qpOASES
3.1.1
|
Interfaces matrix-vector operations tailored to symmetric sparse matrices. More...
#include <Matrices.hpp>
Public Member Functions | |
SymSparseMat () | |
SymSparseMat (int nr, int nc, sparse_int_t *r, sparse_int_t *c, real_t *v) | |
SymSparseMat (int nr, int nc, int ld, const real_t *const v) | |
virtual | ~SymSparseMat () |
virtual Matrix * | duplicate () const |
virtual SymmetricMatrix * | duplicateSym () const |
virtual returnValue | bilinear (const Indexlist *const icols, int xN, const real_t *x, int xLD, real_t *y, int yLD) const |
virtual void | free ()=0 |
virtual real_t | diag (int i) const =0 |
virtual BooleanType | isDiag () const =0 |
virtual real_t | getNorm (int type=2) const =0 |
virtual real_t | getRowNorm (int rNum, int type=2) const =0 |
virtual returnValue | getRow (int rNum, const Indexlist *const icols, real_t alpha, real_t *row) const =0 |
virtual returnValue | getCol (int cNum, const Indexlist *const irows, real_t alpha, real_t *col) const =0 |
virtual returnValue | times (int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const =0 |
virtual returnValue | times (const Indexlist *const irows, const Indexlist *const icols, int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD, BooleanType yCompr=BT_TRUE) const =0 |
virtual returnValue | transTimes (int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const =0 |
virtual returnValue | transTimes (const Indexlist *const irows, const Indexlist *const icols, int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const =0 |
virtual returnValue | addToDiag (real_t alpha)=0 |
virtual real_t * | full () const =0 |
virtual returnValue | print (const char *name=0) const =0 |
BooleanType | needToFreeMemory () const |
void | doFreeMemory () |
void | doNotFreeMemory () |
virtual void | free () |
virtual real_t | diag (int i) const |
virtual BooleanType | isDiag () const |
virtual real_t | getNorm (int type=2) const |
virtual real_t | getRowNorm (int rNum, int type=2) const |
virtual returnValue | getRow (int rNum, const Indexlist *const icols, real_t alpha, real_t *row) const |
virtual returnValue | getCol (int cNum, const Indexlist *const irows, real_t alpha, real_t *col) const |
virtual returnValue | times (int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const |
virtual returnValue | times (const Indexlist *const irows, const Indexlist *const icols, int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD, BooleanType yCompr=BT_TRUE) const |
virtual returnValue | transTimes (int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const |
virtual returnValue | transTimes (const Indexlist *const irows, const Indexlist *const icols, int xN, real_t alpha, const real_t *x, int xLD, real_t beta, real_t *y, int yLD) const |
virtual returnValue | addToDiag (real_t alpha) |
sparse_int_t * | createDiagInfo () |
virtual real_t * | full () const |
virtual returnValue | print (const char *name=0) const |
Protected Attributes | |
BooleanType | freeMemory |
int | nRows |
int | nCols |
sparse_int_t * | ir |
sparse_int_t * | jc |
sparse_int_t * | jd |
real_t * | val |
Symmetric sparse matrix class (column compressed format).
SymSparseMat::SymSparseMat | ( | ) | [inline] |
Default constructor.
Referenced by duplicateSym().
SymSparseMat::SymSparseMat | ( | int | nr, |
int | nc, | ||
sparse_int_t * | r, | ||
sparse_int_t * | c, | ||
real_t * | v | ||
) | [inline] |
Constructor with arguments.
nr | Number of rows. |
nc | Number of columns. |
r | Row indices (length). |
c | Indices to first entry of columns (nCols+1). |
v | Vector of entries (length). |
SymSparseMat::SymSparseMat | ( | int | nr, |
int | nc, | ||
int | ld, | ||
const real_t *const | v | ||
) | [inline] |
Constructor from dense matrix.
nr | Number of rows. |
nc | Number of columns. |
ld | Leading dimension. |
v | Row major stored matrix elements. |
virtual SymSparseMat::~SymSparseMat | ( | ) | [inline, virtual] |
Destructor.
virtual returnValue Matrix::addToDiag | ( | real_t | alpha | ) | [pure virtual, inherited] |
Adds given offset to diagonal of matrix.
alpha | Diagonal offset. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblemB::regulariseHessian().
returnValue SparseMatrix::addToDiag | ( | real_t | alpha | ) | [virtual, inherited] |
Adds given offset to diagonal of matrix.
alpha | Diagonal offset. |
Implements Matrix.
References BT_FALSE, SparseMatrix::ir, isZero(), SparseMatrix::jd, SparseMatrix::nCols, SparseMatrix::nRows, RET_DIAGONAL_NOT_INITIALISED, RET_NO_DIAGONAL_AVAILABLE, SUCCESSFUL_RETURN, THROWERROR, and SparseMatrix::val.
returnValue SymSparseMat::bilinear | ( | const Indexlist *const | icols, |
int | xN, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t * | y, | ||
int | yLD | ||
) | const [virtual] |
Compute bilinear form y = x'*H*x using submatrix given by index list.
icols | Index list specifying columns of x. |
xN | Number of vectors to multiply. |
x | Input vector to be multiplied (uncompressed). |
xLD | Leading dimension of input x. |
y | Output vector of results (compressed). |
yLD | Leading dimension of output y. |
Implements SymmetricMatrix.
References SparseMatrix::ir, Indexlist::iSort, SparseMatrix::jc, SparseMatrix::jd, Indexlist::length, Indexlist::number, RET_DIAGONAL_NOT_INITIALISED, SUCCESSFUL_RETURN, THROWERROR, and SparseMatrix::val.
Referenced by QProblem::computeProjectedCholesky().
sparse_int_t * SparseMatrix::createDiagInfo | ( | ) | [inherited] |
Create jd field from ir and jc.
References SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::jd, SparseMatrix::nCols, and sparse_int_t.
Referenced by QProblemB::createDiagSparseMat(), main(), and solveOQPbenchmark().
virtual real_t Matrix::diag | ( | int | i | ) | const [pure virtual, inherited] |
Returns i-th diagonal entry.
i | Index. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblemB::determineHessianType(), QProblem::removeBound(), and QProblemB::removeBound().
real_t SparseMatrix::diag | ( | int | i | ) | const [virtual, inherited] |
Returns i-th diagonal entry.
i | Index. |
Implements Matrix.
References INFTY, SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::jd, RET_DIAGONAL_NOT_INITIALISED, THROWERROR, and SparseMatrix::val.
void Matrix::doFreeMemory | ( | ) | [inline, inherited] |
Enables de-allocation of internal memory.
References BT_TRUE, and Matrix::freeMemory.
Referenced by QProblemB::createDiagSparseMat(), DenseMatrix::duplicate(), SparseMatrix::duplicate(), SparseMatrixRow::duplicate(), SymDenseMat::duplicateSym(), duplicateSym(), QProblemB::setupQPdataFromFile(), QProblem::setupQPdataFromFile(), solveOQPbenchmark(), SparseMatrix::SparseMatrix(), and SparseMatrixRow::SparseMatrixRow().
void Matrix::doNotFreeMemory | ( | ) | [inline, inherited] |
Disables de-allocation of internal memory.
Referenced by SparseMatrix::free(), SparseMatrixRow::free(), Matrix::Matrix(), SparseMatrix::SparseMatrix(), and SparseMatrixRow::SparseMatrixRow().
Matrix * SymSparseMat::duplicate | ( | ) | const [virtual] |
Returns a deep-copy of the Matrix object.
Reimplemented from SparseMatrix.
References duplicateSym().
SymmetricMatrix * SymSparseMat::duplicateSym | ( | ) | const [virtual] |
Returns a deep-copy of the SymmetricMatrix object.
Implements SymmetricMatrix.
References Matrix::doFreeMemory(), SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::jd, SparseMatrix::nCols, SparseMatrix::nRows, real_t, sparse_int_t, SymSparseMat(), and SparseMatrix::val.
Referenced by duplicate().
virtual void Matrix::free | ( | ) | [pure virtual, inherited] |
Frees all internal memory.
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
void SparseMatrix::free | ( | ) | [virtual, inherited] |
Frees all internal memory.
Implements Matrix.
References Matrix::doNotFreeMemory(), SparseMatrix::ir, SparseMatrix::jc, and SparseMatrix::val.
Referenced by SparseMatrix::~SparseMatrix().
virtual real_t* Matrix::full | ( | ) | const [pure virtual, inherited] |
Allocates and creates dense matrix array in row major format.
Note: Calling function has to free allocated memory!
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by SolutionAnalysis::getKktViolation(), and QProblem::writeQpDataIntoMatFile().
real_t * SparseMatrix::full | ( | ) | const [virtual, inherited] |
Allocates and creates dense matrix array in row major format.
Note: Calling function has to free allocated memory!
Implements Matrix.
References SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::nCols, SparseMatrix::nRows, real_t, sparse_int_t, and SparseMatrix::val.
Referenced by main(), and SparseMatrix::print().
virtual returnValue Matrix::getCol | ( | int | cNum, |
const Indexlist *const | irows, | ||
real_t | alpha, | ||
real_t * | col | ||
) | const [pure virtual, inherited] |
Retrieve indexed entries of matrix column multiplied by alpha.
cNum | Column number. |
irows | Index list specifying rows. |
alpha | Scalar factor. |
col | Output column vector. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblemB::computeCholesky(), QProblem::computeProjectedCholesky(), and QProblem::removeBound().
returnValue SparseMatrix::getCol | ( | int | cNum, |
const Indexlist *const | irows, | ||
real_t | alpha, | ||
real_t * | col | ||
) | const [virtual, inherited] |
Retrieve indexed entries of matrix column multiplied by alpha.
cNum | Column number. |
irows | Index list specifying rows. |
alpha | Scalar factor. |
col | Output column vector. |
Implements Matrix.
References BT_TRUE, SparseMatrix::ir, isEqual(), Indexlist::iSort, SparseMatrix::jc, Indexlist::number, SUCCESSFUL_RETURN, and SparseMatrix::val.
virtual real_t Matrix::getNorm | ( | int | type = 2 | ) | const [pure virtual, inherited] |
Get the N-norm of the matrix
type | Norm type, 1: one-norm, 2: Euclidean norm. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblemB::regulariseHessian().
real_t SparseMatrix::getNorm | ( | int | type = 2 | ) | const [virtual, inherited] |
Get the N-norm of the matrix
type | Norm type, 1: one-norm, 2: Euclidean norm. |
Implements Matrix.
References SparseMatrix::jc, SparseMatrix::nCols, REFER_NAMESPACE_QPOASES, and SparseMatrix::val.
virtual returnValue Matrix::getRow | ( | int | rNum, |
const Indexlist *const | icols, | ||
real_t | alpha, | ||
real_t * | row | ||
) | const [pure virtual, inherited] |
Retrieve indexed entries of matrix row multiplied by alpha.
rNum | Row number. |
icols | Index list specifying columns. |
alpha | Scalar factor. |
row | Output row vector. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblem::addConstraint(), QProblem::addConstraint_checkLI(), QProblem::addConstraint_ensureLI(), and QProblemB::removeBound().
returnValue SparseMatrix::getRow | ( | int | rNum, |
const Indexlist *const | icols, | ||
real_t | alpha, | ||
real_t * | row | ||
) | const [virtual, inherited] |
Retrieve indexed entries of matrix row multiplied by alpha.
rNum | Row number. |
icols | Index list specifying columns. |
alpha | Scalar factor. |
row | Output row vector. |
Implements Matrix.
References BT_TRUE, SparseMatrix::ir, isEqual(), Indexlist::iSort, SparseMatrix::jc, Indexlist::length, SparseMatrix::nCols, Indexlist::number, SUCCESSFUL_RETURN, and SparseMatrix::val.
virtual real_t Matrix::getRowNorm | ( | int | rNum, |
int | type = 2 |
||
) | const [pure virtual, inherited] |
Get the N-norm of a row
rNum | Row number. |
type | Norm type, 1: one-norm, 2: Euclidean norm. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblem::setA().
real_t SparseMatrix::getRowNorm | ( | int | rNum, |
int | type = 2 |
||
) | const [virtual, inherited] |
Get the N-norm of a row
rNum | Row number. |
type | Norm type, 1: one-norm, 2: Euclidean norm. |
Implements Matrix.
References getAbs(), getSqrt(), INFTY, SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::nCols, real_t, REFER_NAMESPACE_QPOASES, RET_INVALID_ARGUMENTS, THROWERROR, and SparseMatrix::val.
virtual BooleanType Matrix::isDiag | ( | ) | const [pure virtual, inherited] |
Checks whether matrix is square and diagonal.
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblemB::determineHessianType().
BooleanType SparseMatrix::isDiag | ( | ) | const [virtual, inherited] |
Checks whether matrix is square and diagonal.
Implements Matrix.
References BT_FALSE, BT_TRUE, SparseMatrix::ir, SparseMatrix::jc, SparseMatrix::nCols, and SparseMatrix::nRows.
BooleanType Matrix::needToFreeMemory | ( | ) | const [inline, inherited] |
Returns whether internal memory needs to be de-allocated.
References Matrix::freeMemory.
Referenced by DenseMatrix::duplicate(), SymDenseMat::duplicateSym(), DenseMatrix::~DenseMatrix(), SparseMatrix::~SparseMatrix(), and SparseMatrixRow::~SparseMatrixRow().
virtual returnValue Matrix::print | ( | const char * | name = 0 | ) | const [pure virtual, inherited] |
Prints matrix to screen.
name | Name of matrix. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
returnValue SparseMatrix::print | ( | const char * | name = 0 | ) | const [virtual, inherited] |
Prints matrix to screen.
name | Name of matrix. |
Implements Matrix.
References SparseMatrix::full(), SparseMatrix::nCols, SparseMatrix::nRows, real_t, and REFER_NAMESPACE_QPOASES.
virtual returnValue Matrix::times | ( | int | xN, |
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [pure virtual, inherited] |
Evaluate Y=alpha*A*X + beta*Y.
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblem::determineStepDirection(), QProblemB::determineStepDirection(), QProblem::ensureNonzeroCurvature(), QProblemB::getObjVal(), QProblem::performStep(), QProblem::printIteration(), QProblemB::printIteration(), QProblem::removeBound(), QProblem::removeConstraint(), QProblem::setA(), QProblem::setupAuxiliaryQP(), QProblem::setupAuxiliaryQPgradient(), QProblemB::setupAuxiliaryQPgradient(), and QProblem::setupAuxiliaryQPsolution().
virtual returnValue Matrix::times | ( | const Indexlist *const | irows, |
const Indexlist *const | icols, | ||
int | xN, | ||
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD, | ||
BooleanType | yCompr = BT_TRUE |
||
) | const [pure virtual, inherited] |
Evaluate matrix vector product with submatrix given by Indexlist.
irows | Index list specifying rows. |
icols | Index list specifying columns. |
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
yCompr | Compressed storage for y. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
returnValue SparseMatrix::times | ( | int | xN, |
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [virtual, inherited] |
Evaluate Y=alpha*A*X + beta*Y.
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implements Matrix.
References BT_FALSE, BT_TRUE, SparseMatrix::ir, isEqual(), isZero(), SparseMatrix::jc, SparseMatrix::nCols, SparseMatrix::nRows, SUCCESSFUL_RETURN, and SparseMatrix::val.
returnValue SparseMatrix::times | ( | const Indexlist *const | irows, |
const Indexlist *const | icols, | ||
int | xN, | ||
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD, | ||
BooleanType | yCompr = BT_TRUE |
||
) | const [virtual, inherited] |
Evaluate matrix vector product with submatrix given by Indexlist.
irows | Index list specifying rows. |
icols | Index list specifying columns. |
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
yCompr | Compressed storage for y. |
Implements Matrix.
References BT_FALSE, BT_TRUE, SparseMatrix::ir, isEqual(), Indexlist::iSort, isZero(), SparseMatrix::jc, Indexlist::length, SparseMatrix::nCols, Indexlist::number, SUCCESSFUL_RETURN, and SparseMatrix::val.
virtual returnValue Matrix::transTimes | ( | int | xN, |
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [pure virtual, inherited] |
Evaluate Y=alpha*A'*X + beta*Y.
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
Referenced by QProblem::addBound_ensureLI(), QProblem::addConstraint_ensureLI(), QProblem::determineStepDirection(), QProblem::printIteration(), and QProblem::setupAuxiliaryQPgradient().
virtual returnValue Matrix::transTimes | ( | const Indexlist *const | irows, |
const Indexlist *const | icols, | ||
int | xN, | ||
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [pure virtual, inherited] |
Evaluate matrix transpose vector product.
irows | Index list specifying rows. |
icols | Index list specifying columns. |
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implemented in SparseMatrixRow, SparseMatrix, and DenseMatrix.
returnValue SparseMatrix::transTimes | ( | int | xN, |
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [virtual, inherited] |
Evaluate Y=alpha*A'*X + beta*Y.
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implements Matrix.
References BT_FALSE, BT_TRUE, SparseMatrix::ir, isEqual(), isZero(), SparseMatrix::jc, SparseMatrix::nCols, SUCCESSFUL_RETURN, and SparseMatrix::val.
returnValue SparseMatrix::transTimes | ( | const Indexlist *const | irows, |
const Indexlist *const | icols, | ||
int | xN, | ||
real_t | alpha, | ||
const real_t * | x, | ||
int | xLD, | ||
real_t | beta, | ||
real_t * | y, | ||
int | yLD | ||
) | const [virtual, inherited] |
Evaluate matrix transpose vector product.
irows | Index list specifying rows. |
icols | Index list specifying columns. |
xN | Number of vectors to multiply. |
alpha | Scalar factor for matrix vector product. |
x | Input vector to be multiplied. |
xLD | Leading dimension of input x. |
beta | Scalar factor for y. |
y | Output vector of results. |
yLD | Leading dimension of output y. |
Implements Matrix.
References BT_FALSE, BT_TRUE, SparseMatrix::ir, isEqual(), Indexlist::iSort, isZero(), SparseMatrix::jc, Indexlist::length, Indexlist::number, SUCCESSFUL_RETURN, and SparseMatrix::val.
BooleanType Matrix::freeMemory [protected, inherited] |
Indicating whether internal memory needs to be de-allocated.
Referenced by Matrix::doFreeMemory(), and Matrix::needToFreeMemory().
sparse_int_t* SparseMatrix::ir [protected, inherited] |
Row indices (length).
Referenced by SparseMatrix::addToDiag(), bilinear(), SparseMatrix::createDiagInfo(), SparseMatrix::diag(), SparseMatrix::duplicate(), duplicateSym(), SparseMatrix::free(), SparseMatrix::full(), SparseMatrix::getCol(), SparseMatrix::getRow(), SparseMatrix::getRowNorm(), SparseMatrix::isDiag(), SparseMatrix::SparseMatrix(), SparseMatrix::times(), and SparseMatrix::transTimes().
sparse_int_t* SparseMatrix::jc [protected, inherited] |
Indices to first entry of columns (nCols+1).
Referenced by bilinear(), SparseMatrix::createDiagInfo(), SparseMatrix::diag(), SparseMatrix::duplicate(), duplicateSym(), SparseMatrix::free(), SparseMatrix::full(), SparseMatrix::getCol(), SparseMatrix::getNorm(), SparseMatrix::getRow(), SparseMatrix::getRowNorm(), SparseMatrix::isDiag(), SparseMatrix::SparseMatrix(), SparseMatrix::times(), and SparseMatrix::transTimes().
sparse_int_t* SparseMatrix::jd [protected, inherited] |
Indices to first entry of lower triangle (including diagonal) (nCols).
Referenced by SparseMatrix::addToDiag(), bilinear(), SparseMatrix::createDiagInfo(), SparseMatrix::diag(), SparseMatrix::duplicate(), duplicateSym(), and SparseMatrix::~SparseMatrix().
int SparseMatrix::nCols [protected, inherited] |
Number of columns.
Referenced by SparseMatrix::addToDiag(), SparseMatrix::createDiagInfo(), SparseMatrix::duplicate(), duplicateSym(), SparseMatrix::full(), SparseMatrix::getNorm(), SparseMatrix::getRow(), SparseMatrix::getRowNorm(), SparseMatrix::isDiag(), SparseMatrix::print(), SparseMatrix::SparseMatrix(), SparseMatrix::times(), and SparseMatrix::transTimes().
int SparseMatrix::nRows [protected, inherited] |
Number of rows.
Referenced by SparseMatrix::addToDiag(), SparseMatrix::duplicate(), duplicateSym(), SparseMatrix::full(), SparseMatrix::isDiag(), SparseMatrix::print(), SparseMatrix::SparseMatrix(), and SparseMatrix::times().
real_t* SparseMatrix::val [protected, inherited] |
Vector of entries (length).
Referenced by SparseMatrix::addToDiag(), bilinear(), SparseMatrix::diag(), SparseMatrix::duplicate(), duplicateSym(), SparseMatrix::free(), SparseMatrix::full(), SparseMatrix::getCol(), SparseMatrix::getNorm(), SparseMatrix::getRow(), SparseMatrix::getRowNorm(), SparseMatrix::SparseMatrix(), SparseMatrix::times(), and SparseMatrix::transTimes().