Prev Next atomic_eigen_mat_mul.hpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Atomic Eigen Matrix Multiply Class

See Also
atomic_mat_mul.hpp

Purpose
Construct an atomic operation that computes the matrix product, @(@ R = A \times B @)@ for any positive integers @(@ r @)@, @(@ m @)@, @(@ c @)@, and any @(@ A \in \B{R}^{r \times m} @)@, @(@ B \in \B{R}^{m \times c} @)@.

Matrix Dimensions
This example puts the matrix dimensions in the atomic function arguments, instead of the constructor , so that they can be different for different calls to the atomic function. These dimensions are:
nr_left number of rows in the left matrix; i.e, @(@ r @)@
n_middle rows in the left matrix and columns in right; i.e, @(@ m @)@
nc_right number of columns in the right matrix; i.e., @(@ c @)@

Theory

Forward
For @(@ k = 0 , \ldots @)@, the k-th order Taylor coefficient @(@ R_k @)@ is given by @[@ R_k = \sum_{\ell = 0}^{k} A_\ell B_{k-\ell} @]@

Product of Two Matrices
Suppose @(@ \bar{E} @)@ is the derivative of the scalar value function @(@ s(E) @)@ with respect to @(@ E @)@; i.e., @[@ \bar{E}_{i,j} = \frac{ \partial s } { \partial E_{i,j} } @]@ Also suppose that @(@ t @)@ is a scalar valued argument and @[@ E(t) = C(t) D(t) @]@ It follows that @[@ E'(t) = C'(t) D(t) + C(t) D'(t) @]@ @[@ (s \circ E)'(t) = \R{tr} [ \bar{E}^\R{T} E'(t) ] @]@ @[@ = \R{tr} [ \bar{E}^\R{T} C'(t) D(t) ] + \R{tr} [ \bar{E}^\R{T} C(t) D'(t) ] @]@ @[@ = \R{tr} [ D(t) \bar{E}^\R{T} C'(t) ] + \R{tr} [ \bar{E}^\R{T} C(t) D'(t) ] @]@ @[@ \bar{C} = \bar{E} D^\R{T} \W{,} \bar{D} = C^\R{T} \bar{E} @]@

Reverse
Reverse mode eliminates @(@ R_k @)@ as follows: for @(@ \ell = 0, \ldots , k-1 @)@, @[@ \bar{A}_\ell = \bar{A}_\ell + \bar{R}_k B_{k-\ell}^\R{T} @]@ @[@ \bar{B}_{k-\ell} = \bar{B}_{k-\ell} + A_\ell^\R{T} \bar{R}_k @]@

Start Class Definition
# include <cppad/cppad.hpp>
# include <Eigen/Core>

Public

Types
namespace { // BEGIN_EMPTY_NAMESPACE

template <class Base>
class atomic_eigen_mat_mul : public CppAD::atomic_base<Base> {
public:
     // -----------------------------------------------------------
     // type of elements during calculation of derivatives
     typedef Base              scalar;
     // type of elements during taping
     typedef CppAD::AD<scalar> ad_scalar;
     // type of matrix during calculation of derivatives
     typedef Eigen::Matrix<
          scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>     matrix;
     // type of matrix during taping
     typedef Eigen::Matrix<
          ad_scalar, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor > ad_matrix;

Constructor
     // constructor
     atomic_eigen_mat_mul(void) : CppAD::atomic_base<Base>(
          "atom_eigen_mat_mul"                             ,
          CppAD::atomic_base<Base>::set_sparsity_enum
     )
     { }

op
     // use atomic operation to multiply two AD matrices
     ad_matrix op(
          const ad_matrix&              left    ,
          const ad_matrix&              right   )
     {     size_t  nr_left   = size_t( left.rows() );
          size_t  n_middle  = size_t( left.cols() );
          size_t  nc_right  = size_t( right.cols() );
          assert( n_middle  == size_t( right.rows() )  );
          size_t  nx      = 3 + (nr_left + nc_right) * n_middle;
          size_t  ny      = nr_left * nc_right;
          size_t n_left   = nr_left * n_middle;
          size_t n_right  = n_middle * nc_right;
          size_t n_result = nr_left * nc_right;
          //
          assert( 3 + n_left + n_right == nx );
          assert( n_result == ny );
          // -----------------------------------------------------------------
          // packed version of left and right
          CPPAD_TESTVECTOR(ad_scalar) packed_arg(nx);
          //
          packed_arg[0] = ad_scalar( nr_left );
          packed_arg[1] = ad_scalar( n_middle );
          packed_arg[2] = ad_scalar( nc_right );
          for(size_t i = 0; i < n_left; i++)
               packed_arg[3 + i] = left.data()[i];
          for(size_t i = 0; i < n_right; i++)
               packed_arg[ 3 + n_left + i ] = right.data()[i];
          // ------------------------------------------------------------------
          // Packed version of result = left * right.
          // This as an atomic_base funciton call that CppAD uses
          // to store the atomic operation on the tape.
          CPPAD_TESTVECTOR(ad_scalar) packed_result(ny);
          (*this)(packed_arg, packed_result);
          // ------------------------------------------------------------------
          // unpack result matrix
          ad_matrix result(nr_left, nc_right);
          for(size_t i = 0; i < n_result; i++)
               result.data()[i] = packed_result[ i ];
          //
          return result;
     }

Private

Variables
private:
     // -------------------------------------------------------------
     // one forward mode vector of matrices for left, right, and result
     CppAD::vector<matrix> f_left_, f_right_, f_result_;
     // one reverse mode vector of matrices for left, right, and result
     CppAD::vector<matrix> r_left_, r_right_, r_result_;
     // -------------------------------------------------------------

forward
     // forward mode routine called by CppAD
     virtual bool forward(
          // lowest order Taylor coefficient we are evaluating
          size_t                          p ,
          // highest order Taylor coefficient we are evaluating
          size_t                          q ,
          // which components of x are variables
          const CppAD::vector<bool>&      vx ,
          // which components of y are variables
          CppAD::vector<bool>&            vy ,
          // tx [ 3 + j * (q+1) + k ] is x_j^k
          const CppAD::vector<scalar>&    tx ,
          // ty [ i * (q+1) + k ] is y_i^k
          CppAD::vector<scalar>&          ty
     )
     {     size_t n_order  = q + 1;
          size_t nr_left  = size_t( CppAD::Integer( tx[ 0 * n_order + 0 ] ) );
          size_t n_middle = size_t( CppAD::Integer( tx[ 1 * n_order + 0 ] ) );
          size_t nc_right = size_t( CppAD::Integer( tx[ 2 * n_order + 0 ] ) );
# ifndef NDEBUG
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( vx.size() == 0 || nx == vx.size() );
          assert( vx.size() == 0 || ny == vy.size() );
          assert( nx * n_order == tx.size() );
          assert( ny * n_order == ty.size() );
          //
          size_t n_left   = nr_left * n_middle;
          size_t n_right  = n_middle * nc_right;
          size_t n_result = nr_left * nc_right;
          assert( 3 + n_left + n_right == nx );
          assert( n_result == ny );
          //
          // -------------------------------------------------------------------
          // make sure f_left_, f_right_, and f_result_ are large enough
          assert( f_left_.size() == f_right_.size() );
          assert( f_left_.size() == f_result_.size() );
          if( f_left_.size() < n_order )
          {     f_left_.resize(n_order);
               f_right_.resize(n_order);
               f_result_.resize(n_order);
               //
               for(size_t k = 0; k < n_order; k++)
               {     f_left_[k].resize(nr_left, n_middle);
                    f_right_[k].resize(n_middle, nc_right);
                    f_result_[k].resize(nr_left, nc_right);
               }
          }
          // -------------------------------------------------------------------
          // unpack tx into f_left and f_right
          for(size_t k = 0; k < n_order; k++)
          {     // unpack left values for this order
               for(size_t i = 0; i < n_left; i++)
                    f_left_[k].data()[i] = tx[ (3 + i) * n_order + k ];
               //
               // unpack right values for this order
               for(size_t i = 0; i < n_right; i++)
                    f_right_[k].data()[i] = tx[ ( 3 + n_left + i) * n_order + k ];
          }
          // -------------------------------------------------------------------
          // result for each order
          // (we could avoid recalculting f_result_[k] for k=0,...,p-1)
          for(size_t k = 0; k < n_order; k++)
          {     // result[k] = sum_ell left[ell] * right[k-ell]
               f_result_[k] = matrix::Zero(nr_left, nc_right);
               for(size_t ell = 0; ell <= k; ell++)
                    f_result_[k] += f_left_[ell] * f_right_[k-ell];
          }
          // -------------------------------------------------------------------
          // pack result_ into ty
          for(size_t k = 0; k < n_order; k++)
          {     for(size_t i = 0; i < n_result; i++)
                    ty[ i * n_order + k ] = f_result_[k].data()[i];
          }
          // ------------------------------------------------------------------
          // check if we are computing vy
          if( vx.size() == 0 )
               return true;
          // ------------------------------------------------------------------
          // compute variable information for y; i.e., vy
          // (note that the constant zero times a variable is a constant)
          scalar zero(0.0);
          assert( n_order == 1 );
          for(size_t i = 0; i < nr_left; i++)
          {     for(size_t j = 0; j < nc_right; j++)
               {     bool var = false;
                    for(size_t ell = 0; ell < n_middle; ell++)
                    {     // left information
                         size_t index   = 3 + i * n_middle + ell;
                         bool var_left  = vx[index];
                         bool nz_left   = var_left | (f_left_[0](i, ell) != zero);
                         // right information
                         index          = 3 + n_left + ell * nc_right + j;
                         bool var_right = vx[index];
                         bool nz_right  = var_right | (f_right_[0](ell, j) != zero);
                         // effect of result
                         var |= var_left & nz_right;
                         var |= nz_left  & var_right;
                    }
                    size_t index = i * nc_right + j;
                    vy[index]    = var;
               }
          }
          return true;
     }

reverse
     // reverse mode routine called by CppAD
     virtual bool reverse(
          // highest order Taylor coefficient that we are computing derivative of
          size_t                     q ,
          // forward mode Taylor coefficients for x variables
          const CppAD::vector<double>&     tx ,
          // forward mode Taylor coefficients for y variables
          const CppAD::vector<double>&     ty ,
          // upon return, derivative of G[ F[ {x_j^k} ] ] w.r.t {x_j^k}
          CppAD::vector<double>&           px ,
          // derivative of G[ {y_i^k} ] w.r.t. {y_i^k}
          const CppAD::vector<double>&     py
     )
     {     size_t n_order  = q + 1;
          size_t nr_left  = size_t( CppAD::Integer( tx[ 0 * n_order + 0 ] ) );
          size_t n_middle = size_t( CppAD::Integer( tx[ 1 * n_order + 0 ] ) );
          size_t nc_right = size_t( CppAD::Integer( tx[ 2 * n_order + 0 ] ) );
# ifndef NDEBUG
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( nx * n_order == tx.size() );
          assert( ny * n_order == ty.size() );
          assert( px.size() == tx.size() );
          assert( py.size() == ty.size() );
          //
          size_t n_left   = nr_left * n_middle;
          size_t n_right  = n_middle * nc_right;
          size_t n_result = nr_left * nc_right;
          assert( 3 + n_left + n_right == nx );
          assert( n_result == ny );
          // -------------------------------------------------------------------
          // make sure f_left_, f_right_ are large enough
          assert( f_left_.size() == f_right_.size() );
          assert( f_left_.size() == f_result_.size() );
          // must have previous run forward with order >= n_order
          assert( f_left_.size() >= n_order );
          // -------------------------------------------------------------------
          // make sure r_left_, r_right_, and r_result_ are large enough
          assert( r_left_.size() == r_right_.size() );
          assert( r_left_.size() == r_result_.size() );
          if( r_left_.size() < n_order )
          {     r_left_.resize(n_order);
               r_right_.resize(n_order);
               r_result_.resize(n_order);
               //
               for(size_t k = 0; k < n_order; k++)
               {     r_left_[k].resize(nr_left, n_middle);
                    r_right_[k].resize(n_middle, nc_right);
                    r_result_[k].resize(nr_left, nc_right);
               }
          }
          // -------------------------------------------------------------------
          // unpack tx into f_left and f_right
          for(size_t k = 0; k < n_order; k++)
          {     // unpack left values for this order
               for(size_t i = 0; i < n_left; i++)
                    f_left_[k].data()[i] = tx[ (3 + i) * n_order + k ];
               //
               // unpack right values for this order
               for(size_t i = 0; i < n_right; i++)
                    f_right_[k].data()[i] = tx[ (3 + n_left + i) * n_order + k ];
          }
          // -------------------------------------------------------------------
          // unpack py into r_result_
          for(size_t k = 0; k < n_order; k++)
          {     for(size_t i = 0; i < n_result; i++)
                    r_result_[k].data()[i] = py[ i * n_order + k ];
          }
          // -------------------------------------------------------------------
          // initialize r_left_ and r_right_ as zero
          for(size_t k = 0; k < n_order; k++)
          {     r_left_[k]   = matrix::Zero(nr_left, n_middle);
               r_right_[k]  = matrix::Zero(n_middle, nc_right);
          }
          // -------------------------------------------------------------------
          // matrix reverse mode calculation
          for(size_t k1 = n_order; k1 > 0; k1--)
          {     size_t k = k1 - 1;
               for(size_t ell = 0; ell <= k; ell++)
               {     // nr x nm       = nr x nc      * nc * nm
                    r_left_[ell]    += r_result_[k] * f_right_[k-ell].transpose();
                    // nm x nc       = nm x nr * nr * nc
                    r_right_[k-ell] += f_left_[ell].transpose() * r_result_[k];
               }
          }
          // -------------------------------------------------------------------
          // pack r_left and r_right int px
          for(size_t k = 0; k < n_order; k++)
          {     // dimensions are integer constants
               px[ 0 * n_order + k ] = 0.0;
               px[ 1 * n_order + k ] = 0.0;
               px[ 2 * n_order + k ] = 0.0;
               //
               // pack left values for this order
               for(size_t i = 0; i < n_left; i++)
                    px[ (3 + i) * n_order + k ] = r_left_[k].data()[i];
               //
               // pack right values for this order
               for(size_t i = 0; i < n_right; i++)
                    px[ (3 + i + n_left) * n_order + k] = r_right_[k].data()[i];
          }
          //
          return true;
     }

for_sparse_jac
     // forward Jacobian sparsity routine called by CppAD
     virtual bool for_sparse_jac(
          // number of columns in the matrix R
          size_t                                       q ,
          // sparsity pattern for the matrix R
          const CppAD::vector< std::set<size_t> >&     r ,
          // sparsity pattern for the matrix S = f'(x) * R
          CppAD::vector< std::set<size_t> >&           s ,
          const CppAD::vector<Base>&                   x )
     {
          size_t nr_left  = size_t( CppAD::Integer( x[0] ) );
          size_t n_middle = size_t( CppAD::Integer( x[1] ) );
          size_t nc_right = size_t( CppAD::Integer( x[2] ) );
# ifndef NDEBUG
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( nx == r.size() );
          assert( ny == s.size() );
          //
          size_t n_left = nr_left * n_middle;
          for(size_t i = 0; i < nr_left; i++)
          {     for(size_t j = 0; j < nc_right; j++)
               {     // pack index for entry (i, j) in result
                    size_t i_result = i * nc_right + j;
                    s[i_result].clear();
                    for(size_t ell = 0; ell < n_middle; ell++)
                    {     // pack index for entry (i, ell) in left
                         size_t i_left  = 3 + i * n_middle + ell;
                         // pack index for entry (ell, j) in right
                         size_t i_right = 3 + n_left + ell * nc_right + j;
                         // check if result of for this product is alwasy zero
                         // note that x is nan for commponents that are variables
                         bool zero = x[i_left] == Base(0.0) || x[i_right] == Base(0);
                         if( ! zero )
                         {     s[i_result] =
                                   CppAD::set_union(s[i_result], r[i_left] );
                              s[i_result] =
                                   CppAD::set_union(s[i_result], r[i_right] );
                         }
                    }
               }
          }
          return true;
     }

rev_sparse_jac
     // reverse Jacobian sparsity routine called by CppAD
     virtual bool rev_sparse_jac(
          // number of columns in the matrix R^T
          size_t                                      q  ,
          // sparsity pattern for the matrix R^T
          const CppAD::vector< std::set<size_t> >&    rt ,
          // sparsoity pattern for the matrix S^T = f'(x)^T * R^T
          CppAD::vector< std::set<size_t> >&          st ,
          const CppAD::vector<Base>&                   x )
     {
          size_t nr_left  = size_t( CppAD::Integer( x[0] ) );
          size_t n_middle = size_t( CppAD::Integer( x[1] ) );
          size_t nc_right = size_t( CppAD::Integer( x[2] ) );
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
# ifndef NDEBUG
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( nx == st.size() );
          assert( ny == rt.size() );
          //
          // initialize S^T as empty
          for(size_t i = 0; i < nx; i++)
               st[i].clear();

          // sparsity for S(x)^T = f'(x)^T * R^T
          size_t n_left = nr_left * n_middle;
          for(size_t i = 0; i < nr_left; i++)
          {     for(size_t j = 0; j < nc_right; j++)
               {     // pack index for entry (i, j) in result
                    size_t i_result = i * nc_right + j;
                    st[i_result].clear();
                    for(size_t ell = 0; ell < n_middle; ell++)
                    {     // pack index for entry (i, ell) in left
                         size_t i_left  = 3 + i * n_middle + ell;
                         // pack index for entry (ell, j) in right
                         size_t i_right = 3 + n_left + ell * nc_right + j;
                         //
                         st[i_left]  = CppAD::set_union(st[i_left],  rt[i_result]);
                         st[i_right] = CppAD::set_union(st[i_right], rt[i_result]);
                    }
               }
          }
          return true;
     }

for_sparse_hes
     virtual bool for_sparse_hes(
          // which components of x are variables for this call
          const CppAD::vector<bool>&                   vx,
          // sparsity pattern for the diagonal of R
          const CppAD::vector<bool>&                   r ,
          // sparsity pattern for the vector S
          const CppAD::vector<bool>&                   s ,
          // sparsity patternfor the Hessian H(x)
          CppAD::vector< std::set<size_t> >&           h ,
          const CppAD::vector<Base>&                   x )
     {
          size_t nr_left  = size_t( CppAD::Integer( x[0] ) );
          size_t n_middle = size_t( CppAD::Integer( x[1] ) );
          size_t nc_right = size_t( CppAD::Integer( x[2] ) );
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
# ifndef NDEBUG
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( vx.size() == nx );
          assert( r.size()  == nx );
          assert( s.size()  == ny );
          assert( h.size()  == nx );
          //
          // initilize h as empty
          for(size_t i = 0; i < nx; i++)
               h[i].clear();
          //
          size_t n_left = nr_left * n_middle;
          for(size_t i = 0; i < nr_left; i++)
          {     for(size_t j = 0; j < nc_right; j++)
               {     // pack index for entry (i, j) in result
                    size_t i_result = i * nc_right + j;
                    if( s[i_result] )
                    {     for(size_t ell = 0; ell < n_middle; ell++)
                         {     // pack index for entry (i, ell) in left
                              size_t i_left  = 3 + i * n_middle + ell;
                              // pack index for entry (ell, j) in right
                              size_t i_right = 3 + n_left + ell * nc_right + j;
                              if( r[i_left] & r[i_right] )
                              {     h[i_left].insert(i_right);
                                   h[i_right].insert(i_left);
                              }
                         }
                    }
               }
          }
          return true;
     }

rev_sparse_hes
     // reverse Hessian sparsity routine called by CppAD
     virtual bool rev_sparse_hes(
          // which components of x are variables for this call
          const CppAD::vector<bool>&                   vx,
          // sparsity pattern for S(x) = g'[f(x)]
          const CppAD::vector<bool>&                   s ,
          // sparsity pattern for d/dx g[f(x)] = S(x) * f'(x)
          CppAD::vector<bool>&                         t ,
          // number of columns in R, U(x), and V(x)
          size_t                                       q ,
          // sparsity pattern for R
          const CppAD::vector< std::set<size_t> >&     r ,
          // sparsity pattern for U(x) = g^{(2)} [ f(x) ] * f'(x) * R
          const CppAD::vector< std::set<size_t> >&     u ,
          // sparsity pattern for
          // V(x) = f'(x)^T * U(x) + sum_{i=0}^{m-1} S_i(x) f_i^{(2)} (x) * R
          CppAD::vector< std::set<size_t> >&           v ,
          // parameters as integers
          const CppAD::vector<Base>&                   x )
     {
          size_t nr_left  = size_t( CppAD::Integer( x[0] ) );
          size_t n_middle = size_t( CppAD::Integer( x[1] ) );
          size_t nc_right = size_t( CppAD::Integer( x[2] ) );
          size_t  nx        = 3 + (nr_left + nc_right) * n_middle;
# ifndef NDEBUG
          size_t  ny        = nr_left * nc_right;
# endif
          //
          assert( vx.size() == nx );
          assert( s.size()  == ny );
          assert( t.size()  == nx );
          assert( r.size()  == nx );
          assert( v.size()  == nx );
          //
          // initilaize return sparsity patterns as false
          for(size_t j = 0; j < nx; j++)
          {     t[j] = false;
               v[j].clear();
          }
          //
          size_t n_left = nr_left * n_middle;
          for(size_t i = 0; i < nr_left; i++)
          {     for(size_t j = 0; j < nc_right; j++)
               {     // pack index for entry (i, j) in result
                    size_t i_result = i * nc_right + j;
                    for(size_t ell = 0; ell < n_middle; ell++)
                    {     // pack index for entry (i, ell) in left
                         size_t i_left  = 3 + i * n_middle + ell;
                         // pack index for entry (ell, j) in right
                         size_t i_right = 3 + n_left + ell * nc_right + j;
                         //
                         // back propagate T(x) = S(x) * f'(x).
                         t[i_left]  |= bool( s[i_result] );
                         t[i_right] |= bool( s[i_result] );
                         //
                         // V(x) = f'(x)^T * U(x) +  sum_i S_i(x) * f_i''(x) * R
                         // U(x)   = g''[ f(x) ] * f'(x) * R
                         // S_i(x) = g_i'[ f(x) ]
                         //
                         // back propagate f'(x)^T * U(x)
                         v[i_left]  = CppAD::set_union(v[i_left],  u[i_result] );
                         v[i_right] = CppAD::set_union(v[i_right], u[i_result] );
                         //
                         // back propagate S_i(x) * f_i''(x) * R
                         // (here is where we use vx to check for cross terms)
                         if( s[i_result] & vx[i_left] & vx[i_right] )
                         {     v[i_left]  = CppAD::set_union(v[i_left],  r[i_right] );
                              v[i_right] = CppAD::set_union(v[i_right], r[i_left]  );
                         }
                    }
               }
          }
          return true;
     }

End Class Definition

}; // End of atomic_eigen_mat_mul class

}  // END_EMPTY_NAMESPACE

Input File: cppad/example/eigen_mat_mul.hpp