Ipopt::LimMemQuasiNewtonUpdater Class Reference

Implementation of the HessianUpdater for limit-memory quasi-Newton approximation of the Lagrangian Hessian. More...

#include <IpLimMemQuasiNewtonUpdater.hpp>

Inheritance diagram for Ipopt::LimMemQuasiNewtonUpdater:
Inheritance graph
[legend]
Collaboration diagram for Ipopt::LimMemQuasiNewtonUpdater:
Collaboration graph
[legend]

List of all members.

Public Member Functions

virtual bool InitializeImpl (const OptionsList &options, const std::string &prefix)
 overloaded from AlgorithmStrategyObject
virtual void UpdateHessian ()
 Update the Hessian based on the current information in IpData.
Constructors/Destructors



 LimMemQuasiNewtonUpdater (bool update_for_resto)
 Default Constructor.
virtual ~LimMemQuasiNewtonUpdater ()
 Default destructor.

Static Public Member Functions



static void RegisterOptions (SmartPtr< RegisteredOptions > roptions)
 Methods for OptionsList.

Private Member Functions

Default Compiler Generated Methods

(Hidden to avoid implicit creation/calling).

These methods are not implemented and we do not want the compiler to implement them for us, so we declare them private and do not define them. This ensures that they will not be implicitly created/called.



 LimMemQuasiNewtonUpdater (const LimMemQuasiNewtonUpdater &)
 Copy Constructor.
void operator= (const LimMemQuasiNewtonUpdater &)
 Overloaded Equals Operator.
Auxilliary function



bool CheckSkippingBFGS (Vector &s_new, Vector &y_new)
 Method deciding whether the BFGS update should be skipped.
bool UpdateInternalData (const Vector &s_new, const Vector &y_new, SmartPtr< Vector > ypart_new)
 Update the internal data, such as the S, Y, L, D etc matrices and vectors that are required for computing the compact representation.
void AugmentMultiVector (SmartPtr< MultiVectorMatrix > &V, const Vector &v_new)
 Given a MutliVector V, create a new MultiVectorSpace with one more column, and return V as a member of that space, consisting of all previous vectors, and in addition v_new in the last column.
void AugmentDenseVector (SmartPtr< DenseVector > &V, Number v_new)
 Given a DenseVector V, create a new DenseVectorSpace with one more row, and return V as a member of that space, consisting of all previous elements, and in addition v_new in the last row.
void AugmentLMatrix (SmartPtr< DenseGenMatrix > &V, const MultiVectorMatrix &S, const MultiVectorMatrix &Y)
 Given a strictly-lower triangular square DenseGenMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^Ty_j for (i<j), where s and y are the vectors in the MultiVectors S and Y.
void AugmentSdotSMatrix (SmartPtr< DenseSymMatrix > &V, const MultiVectorMatrix &S)
 Given a DenseSymMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^Ts_j for the new entries, where s are the vectors in the MultiVector S.
void AugmentSTDRSMatrix (SmartPtr< DenseSymMatrix > &V, const MultiVectorMatrix &S, const MultiVectorMatrix &DRS)
 Given a DenseSymMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^TDRs_j for the new entries, where s are the vectors in the MultiVector S, and DRs are the vectors in DRS.
void ShiftMultiVector (SmartPtr< MultiVectorMatrix > &V, const Vector &v_new)
 Given a MutliVector V, get rid of the first column, shift all other columns to the left, and make v_new the last column.
void ShiftDenseVector (SmartPtr< DenseVector > &V, Number v_new)
 Given a DenseVector V, get rid of the first element, shift all other elements one position to the top, and make v_new the last entry.
void ShiftLMatrix (SmartPtr< DenseGenMatrix > &V, const MultiVectorMatrix &S, const MultiVectorMatrix &Y)
 Given a strictly-lower triangular square DenseGenMatrix V, shift everything one row and column up, and fill the new strictly lower triangular entries as s_i^Ty_j for (i<j), where s and y are the vectors in the MultiVectors S and Y.
void ShiftSdotSMatrix (SmartPtr< DenseSymMatrix > &V, const MultiVectorMatrix &S)
 Given a DenseSymMatrix V, shift everything up one row and column, and fill the new entries as s_i^Ts_j, where s are the vectors in the MultiVector S.
void ShiftSTDRSMatrix (SmartPtr< DenseSymMatrix > &V, const MultiVectorMatrix &S, const MultiVectorMatrix &DRS)
 Given a DenseSymMatrix V, shift everything up one row and column, and fill the new entries as s_i^TDRs_j, where s are the vectors in the MultiVector S, and DRs are the vectors in DRS.
void RecalcY (Number eta, const Vector &DR_x, MultiVectorMatrix &S, MultiVectorMatrix &Ypart, SmartPtr< MultiVectorMatrix > &Y)
 Method for recomputing Y from scratch, using Ypart (only for restoration phase).
void RecalcD (MultiVectorMatrix &S, MultiVectorMatrix &Y, SmartPtr< DenseVector > &D)
 Method for recomputing D from S and Y.
void RecalcL (MultiVectorMatrix &S, MultiVectorMatrix &Y, SmartPtr< DenseGenMatrix > &L)
 Method for recomputing L from S and Y.
bool SplitEigenvalues (DenseGenMatrix &Q, const DenseVector &E, SmartPtr< DenseGenMatrix > &Qminus, SmartPtr< DenseGenMatrix > &Qplus)
 Split the eigenvectors into negative and positive ones.
void StoreInternalDataBackup ()
 Store a copy of the pointers to the internal data (S, Y, D, L, SdotS, curr_lm_memory) This is called in case the update is started but skipped during the process.
void RestoreInternalDataBackup ()
 Restore the copy of the pointers to the internal data most recently stored with StoreInternalDataBackup().
void ReleaseInternalDataBackup ()
 Release anything that we allocated for StoreInternalDataBackup and is no longer needed.
void SetW ()
 Set the W field in IpData based on the current values of B0_, V_, and U_.

Private Attributes

SmartPtr< const
LowRankUpdateSymMatrixSpace
h_space_
 Matrix space for the low-rank Hessian approximation.
const bool update_for_resto_
 Flag indicating if the update is to be done for the original NLP or for the restoration phase NLP.
Number last_eta_
 Most recent value for eta in the restoration phase objective function (only for update_for_resto_ = true).
SmartPtr< const Vectorcurr_DR_x_
 Current DR_x scaling factors in the restoration phase objective function (only for update_for_resto_ = true).
TaggedObject::Tag curr_DR_x_tag_
 Tag for curr_DR_x_.
SmartPtr< const Vectorcurr_red_DR_x_
 Current DR_x scaling factors in the restoration phase objective function in the smaller space for the approximation - this is only computed if the space is indeed smaller than the x space (only for update_for_resto_ = true).
Number curr_eta_
 Current value of weighing factor eta in the restoration phase objective function (only for update_for_resto_ = true).
bool eta_changed_
 Flag inidicating whether DR_x or eta have changed since the last update.
Index lm_skipped_iter_
 Counter for successive iterations in which the update was skipped.
Information for the limited memory update



Index curr_lm_memory_
 current size of limited memory
SmartPtr< MultiVectorMatrixS_
 s pairs for the recent iterations
SmartPtr< MultiVectorMatrixY_
 y pairs for the recent iterations.
SmartPtr< MultiVectorMatrixYpart_
 For restoration phase update: Y without the quadratic objective function part.
SmartPtr< DenseVectorD_
 Diagonal elements D_k for compact formulation from last update.
SmartPtr< DenseGenMatrixL_
 Matrix L_k for compact formulation from last update.
SmartPtr< VectorB0_
 First term (starting matrix) for the approximation.
Number sigma_
 First term (starting matrix) for the approximation.
SmartPtr< MultiVectorMatrixV_
 V in LowRankUpdateMatrix from last update.
SmartPtr< MultiVectorMatrixU_
 U in LowRankUpdateMatrix from last update.
SmartPtr< DenseSymMatrixSdotS_
 For efficient implementation, we store the pairwise products for s's.
bool SdotS_uptodate_
 Flag indicating whether SdotS_ is update to date from most recent update.
SmartPtr< MultiVectorMatrixDRS_
 DR * S (only for restoration phase).
SmartPtr< DenseSymMatrixSTDRS_
 For efficient implementation, we store the S^T S DR * S.
SmartPtr< const Vectorlast_x_
 Primal variables x from most recent update.
SmartPtr< const Vectorlast_grad_f_
 Gradient of objective function w.r.t.
SmartPtr< const Matrixlast_jac_c_
 Jacobian for equality constraints w.r.t x at x_last.
SmartPtr< const Matrixlast_jac_d_
 Jacobian for inequality constraints w.r.t x at x_last.
Index curr_lm_memory_old_
 current size of limited memory
SmartPtr< MultiVectorMatrixS_old_
 s pairs for the recent iterations (backup)
SmartPtr< MultiVectorMatrixY_old_
 y pairs for the recent iterations.
SmartPtr< MultiVectorMatrixYpart_old_
 For restoration phase update: Y without the quadratic objective function part (backup).
SmartPtr< DenseVectorD_old_
 Diagonal elements D_k for compact formulation from last update (backup).
SmartPtr< DenseGenMatrixL_old_
 Matrix L_k for compact formulation from last update (backup).
SmartPtr< VectorB0_old_
 First term (starting matrix) for the approximation (backup).
Number sigma_old_
 First term (starting matrix) for the approximation.
SmartPtr< MultiVectorMatrixV_old_
 V in LowRankUpdateMatrix from last update (backup).
SmartPtr< MultiVectorMatrixU_old_
 U in LowRankUpdateMatrix from last update (backup).
SmartPtr< DenseSymMatrixSdotS_old_
 For efficient implementation, we store the pairwise products for s's (backup).
bool SdotS_uptodate_old_
 Flag indicating whether SdotS_ is update to date from most recent update (backup).
SmartPtr< MultiVectorMatrixDRS_old_
 DR * S (only for restoration phase) (backup).
SmartPtr< DenseSymMatrixSTDRS_old_
 For efficient implementation, we store the S^T S DR * S.

Algorithmic parameters



enum  LMUpdateType { BFGS = 0, SR1 }
 

enumeration for the Hessian update type.

More...
enum  LMInitialization { SCALAR1 = 0, SCALAR2, CONSTANT }
 

enumeration for the Hessian initialization.

More...
Index limited_memory_max_history_
 Size of memory for limited memory update.
LMUpdateType limited_memory_update_type_
 Type of Hessian update.
LMInitialization limited_memory_initialization_
 How to choose B0 in the low-rank update.
Number limited_memory_init_val_
 Value of B0 (as this multiple of the identity in certain situations.
Index limited_memory_max_skipping_
 Number of successive iterations of skipped updates after which the approximation is reset.
Number sigma_safe_min_
 Minimal safeguard value for sigma.
Number sigma_safe_max_
 Maximal safeguard value for sigma.

Detailed Description

Implementation of the HessianUpdater for limit-memory quasi-Newton approximation of the Lagrangian Hessian.

Definition at line 25 of file IpLimMemQuasiNewtonUpdater.hpp.


Member Enumeration Documentation

enumeration for the Hessian update type.

Enumerator:
BFGS 
SR1 

Definition at line 75 of file IpLimMemQuasiNewtonUpdater.hpp.

enumeration for the Hessian initialization.

Enumerator:
SCALAR1 
SCALAR2 
CONSTANT 

Definition at line 83 of file IpLimMemQuasiNewtonUpdater.hpp.


Constructor & Destructor Documentation

Ipopt::LimMemQuasiNewtonUpdater::LimMemQuasiNewtonUpdater ( bool  update_for_resto  ) 

Default Constructor.

virtual Ipopt::LimMemQuasiNewtonUpdater::~LimMemQuasiNewtonUpdater (  )  [inline, virtual]

Default destructor.

Definition at line 34 of file IpLimMemQuasiNewtonUpdater.hpp.

Ipopt::LimMemQuasiNewtonUpdater::LimMemQuasiNewtonUpdater ( const LimMemQuasiNewtonUpdater  )  [private]

Copy Constructor.


Member Function Documentation

virtual bool Ipopt::LimMemQuasiNewtonUpdater::InitializeImpl ( const OptionsList options,
const std::string &  prefix 
) [virtual]

overloaded from AlgorithmStrategyObject

Implements Ipopt::HessianUpdater.

virtual void Ipopt::LimMemQuasiNewtonUpdater::UpdateHessian (  )  [virtual]

Update the Hessian based on the current information in IpData.

Implements Ipopt::HessianUpdater.

static void Ipopt::LimMemQuasiNewtonUpdater::RegisterOptions ( SmartPtr< RegisteredOptions roptions  )  [static]

Methods for OptionsList.

void Ipopt::LimMemQuasiNewtonUpdater::operator= ( const LimMemQuasiNewtonUpdater  )  [private]

Overloaded Equals Operator.

Reimplemented from Ipopt::HessianUpdater.

bool Ipopt::LimMemQuasiNewtonUpdater::CheckSkippingBFGS ( Vector s_new,
Vector y_new 
) [private]

Method deciding whether the BFGS update should be skipped.

It returns true, if no update is to be performed this time. If Powell-damping is performed, the Vectors s_new and y_new, might be adapted.

bool Ipopt::LimMemQuasiNewtonUpdater::UpdateInternalData ( const Vector s_new,
const Vector y_new,
SmartPtr< Vector ypart_new 
) [private]

Update the internal data, such as the S, Y, L, D etc matrices and vectors that are required for computing the compact representation.

The method returns true if the limited memory history grew (i.e., curr_lm_memory_ was increased).

void Ipopt::LimMemQuasiNewtonUpdater::AugmentMultiVector ( SmartPtr< MultiVectorMatrix > &  V,
const Vector v_new 
) [private]

Given a MutliVector V, create a new MultiVectorSpace with one more column, and return V as a member of that space, consisting of all previous vectors, and in addition v_new in the last column.

If V is NULL, then a new MatrixSpace with one column is created.

void Ipopt::LimMemQuasiNewtonUpdater::AugmentDenseVector ( SmartPtr< DenseVector > &  V,
Number  v_new 
) [private]

Given a DenseVector V, create a new DenseVectorSpace with one more row, and return V as a member of that space, consisting of all previous elements, and in addition v_new in the last row.

If V is NULL, then a new DenseVectorSpace with dimension one is created.

void Ipopt::LimMemQuasiNewtonUpdater::AugmentLMatrix ( SmartPtr< DenseGenMatrix > &  V,
const MultiVectorMatrix S,
const MultiVectorMatrix Y 
) [private]

Given a strictly-lower triangular square DenseGenMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^Ty_j for (i<j), where s and y are the vectors in the MultiVectors S and Y.

If V is NULL, then a new DenseGenMatrixSpace with dimension one is created.

void Ipopt::LimMemQuasiNewtonUpdater::AugmentSdotSMatrix ( SmartPtr< DenseSymMatrix > &  V,
const MultiVectorMatrix S 
) [private]

Given a DenseSymMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^Ts_j for the new entries, where s are the vectors in the MultiVector S.

If V is NULL, then a new DenseGenMatrixSpace with dimension one is created.

void Ipopt::LimMemQuasiNewtonUpdater::AugmentSTDRSMatrix ( SmartPtr< DenseSymMatrix > &  V,
const MultiVectorMatrix S,
const MultiVectorMatrix DRS 
) [private]

Given a DenseSymMatrix V, create a new DenseGenMatrixSpace with one more dimension, and return V as a member of that space, consisting of all previous elements, and in addition elements s_i^TDRs_j for the new entries, where s are the vectors in the MultiVector S, and DRs are the vectors in DRS.

If V is NULL, then a new DenseGenMatrixSpace with dimension one is created.

void Ipopt::LimMemQuasiNewtonUpdater::ShiftMultiVector ( SmartPtr< MultiVectorMatrix > &  V,
const Vector v_new 
) [private]

Given a MutliVector V, get rid of the first column, shift all other columns to the left, and make v_new the last column.

The entity that V points to at the call, is not changed - a new entity is created in the method and returned as V.

void Ipopt::LimMemQuasiNewtonUpdater::ShiftDenseVector ( SmartPtr< DenseVector > &  V,
Number  v_new 
) [private]

Given a DenseVector V, get rid of the first element, shift all other elements one position to the top, and make v_new the last entry.

The entity that V points to at the call, is not changed - a new entity is created in the method and returned as V.

void Ipopt::LimMemQuasiNewtonUpdater::ShiftLMatrix ( SmartPtr< DenseGenMatrix > &  V,
const MultiVectorMatrix S,
const MultiVectorMatrix Y 
) [private]

Given a strictly-lower triangular square DenseGenMatrix V, shift everything one row and column up, and fill the new strictly lower triangular entries as s_i^Ty_j for (i<j), where s and y are the vectors in the MultiVectors S and Y.

The entity that V points to at the call, is not changed - a new entity is created in the method and returned as V.

void Ipopt::LimMemQuasiNewtonUpdater::ShiftSdotSMatrix ( SmartPtr< DenseSymMatrix > &  V,
const MultiVectorMatrix S 
) [private]

Given a DenseSymMatrix V, shift everything up one row and column, and fill the new entries as s_i^Ts_j, where s are the vectors in the MultiVector S.

The entity that V points to at the call, is not changed - a new entity is created in the method and returned as V.

void Ipopt::LimMemQuasiNewtonUpdater::ShiftSTDRSMatrix ( SmartPtr< DenseSymMatrix > &  V,
const MultiVectorMatrix S,
const MultiVectorMatrix DRS 
) [private]

Given a DenseSymMatrix V, shift everything up one row and column, and fill the new entries as s_i^TDRs_j, where s are the vectors in the MultiVector S, and DRs are the vectors in DRS.

The entity that V points to at the call, is not changed - a new entity is created in the method and returned as V.

void Ipopt::LimMemQuasiNewtonUpdater::RecalcY ( Number  eta,
const Vector DR_x,
MultiVectorMatrix S,
MultiVectorMatrix Ypart,
SmartPtr< MultiVectorMatrix > &  Y 
) [private]

Method for recomputing Y from scratch, using Ypart (only for restoration phase).

void Ipopt::LimMemQuasiNewtonUpdater::RecalcD ( MultiVectorMatrix S,
MultiVectorMatrix Y,
SmartPtr< DenseVector > &  D 
) [private]

Method for recomputing D from S and Y.

void Ipopt::LimMemQuasiNewtonUpdater::RecalcL ( MultiVectorMatrix S,
MultiVectorMatrix Y,
SmartPtr< DenseGenMatrix > &  L 
) [private]

Method for recomputing L from S and Y.

bool Ipopt::LimMemQuasiNewtonUpdater::SplitEigenvalues ( DenseGenMatrix Q,
const DenseVector E,
SmartPtr< DenseGenMatrix > &  Qminus,
SmartPtr< DenseGenMatrix > &  Qplus 
) [private]

Split the eigenvectors into negative and positive ones.

Given the eigenvectors in Q and the eigenvalues (in ascending order) in, this returns Qminus as the negative eigenvectors times sqrt(-eval), and Qplus as the positive eigenvectors times sqrt(eval). If Qminus or Qplus is NULL, it means that there are not negetive or positive eigenvalues. Q might be changed during this call. The return value is true, if the ratio of the smallest over the largest eigenvalue (in absolute values) is too small; in that case, the update should be skipped.

void Ipopt::LimMemQuasiNewtonUpdater::StoreInternalDataBackup (  )  [private]

Store a copy of the pointers to the internal data (S, Y, D, L, SdotS, curr_lm_memory) This is called in case the update is started but skipped during the process.

void Ipopt::LimMemQuasiNewtonUpdater::RestoreInternalDataBackup (  )  [private]

Restore the copy of the pointers to the internal data most recently stored with StoreInternalDataBackup().

void Ipopt::LimMemQuasiNewtonUpdater::ReleaseInternalDataBackup (  )  [private]

Release anything that we allocated for StoreInternalDataBackup and is no longer needed.

void Ipopt::LimMemQuasiNewtonUpdater::SetW (  )  [private]

Set the W field in IpData based on the current values of B0_, V_, and U_.


Member Data Documentation

Matrix space for the low-rank Hessian approximation.

Definition at line 68 of file IpLimMemQuasiNewtonUpdater.hpp.

Size of memory for limited memory update.

Definition at line 73 of file IpLimMemQuasiNewtonUpdater.hpp.

Type of Hessian update.

Definition at line 81 of file IpLimMemQuasiNewtonUpdater.hpp.

How to choose B0 in the low-rank update.

Definition at line 90 of file IpLimMemQuasiNewtonUpdater.hpp.

Value of B0 (as this multiple of the identity in certain situations.

)

Definition at line 93 of file IpLimMemQuasiNewtonUpdater.hpp.

Number of successive iterations of skipped updates after which the approximation is reset.

Definition at line 96 of file IpLimMemQuasiNewtonUpdater.hpp.

Minimal safeguard value for sigma.

Definition at line 98 of file IpLimMemQuasiNewtonUpdater.hpp.

Maximal safeguard value for sigma.

Definition at line 100 of file IpLimMemQuasiNewtonUpdater.hpp.

Flag indicating if the update is to be done for the original NLP or for the restoration phase NLP.

In the latter case, we are performing a "structured" update, taking into account the first explicit term in the objective function of the form eta*D_r*x_k

Definition at line 108 of file IpLimMemQuasiNewtonUpdater.hpp.

Most recent value for eta in the restoration phase objective function (only for update_for_resto_ = true).

Definition at line 111 of file IpLimMemQuasiNewtonUpdater.hpp.

Current DR_x scaling factors in the restoration phase objective function (only for update_for_resto_ = true).

This should not change throughout one restoration phase.

Definition at line 115 of file IpLimMemQuasiNewtonUpdater.hpp.

Tag for curr_DR_x_.

Definition at line 117 of file IpLimMemQuasiNewtonUpdater.hpp.

Current DR_x scaling factors in the restoration phase objective function in the smaller space for the approximation - this is only computed if the space is indeed smaller than the x space (only for update_for_resto_ = true).

Definition at line 122 of file IpLimMemQuasiNewtonUpdater.hpp.

Current value of weighing factor eta in the restoration phase objective function (only for update_for_resto_ = true).

Definition at line 125 of file IpLimMemQuasiNewtonUpdater.hpp.

Flag inidicating whether DR_x or eta have changed since the last update.

Definition at line 128 of file IpLimMemQuasiNewtonUpdater.hpp.

Counter for successive iterations in which the update was skipped.

Definition at line 132 of file IpLimMemQuasiNewtonUpdater.hpp.

current size of limited memory

Definition at line 137 of file IpLimMemQuasiNewtonUpdater.hpp.

s pairs for the recent iterations

Definition at line 139 of file IpLimMemQuasiNewtonUpdater.hpp.

y pairs for the recent iterations.

If update_for_resto is true, then this includes only the information for the constraints.

Definition at line 143 of file IpLimMemQuasiNewtonUpdater.hpp.

For restoration phase update: Y without the quadratic objective function part.

Definition at line 146 of file IpLimMemQuasiNewtonUpdater.hpp.

Diagonal elements D_k for compact formulation from last update.

Definition at line 149 of file IpLimMemQuasiNewtonUpdater.hpp.

Matrix L_k for compact formulation from last update.

Definition at line 151 of file IpLimMemQuasiNewtonUpdater.hpp.

First term (starting matrix) for the approximation.

Definition at line 153 of file IpLimMemQuasiNewtonUpdater.hpp.

First term (starting matrix) for the approximation.

If that first terms is a multiple of the identy, sigma give that factor. Otherwise sigma = -1.

Definition at line 157 of file IpLimMemQuasiNewtonUpdater.hpp.

V in LowRankUpdateMatrix from last update.

Definition at line 159 of file IpLimMemQuasiNewtonUpdater.hpp.

U in LowRankUpdateMatrix from last update.

Definition at line 161 of file IpLimMemQuasiNewtonUpdater.hpp.

For efficient implementation, we store the pairwise products for s's.

Definition at line 164 of file IpLimMemQuasiNewtonUpdater.hpp.

Flag indicating whether SdotS_ is update to date from most recent update.

Definition at line 167 of file IpLimMemQuasiNewtonUpdater.hpp.

DR * S (only for restoration phase).

Definition at line 169 of file IpLimMemQuasiNewtonUpdater.hpp.

For efficient implementation, we store the S^T S DR * S.

Only for restoration phase.

Definition at line 172 of file IpLimMemQuasiNewtonUpdater.hpp.

Primal variables x from most recent update.

Definition at line 174 of file IpLimMemQuasiNewtonUpdater.hpp.

Gradient of objective function w.r.t.

x at x_last_

Definition at line 176 of file IpLimMemQuasiNewtonUpdater.hpp.

Jacobian for equality constraints w.r.t x at x_last.

Definition at line 178 of file IpLimMemQuasiNewtonUpdater.hpp.

Jacobian for inequality constraints w.r.t x at x_last.

Definition at line 180 of file IpLimMemQuasiNewtonUpdater.hpp.

current size of limited memory

Definition at line 182 of file IpLimMemQuasiNewtonUpdater.hpp.

s pairs for the recent iterations (backup)

Definition at line 184 of file IpLimMemQuasiNewtonUpdater.hpp.

y pairs for the recent iterations.

If update_for_resto is true, then this includes only the information for the constraints. (backup)

Definition at line 188 of file IpLimMemQuasiNewtonUpdater.hpp.

For restoration phase update: Y without the quadratic objective function part (backup).

Definition at line 191 of file IpLimMemQuasiNewtonUpdater.hpp.

Diagonal elements D_k for compact formulation from last update (backup).

Definition at line 194 of file IpLimMemQuasiNewtonUpdater.hpp.

Matrix L_k for compact formulation from last update (backup).

Definition at line 196 of file IpLimMemQuasiNewtonUpdater.hpp.

First term (starting matrix) for the approximation (backup).

Definition at line 198 of file IpLimMemQuasiNewtonUpdater.hpp.

First term (starting matrix) for the approximation.

If that first terms is a multiple of the identy, sigma give that factor. Otherwise sigma = -1. (backup)

Definition at line 202 of file IpLimMemQuasiNewtonUpdater.hpp.

V in LowRankUpdateMatrix from last update (backup).

Definition at line 204 of file IpLimMemQuasiNewtonUpdater.hpp.

U in LowRankUpdateMatrix from last update (backup).

Definition at line 206 of file IpLimMemQuasiNewtonUpdater.hpp.

For efficient implementation, we store the pairwise products for s's (backup).

Definition at line 209 of file IpLimMemQuasiNewtonUpdater.hpp.

Flag indicating whether SdotS_ is update to date from most recent update (backup).

Definition at line 212 of file IpLimMemQuasiNewtonUpdater.hpp.

DR * S (only for restoration phase) (backup).

Definition at line 214 of file IpLimMemQuasiNewtonUpdater.hpp.

For efficient implementation, we store the S^T S DR * S.

Only for restoration phase. (backup)

Definition at line 217 of file IpLimMemQuasiNewtonUpdater.hpp.


The documentation for this class was generated from the following file:

Generated on 15 Mar 2015 for Coin-All by  doxygen 1.6.1