row int** colIdx – vectors column indexes of new rows double** values – vectors of matrix coefficient values of new rows double* rowLB – vector of row lower bounds double* rowUB – vector of row upper bounds. More... | |
virtual void | getBranchingCut (const double *thetaVar, const int numThetaVar, const std::map< int, int > &varConMap, int &varIdx, int &numNonz, int *&indexes, double *&values) |
RETURN VALUES: varIdx – the variable number x_{ij} for branching numNonz – number of theta indexes in the cut indexes – the indexes of the theta variables values – the number of times the theta indexed in indexes appears in the cut note – set numNonz to zero if the generated cut variable already appears in varConMap. More... | |
virtual void | getBranchingCut (const int *thetaIdx, const double *theta, const int numThetaVar, const std::map< int, int > &varConMap, int &varIdx, int &numNonz, int *&indexes, double *&values) |
Sparse Version. More... | |
int | getBranchingVar (const double *theta, const int numThetaVar) |
RETURN VALUES: return the integer index of a fractional x_{ij} variable. More... | |
int | getBranchingVar (const int *thetaIdx, const double *theta, const int numThetaVar) |
Sparse Version. More... | |
virtual void | getColumns (const double *yA, const int numARows, const double *yB, const int numBRows, int &numNewColumns, int *&numNonz, double *&cost, int **&rowIdx, double **&values, double &lowerBound) |
RETURN VALUES: int numNewColumns – number of new columns generated int* numNonz – number of nonzeros in each column double* cost – the objective function coefficient on each new column double** rowIdx – vectors row indexes of new columns double** values – vectors of matrix coefficient values of new columns double lowerBound – the lowerBound, this is a value on the LP relaxation. More... | |
void | getOptions (OSOption *osoption) |
void | calcReducedCost (const double *yA, const double *yB) |
calculate the reduced costs c – input of the objective function costs yA – dual values on node assignment – coupling constraints yB – dual values on tour breaking constraints d – reduced with convexity dual value More... | |
void | createVariableNames () |
void | createAmatrix () |
virtual void | initializeDataStructures () |
allocate memory and initialize arrays More... | |
void | getInitialSolution () |
generate an intitial feasible solution in theta space for the initial master More... | |
virtual void | resetMaster (std::map< int, int > &inVars, OsiSolverInterface *si) |
INPUT: More... | |
virtual void | pauHana (std::vector< int > &m_zOptIndexes, int numNodes, int numColsGen) |
void | getCutsMultiCommod (const double *thetaVar, const int numThetaVar, int &numNewRows, int *&numNonz, int **&colIdx, double **&values, double *&rowLB, double *&rowUB) |
This is the routine that generates the multi-item cuts. More... | |
OSBearcatSolverXkij () | |
Default Constructor. More... | |
OSBearcatSolverXkij (OSOption *osoption) | |
Second Constructor. More... | |
~OSBearcatSolverXkij () | |
Default Destructor. More... | |
![]() | |
virtual void | pauHana (std::vector< int > &m_zOptIndexes, std::vector< double > &m_zRootLPx_vals, int numNodes, int numColsGen, std::string message)=0 |
OSDecompSolver () | |
Default Constructor. More... | |
OSDecompSolver (OSOption *osoption) | |
Constructor with OSOption Arg. More... | |
virtual | ~OSDecompSolver ()=0 |
Default destructor. More... | |
Public Attributes | |
std::string | m_initOSiLFile |
std::map< int, std::map< int, std::vector< int > > > | m_initSolMap |
the index on the outer map is on the solution number, the index on the inner map indexes the route number, the vector is the list of nodes assigned to that route More... | |
bool | m_use1OPTstart |
if m_use1OPTstart is true we use the option file to fix the nodes to hubs found by SK's 1OPT heuristic More... | |
int | m_maxThetaNonz |
m_maxMasterNonz is the maximumn number of nonzero elements we allow in the transformation matrix betwee the theta variables and the xkij variables More... | |
int * | m_routeCapacity |
the route capacity – bus seating limit this can vary with the route/hub More... | |
int * | m_routeMinPickup |
the minimum number of students that we pickup on a route this can vary with the route/hub More... | |
int * | m_upperBoundL |
largest possible L-value on a route – this will be the minimum of m_routeCapacity and total demand More... | |
int * | m_lowerBoundL |
smallest possible L-value on a route for now this will equal More... | |
int | m_upperBoundLMax |
largest possible L-value over all routes More... | |
int | m_minDemand |
m_minDemand is the value of the minimum demand node – it is not the minimum demand that must be carried on a route More... | |
int * | m_demand |
m_demand is the vector of node demands More... | |
double ** | m_cost |
the distance/cost vectors More... | |
double ** | m_rc |
the reduced cost vector for each k, we asssume order is (l, i, j) More... | |
double * | m_optValHub |
double ** | m_u |
double ** | m_v |
int ** | m_px |
int ** | m_tx |
double ** | m_g |
int * | m_varIdx |
int * | m_optL |
int * | m_optD |
double ** | m_vv |
int ** | m_vvpnt |
int | m_totalDemand |
int | m_numberOfSolutions |
int * | m_tmpScatterArray |
double | m_lowerBnd |
int * | m_newColumnNonz |
double * | m_costVec |
int ** | m_newColumnRowIdx |
double ** | m_newColumnRowValue |
int * | m_newRowNonz |
int ** | m_newRowColumnIdx |
double ** | m_newRowColumnValue |
double * | m_newRowUB |
double * | m_newRowLB |
int * | branchCutIndexes |
double * | branchCutValues |
double * | m_thetaCost |
int * | convexityRowIndex |
conconvexityRowIndex holds the index of the convexity row that the theta columns are in. More... | |
int * | m_separationIndexMap |
m_separationIndexMap maps the variable index into the appropriate row in the separation problem for the tour breaking constraints More... | |
OSInstance * | m_osinstanceSeparation |
ClpSimplex * | m_separationClpModel |
![]() | |
OSInstance * | m_osinstanceMaster |
int | m_multiCommodCutLimit |
int | m_numMultCuts |
OSDecompParam | m_osDecompParam |
share the parameters with the decomposition solver More... | |
double | m_bestIPValue |
double | m_bestLPValue |
double | m_rootLPValue |
int * | m_thetaPnt |
int * | m_thetaIndex |
int | m_numThetaVar |
int | m_numThetaNonz |
int * | m_pntBmatrix |
int * | m_BmatrixIdx |
double * | m_BmatrixVal |
std::set< std::pair< int, double > > | intVarSet |
intVarSet holds and std::pair where the first element is the index of an integer variable and the second is the variable upper bound More... | |
int | m_numHubs |
m_numHubs is the number of hubs/routes More... | |
int | m_numNodes |
m_numNodes is the number of nodes (both pickup and hub) in the model More... | |
int * | m_pntAmatrix |
int * | m_Amatrix |
int | m_numBmatrixCon |
m_numBmatrixCon is the number of constraints in B - 1, we have the -1 because: m_pntBmatrix[ k] points to the start of constraint k and m_pntBmatrix[ m_numBmatrixCon ] is equal to m_numBmatrixNonz More... | |
int | m_numBmatrixNonz |
int | m_maxBmatrixNonz |
m_maxBmatrixNonz is the maximum number of nonzero elements in the B matrix constraints More... | |
int | m_maxBmatrixCon |
m_maxBmatrixCon is the maximum number of B matrix constraints it is the number of tour breaking constraints plus variable branch constraints More... | |
int | m_maxMasterColumns |
m_maxMasterColumns is the maximumn number of columns we allow in the master More... | |
int | m_maxMasterRows |
m_maxMasterColumns is the maximumn number of rows we allow in the master, in this application it is equal to m_maxBmatrixCon plus m_numNodes – we therefore do not need to read this from an option file as we might for other problems More... | |
std::string * | m_variableNames |
OSOption * | m_osoption |
Definition at line 31 of file OSBearcatSolverXkij.h.
OSBearcatSolverXkij::OSBearcatSolverXkij | ( | ) |
Default Constructor.
Definition at line 65 of file OSBearcatSolverXkij.cpp.
OSBearcatSolverXkij::OSBearcatSolverXkij | ( | OSOption * | osoption | ) |
Second Constructor.
Definition at line 69 of file OSBearcatSolverXkij.cpp.
OSBearcatSolverXkij::~OSBearcatSolverXkij | ( | ) |
Default Destructor.
Definition at line 313 of file OSBearcatSolverXkij.cpp.
|
virtual |
OSInstance* OSBearcatSolverXkij::getInitialRestrictedMaster( ){.
std::cout << "Executing OSBearcatSolverXkij::getInitialRestrictedMaster( )" << std::endl;
define the classes FileUtil *fileUtil = NULL; OSiLReader *osilreader = NULL; DefaultSolver *solver = NULL; OSInstance *osinstance = NULL;
end classes
std::string testFileName; std::string osil;
std::vector< int> indexes; fileUtil = new FileUtil();
std::map<int, std::map<int, std::vector<int> > >::iterator mit; std::map<int, std::vector<int> >::iterator mit2; std::vector<int>::iterator vit; m_osinstanceMaster = NULL;
add linear constraint coefficients number of values will nodes.size() the coefficients in the node constraints plus coefficients in convexity constraints which is the number of varaibles int kountNonz; int kount; int numThetaVar = m_numberOfSolutions*m_numHubs; double values = new double[ m_numberOfSolutions(m_numNodes-m_numHubs) + numThetaVar]; int indexes = new int[ m_numberOfSolutions(m_numNodes-m_numHubs) + numThetaVar]; int *starts = new int[ numThetaVar + 1]; kount = 0;
starts[ 0] = 0;
int startsIdx; startsIdx = 0;
std::vector<IndexValuePair*> primalValPair;
try {
if(m_initOSiLFile.size() == 0) throw ErrorClass("OSiL file to generate restricted master missing"); osil = fileUtil->getFileAsString( m_initOSiLFile.c_str()); osilreader = new OSiLReader(); osinstance = osilreader->readOSiL(osil); int i; int j; int k;
fill in the cost vector first the x vector starts at 2*m_numHubs
int idx1; int idx2; idx2 = 0; //zRouteDemand have 0 coefficients in obj
fill in m_cost from the cost coefficient in osil for(k = 0; k < m_numHubs; k++){
idx1 = 0; for(i = 0; i < m_numNodes; i++){ for(j = 0; j < i; j++){ m_cost[k][idx1++ ] = osinstance->instanceData->objectives->obj[0]->coef[ idx2++ ]->value; } for(j = i + 1; j < m_numNodes; j++){ m_cost[k][idx1++ ] = osinstance->instanceData->objectives->obj[0]->coef[ idx2++ ]->value; } }
}
get variable names for checking purposes std::string* varNames; varNames = osinstance->getVariableNames();
start building the restricted master here
m_osinstanceMaster = new OSInstance(); m_osinstanceMaster->setInstanceDescription("The Initial Restricted Master");
first the variables m_osinstanceMaster->setVariableNumber( m_numberOfSolutions*m_numHubs);
now add the objective function m_osinstanceMaster->setObjectiveNumber( 1); SparseVector *objcoeff = new SparseVector( m_numberOfSolutions*m_numHubs);
now the constraints m_osinstanceMaster->setConstraintNumber( m_numNodes);
addVariable(int index, string name, double lowerBound, double upperBound, char type, double init, string initString); we could use setVariables() and add all the variable with one method call – below is easier
int varNumber; varNumber = 0; std::string masterVarName; kountNonz = 0;
now get the primal solution solve the model for solution in the osoption object for ( mit = m_initSolMap.begin() ; mit != m_initSolMap.end(); mit++ ){
kipp change upper and lower bounds here on z variables loop over nodes and routes and set bound set kount to the start of the z variables go past the x variables kount = 2*m_numHubs + m_numHubs*(m_numNodes*m_numNodes - m_numNodes); osinstance->bVariablesModified = true; for ( mit2 = mit->second.begin() ; mit2 != mit->second.end(); mit2++ ){ //we are looping over routes in solution mit
startsIdx++; starts[ startsIdx ] = kountNonz + mit2->second.size() + 1; //the +1 comes from the convexity row
make sure all lower bounds on z variables on this route back to 0.0 for(i = 0; i < m_numNodes; i++){ osinstance->instanceData->variables->var[ kount + mit2->first*m_numNodes + i]->lb = 0.0; }
for ( vit = mit2->second.begin() ; vit != mit2->second.end(); vit++ ){ osinstance->instanceData->variables->var[ kount + mit2->first*m_numNodes + *vit]->lb = 1.0;
std::cout << "FIXING LOWER BOUND ON VARIABLE " << osinstance->getVariableNames()[ kount + mit2->first*m_numNodes + *vit ] << std::endl;
values[ kountNonz] = 1.0; indexes[ kountNonz ] = *vit - m_numHubs ; //0 based counting kountNonz++; }
now for the convexity row coefficient values[ kountNonz] = 1; indexes[ kountNonz ] = m_numNodes - m_numHubs + mit2->first ; kountNonz++;
} solver = new CoinSolver(); solver->sSolverName ="cbc"; solver->osinstance = osinstance; solver->buildSolverInstance(); solver->solve();
get the solver solution status
std::cout << "Solution Status = " << solver->osresult->getSolutionStatusType( 0 ) << std::endl;
get the optimal objective function value
primalValPair = solver->osresult->getOptimalPrimalVariableValues( 0);
loop over routes again to create master objective coefficients
for(k = 0; k < m_numHubs; k++){
lets get the x variables the variables for this route should be from 2*numHubs + k*(numNodes - 1*)*(numNodes - 1) idx1 = 2*m_numHubs + k*m_numNodes*(m_numNodes - 1); idx2 = idx1 + m_numNodes*(m_numNodes - 1); end of x variables
std::cout << "HUB " << k << " VARIABLES" << std::endl;
for(i = idx1; i < idx2; i++){ if( primalValPair[ i]->value > .1 ){
std::cout << osinstance->getVariableNames()[ primalValPair[ i]->idx ] << std::endl; std::cout << m_variableNames[ primalValPair[ i]->idx - k*(m_numNodes - 1)*m_numNodes - 2*m_numHubs ] << std::endl; m_thetaIndex[ m_numThetaNonz++ ] = primalValPair[ i]->idx - k*(m_numNodes - 1)*m_numNodes - 2*m_numHubs; }
} convexityRowIndex[ m_numThetaVar] = k; m_thetaCost[ m_numThetaVar++ ] = primalValPair[ k]->value*primalValPair[ k + m_numHubs]->value; m_thetaPnt[ m_numThetaVar ] = m_numThetaNonz;
masterVarName = makeStringFromInt2("theta(", k); masterVarName += makeStringFromInt2(",", mit->first); masterVarName += ")"; intVarSet.insert ( std::pair<int,double>(varNumber, 1.0) ); m_osinstanceMaster->addVariable(varNumber++, masterVarName, 0, 1, 'C');
std::cout << "Optimal Objective Value = " << primalValPair[ k]->value*primalValPair[ k + m_numHubs]->value << std::endl;
objcoeff->indexes[ k + (mit->first)*m_numHubs] = k + (mit->first)*m_numHubs; objcoeff->values[ k + (mit->first)*m_numHubs] = primalValPair[ k]->value*primalValPair[ k + m_numHubs]->value;
std::cout << osinstance->getVariableNames()[ k ] << std::endl; std::cout << osinstance->getVariableNames()[ k + m_numHubs ] << std::endl; }//end for on k -- hubs primalValPair.clear(); delete solver; solver = NULL; }//end for on number of solutions
add the constraints add the row saying we must visit each node for( i = 0; i < m_numNodes - m_numHubs ; i++){
m_osinstanceMaster->addConstraint(i, makeStringFromInt2("visitNode_", i + m_numHubs) , 1.0, 1.0, 0);
}
kount = 0;
add the convexity row for( i = m_numNodes - m_numHubs; i < m_numNodes ; i++){
m_osinstanceMaster->addConstraint(i, makeStringFromInt2("convexityRowRoute_", kount++ ) , 1.0, 1.0, 0);
}
m_osinstanceMaster->addObjective(-1, "objfunction", "min", 0.0, 1.0, objcoeff);
std::cout << "kountNonz = " << kountNonz << std::endl;
add the linear constraints coefficients m_osinstanceMaster->setLinearConstraintCoefficients(kountNonz , true, values, 0, kountNonz - 1, indexes, 0, kountNonz - 1, starts, 0, startsIdx);
std::cout << m_osinstanceMaster->printModel() << std::endl; delete objcoeff;
delete[] values; delete[] starts; delete[] indexes; delete osilreader; osilreader = NULL;
} catch (const ErrorClass& eclass) { std::cout << std::endl << std::endl << std::endl; if (osilreader != NULL) delete osilreader; if (solver != NULL) delete solver;
Problem with the parser throw ErrorClass(eclass.errormsg); }
delete fileUtil; fileUtil = NULL;
return m_osinstanceMaster; }//end generateInitialRestrictedMaster
Implements OSDecompSolver.
Definition at line 1529 of file OSBearcatSolverXkij.cpp.
OSInstance * OSBearcatSolverXkij::getSeparationInstance | ( | ) |
Definition at line 3215 of file OSBearcatSolverXkij.cpp.
double OSBearcatSolverXkij::qrouteCost | ( | const int & | k, |
const int & | l, | ||
const double * | c, | ||
int * | kountVar | ||
) |
kipp – document
Definition at line 659 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::getOptL | ( | double ** | c | ) |
Definition at line 504 of file OSBearcatSolverXkij.cpp.
|
virtual |
RETURN VALUES: int numNewRows – number of new rows generated int* numNonz – number of nonzeros in each row int** colIdx – vectors column indexes of new rows double** values – vectors of matrix coefficient values of new rows double* rowLB – vector of row lower bounds double* rowUB – vector of row upper bounds.
INPUT: double* thetaVar – the vector of primal master values int numThetaVar – size of master primal vector
Implements OSDecompSolver.
Definition at line 2361 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::getCutsX | ( | const double * | xVar, |
const int | numXVar, | ||
int & | numNewRows, | ||
int *& | numNonz, | ||
int **& | colIdx, | ||
double **& | values, | ||
double *& | rowLB, | ||
double *& | rowUB | ||
) |
RETURN VALUES: int numNewRows – number of new rows generated int* numNonz – number of nonzeros in each row int** colIdx – vectors column indexes of new rows double** values – vectors of matrix coefficient values of new rows double* rowLB – vector of row lower bounds double* rowUB – vector of row upper bounds.
INPUT: double* xVar – the vector of primal values int numXVar – size of master primal vector
Definition at line 2743 of file OSBearcatSolverXkij.cpp.
|
virtual |
RETURN VALUES: varIdx – the variable number x_{ij} for branching numNonz – number of theta indexes in the cut indexes – the indexes of the theta variables values – the number of times the theta indexed in indexes appears in the cut note – set numNonz to zero if the generated cut variable already appears in varConMap.
INPUT: double* thetaVar – the vector of primal master values int numThetaVar – size of master primal vector varConMap – the map of variables in x_{ij} space to a consraint number
Implements OSDecompSolver.
Definition at line 3747 of file OSBearcatSolverXkij.cpp.
|
virtual |
Sparse Version.
RETURN VALUES: varIdx – the variable number x_{ij} for branching numNonz – number of theta indexes in the cut indexes – the indexes of the theta variables values – the number of times the theta indexed in indexes appears in the cut note – set numNonz to zero if the generated cut variable already appears in varConMap
INPUT: double* theta – the vector of primal master values int numThetaVar – size of master primal vector varConMap – the map of variables in x_{ij} space to a consraint number
Implements OSDecompSolver.
Definition at line 3828 of file OSBearcatSolverXkij.cpp.
RETURN VALUES: return the integer index of a fractional x_{ij} variable.
INPUT: double* theta – the vector of primal master values int numThetaVar – size of master primal vector
Definition at line 3459 of file OSBearcatSolverXkij.cpp.
int OSBearcatSolverXkij::getBranchingVar | ( | const int * | thetaIdx, |
const double * | theta, | ||
const int | numThetaVar | ||
) |
Sparse Version.
RETURN VALUES: return the integer index of a fractional x_{ij} variable
INPUT: int* thetaIdx – index vector of nonzero theta variables double* theta – the sparse vector of primal master values int numThetaVar – size of master primal vector
Definition at line 3602 of file OSBearcatSolverXkij.cpp.
|
virtual |
RETURN VALUES: int numNewColumns – number of new columns generated int* numNonz – number of nonzeros in each column double* cost – the objective function coefficient on each new column double** rowIdx – vectors row indexes of new columns double** values – vectors of matrix coefficient values of new columns double lowerBound – the lowerBound, this is a value on the LP relaxation.
INPUT: double* y – the vector of dual values int numRows – size of dual vector
int ivalue; int jvalue; for(j = 0; j < kountVar; j++){ startPntInc = k*m_upperBoundL*(m_numNodes*m_numNodes - m_numNodes) + (m_optL[ k] - 1)*(m_numNodes*m_numNodes - m_numNodes); std::cout << "Variable Index = " << m_varIdx[ j] - startPntInc ; std::cout << " Variable = " << m_variableNames[ m_varIdx[ j] - startPntInc ] << std::endl ;
tmp – get the node
tmp = fmod(m_varIdx[ j] - startPntInc, m_numNodes) ;
ivalue = floor( (m_varIdx[ j] - startPntInc)/(m_numNodes - 1) ); jvalue = (m_varIdx[ j] - startPntInc) - ivalue*(m_numNodes - 1); std::cout << " i NODE NUMBER = " << ivalue ; if( jvalue > ivalue ){ std::cout << " j NODE NUMBER = " << jvalue + 1 << std::endl; }else{ std::cout << " j NODE NUMBER = " << jvalue << std::endl; } } std::cout << "Route True Cost = " << m_costVec[ k] << std::endl;
Implements OSDecompSolver.
Definition at line 986 of file OSBearcatSolverXkij.cpp.
Definition at line 2087 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::calcReducedCost | ( | const double * | yA, |
const double * | yB | ||
) |
calculate the reduced costs c – input of the objective function costs yA – dual values on node assignment – coupling constraints yB – dual values on tour breaking constraints d – reduced with convexity dual value
Definition at line 2961 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::createVariableNames | ( | ) |
Definition at line 3058 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::createAmatrix | ( | ) |
Definition at line 3095 of file OSBearcatSolverXkij.cpp.
|
virtual |
allocate memory and initialize arrays
m_u[i, l] – this will be the minimum cost of reaching node i on a q-route with demand l, note that m_u[ i] has dimension m_upperBoundL + 1 so the possible values for l are l = 0, 1, , m_upperBoundL – l is the actual value of demand
Implements OSDecompSolver.
Definition at line 104 of file OSBearcatSolverXkij.cpp.
void OSBearcatSolverXkij::getInitialSolution | ( | ) |
generate an intitial feasible solution in theta space for the initial master
Definition at line 3913 of file OSBearcatSolverXkij.cpp.
|
virtual |
INPUT:
dstd::map<int,int> | &inVars – the mapping of variables, the first index is the variable number before resetting, the second index is the variable number after the reset |
OsiSolverInterface | *si – the solver interface that corresponds to the master this is what gets rebuilt |
Implements OSDecompSolver.
Definition at line 3939 of file OSBearcatSolverXkij.cpp.
|
virtual |
Definition at line 3144 of file OSBearcatSolverXkij.cpp.
|
virtual |
This is the routine that generates the multi-item cuts.
RETURN VALUES: int numNewRows – number of new rows generated int* numNonz – number of nonzeros in each row int** colIdx – vectors column indexes of new rows double** values – vectors of matrix coefficient values of new rows double* rowLB – vector of row lower bounds double* rowUB – vector of row upper bounds
INPUT: double* thetaVar – the vector of primal master values int numThetaVar – size of master primal vector
Implements OSDecompSolver.
std::string OSBearcatSolverXkij::m_initOSiLFile |
Definition at line 43 of file OSBearcatSolverXkij.h.
the index on the outer map is on the solution number, the index on the inner map indexes the route number, the vector is the list of nodes assigned to that route
Definition at line 49 of file OSBearcatSolverXkij.h.
bool OSBearcatSolverXkij::m_use1OPTstart |
if m_use1OPTstart is true we use the option file to fix the nodes to hubs found by SK's 1OPT heuristic
Definition at line 58 of file OSBearcatSolverXkij.h.
int OSBearcatSolverXkij::m_maxThetaNonz |
m_maxMasterNonz is the maximumn number of nonzero elements we allow in the transformation matrix betwee the theta variables and the xkij variables
Definition at line 64 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_routeCapacity |
the route capacity – bus seating limit this can vary with the route/hub
Definition at line 72 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_routeMinPickup |
the minimum number of students that we pickup on a route this can vary with the route/hub
Definition at line 78 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_upperBoundL |
largest possible L-value on a route – this will be the minimum of m_routeCapacity and total demand
Definition at line 86 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_lowerBoundL |
smallest possible L-value on a route for now this will equal
Definition at line 92 of file OSBearcatSolverXkij.h.
int OSBearcatSolverXkij::m_upperBoundLMax |
largest possible L-value over all routes
Definition at line 95 of file OSBearcatSolverXkij.h.
int OSBearcatSolverXkij::m_minDemand |
m_minDemand is the value of the minimum demand node – it is not the minimum demand that must be carried on a route
Definition at line 101 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_demand |
m_demand is the vector of node demands
Definition at line 104 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_cost |
the distance/cost vectors
Definition at line 107 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_rc |
the reduced cost vector for each k, we asssume order is (l, i, j)
Definition at line 112 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::m_optValHub |
Definition at line 116 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_u |
Definition at line 120 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_v |
Definition at line 121 of file OSBearcatSolverXkij.h.
int** OSBearcatSolverXkij::m_px |
Definition at line 122 of file OSBearcatSolverXkij.h.
int** OSBearcatSolverXkij::m_tx |
Definition at line 123 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_g |
Definition at line 124 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_varIdx |
Definition at line 125 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_optL |
Definition at line 130 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_optD |
Definition at line 131 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_vv |
Definition at line 132 of file OSBearcatSolverXkij.h.
int** OSBearcatSolverXkij::m_vvpnt |
Definition at line 133 of file OSBearcatSolverXkij.h.
int OSBearcatSolverXkij::m_totalDemand |
Definition at line 137 of file OSBearcatSolverXkij.h.
int OSBearcatSolverXkij::m_numberOfSolutions |
Definition at line 138 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_tmpScatterArray |
Definition at line 143 of file OSBearcatSolverXkij.h.
double OSBearcatSolverXkij::m_lowerBnd |
Definition at line 146 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_newColumnNonz |
Definition at line 147 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::m_costVec |
Definition at line 148 of file OSBearcatSolverXkij.h.
int** OSBearcatSolverXkij::m_newColumnRowIdx |
Definition at line 149 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_newColumnRowValue |
Definition at line 150 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_newRowNonz |
Definition at line 153 of file OSBearcatSolverXkij.h.
int** OSBearcatSolverXkij::m_newRowColumnIdx |
Definition at line 154 of file OSBearcatSolverXkij.h.
double** OSBearcatSolverXkij::m_newRowColumnValue |
Definition at line 155 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::m_newRowUB |
Definition at line 156 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::m_newRowLB |
Definition at line 157 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::branchCutIndexes |
Definition at line 160 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::branchCutValues |
Definition at line 161 of file OSBearcatSolverXkij.h.
double* OSBearcatSolverXkij::m_thetaCost |
Definition at line 170 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::convexityRowIndex |
conconvexityRowIndex holds the index of the convexity row that the theta columns are in.
If the theta is an artificial variable this value is -1
Definition at line 176 of file OSBearcatSolverXkij.h.
int* OSBearcatSolverXkij::m_separationIndexMap |
m_separationIndexMap maps the variable index into the appropriate row in the separation problem for the tour breaking constraints
Definition at line 183 of file OSBearcatSolverXkij.h.
OSInstance* OSBearcatSolverXkij::m_osinstanceSeparation |
Definition at line 186 of file OSBearcatSolverXkij.h.
ClpSimplex* OSBearcatSolverXkij::m_separationClpModel |
Definition at line 189 of file OSBearcatSolverXkij.h.