Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Atomic Eigen Matrix Inverse: Example and Test

Description
The ADFun function object f for this example is @[@ f(x) = \left( \begin{array}{cc} x_0 & 0 \\ 0 & x_1 \end{array} \right)^{-1} \left( \begin{array}{c} 0 \\ x_2 \end{array} \right) = \left( \begin{array}{c} 0 \\ x_2 / x_1 ) \end{array} \right) @]@

Class Definition
This example uses the file atomic_eigen_mat_inv.hpp which defines matrix multiply as a atomic_base operation.

Use Atomic Function
# include <cppad/cppad.hpp>
# include <cppad/example/eigen_mat_inv.hpp>
# include <cppad/example/eigen_mat_mul.hpp>


bool eigen_mat_inv(void)
{
     typedef double                                            scalar;
     typedef CppAD::AD<scalar>                                 ad_scalar;
     typedef typename atomic_eigen_mat_inv<scalar>::ad_matrix  ad_matrix;
     //
     bool ok    = true;
     scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
     using CppAD::NearEqual;
     //

Constructor
     // -------------------------------------------------------------------
     // object that multiplies matrices
     atomic_eigen_mat_mul<scalar> mat_mul;
     // -------------------------------------------------------------------
     // object that computes inverse of a square matrix
     atomic_eigen_mat_inv<scalar> mat_inv;
     // -------------------------------------------------------------------
     // declare independent variable vector x
     size_t n = 3;
     CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
     for(size_t j = 0; j < n; j++)
          ad_x[j] = ad_scalar(j + 1);
     CppAD::Independent(ad_x);
     // -------------------------------------------------------------------
     // left = [ x[0]  0    ]
     //        [ 0     x[1] ]
     size_t nr_left  = 2;
     ad_matrix ad_left(nr_left, nr_left);
     ad_left(0, 0) = ad_x[0];
     ad_left(0, 1) = ad_scalar(0.0);
     ad_left(1, 0) = ad_scalar(0.0);
     ad_left(1, 1) = ad_x[1];
     // -------------------------------------------------------------------
     // right = [ 0 , x[2] ]^T
     size_t nc_right = 1;
     ad_matrix ad_right(nr_left, nc_right);
     ad_right(0, 0) = ad_scalar(0.0);
     ad_right(1, 0) = ad_x[2];
     // -------------------------------------------------------------------
     // use atomic operation to compute left^{-1}
     ad_matrix ad_left_inv = mat_inv.op(ad_left);
     // use atomic operation to multiply left^{-1} * right
     ad_matrix ad_result   = mat_mul.op(ad_left_inv, ad_right);
     // -------------------------------------------------------------------
     // declare the dependent variable vector y
     size_t m = 2;
     CPPAD_TESTVECTOR(ad_scalar) ad_y(2);
     for(size_t i = 0; i < m; i++)
          ad_y[i] = ad_result(i, 0);
     CppAD::ADFun<scalar> f(ad_x, ad_y);
     // -------------------------------------------------------------------
     // check zero order forward mode
     CPPAD_TESTVECTOR(scalar) x(n), y(m);
     for(size_t i = 0; i < n; i++)
          x[i] = scalar(i + 2);
     y   = f.Forward(0, x);
     ok &= NearEqual(y[0], 0.0,          eps, eps);
     ok &= NearEqual(y[1], x[2] / x[1],  eps, eps);
     // -------------------------------------------------------------------
     // check first order forward mode
     CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
     x1[0] = 1.0;
     x1[1] = 0.0;
     x1[2] = 0.0;
     y1    = f.Forward(1, x1);
     ok   &= NearEqual(y1[0], 0.0,        eps, eps);
     ok   &= NearEqual(y1[1], 0.0,        eps, eps);
     x1[0] = 0.0;
     x1[1] = 0.0;
     x1[2] = 1.0;
     y1    = f.Forward(1, x1);
     ok   &= NearEqual(y1[0], 0.0,        eps, eps);
     ok   &= NearEqual(y1[1], 1.0 / x[1], eps, eps);
     x1[0] = 0.0;
     x1[1] = 1.0;
     x1[2] = 0.0;
     y1    = f.Forward(1, x1);
     ok   &= NearEqual(y1[0], 0.0,                  eps, eps);
     ok   &= NearEqual(y1[1], - x[2] / (x[1]*x[1]), eps, eps);
     // -------------------------------------------------------------------
     // check second order forward mode
     CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
     x2[0] = 0.0;
     x2[1] = 0.0;
     x2[2] = 0.0;
     scalar  f1_x1_x1 = 2.0 * x[2] / (x[1] * x[1] * x[1] );
     y2    = f.Forward(2, x2);
     ok   &= NearEqual(y2[0], 0.0,            eps, eps);
     ok   &= NearEqual(y2[1], f1_x1_x1 / 2.0, eps, eps);
     // -------------------------------------------------------------------
     // check first order reverse
     CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
     w[0] = 1.0;
     w[1] = 0.0;
     d1w  = f.Reverse(1, w);
     ok  &= NearEqual(d1w[0], 0.0, eps, eps);
     ok  &= NearEqual(d1w[1], 0.0, eps, eps);
     ok  &= NearEqual(d1w[2], 0.0, eps, eps);
     w[0] = 0.0;
     w[1] = 1.0;
     d1w  = f.Reverse(1, w);
     ok  &= NearEqual(d1w[0], 0.0,                  eps, eps);
     ok  &= NearEqual(d1w[1], - x[2] / (x[1]*x[1]), eps, eps);
     ok  &= NearEqual(d1w[2], 1.0 / x[1],           eps, eps);
     // -------------------------------------------------------------------
     // check second order reverse
     CPPAD_TESTVECTOR(scalar) d2w(2 * n);
     d2w  = f.Reverse(2, w);
     // partial f_1 w.r.t x_0
     ok  &= NearEqual(d2w[0 * 2 + 0], 0.0,                  eps, eps);
     // partial f_1 w.r.t x_1
     ok  &= NearEqual(d2w[1 * 2 + 0], - x[2] / (x[1]*x[1]), eps, eps);
     // partial f_1 w.r.t x_2
     ok  &= NearEqual(d2w[2 * 2 + 0], 1.0 / x[1],           eps, eps);
     // partial f_1 w.r.t x_1, x_0
     ok  &= NearEqual(d2w[0 * 2 + 1], 0.0,                  eps, eps);
     // partial f_1 w.r.t x_1, x_1
     ok  &= NearEqual(d2w[1 * 2 + 1], f1_x1_x1,             eps, eps);
     // partial f_1 w.r.t x_1, x_2
     ok  &= NearEqual(d2w[2 * 2 + 1], - 1.0 / (x[1]*x[1]),  eps, eps);
     // -------------------------------------------------------------------
     return ok;
}

Input File: example/atomic/eigen_mat_inv.cpp