Prev Next Index-> contents reference index search external Up-> CppAD AD ADValued unary_standard_math atan AD-> ad_ctor ad_assign Convert ADValued BoolValued VecAD base_require ADValued-> Arithmetic unary_standard_math binary_math CondExp Discrete numeric_limits atomic unary_standard_math-> acos asin atan cos cosh exp log log10 sin sinh sqrt tan tanh abs acosh asinh atanh erf expm1 log1p sign atan-> atan.cpp Headings-> Syntax x, y Atomic Derivative Example

$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
Inverse Tangent Function: atan

Syntax
y = atan(x)

x, y
See the possible types for a unary standard math function.

Atomic
This is an atomic operation .

Derivative
$$\begin{array}{lcr} \R{atan}^{(1)} (x) & = & \frac{1}{1 + x^2} \end{array}$$
Example
The file atan.cpp contains an example and test of this function. It returns true if it succeeds and false otherwise.