$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
The Unary Standard Math Functions

Syntax
y = fun(x)

Purpose
Evaluates the standard math function fun .

Possible Types

Base
If Base satisfies the base type requirements and argument x has prototype       const Base& x  then the result y has prototype       Base y 
If the argument x has prototype       const AD<Base>& x  then the result y has prototype       AD<Base> y 
If the argument x has prototype       const VecAD<Base>::reference& x  then the result y has prototype       AD<Base> y 
The possible values for fun are
  fun    Description abs AD Absolute Value Functions: abs, fabs acos Inverse Sine Function: acos acosh The Inverse Hyperbolic Cosine Function: acosh asin Inverse Sine Function: asin asinh The Inverse Hyperbolic Sine Function: asinh atan Inverse Tangent Function: atan atanh The Inverse Hyperbolic Tangent Function: atanh cos The Cosine Function: cos cosh The Hyperbolic Cosine Function: cosh erf The Error Function exp The Exponential Function: exp expm1 The Exponential Function Minus One: expm1 fabs AD Absolute Value Functions: abs, fabs log10 The Base 10 Logarithm Function: log10 log1p The Logarithm of One Plus Argument: log1p log The Exponential Function: log sign The Sign: sign sin The Sine Function: sin sinh The Hyperbolic Sine Function: sinh sqrt The Square Root Function: sqrt tan The Tangent Function: tan tanh The Hyperbolic Tangent Function: tanh