Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Atomic Eigen Matrix Multiply: Example and Test

Description
The ADFun function object f for this example is @[@ f(x) = \left( \begin{array}{cc} 0 & 0 \\ 1 & 2 \\ x_0 & x_1 \end{array} \right) \left( \begin{array}{c} x_0 \\ x_1 \end{array} \right) = \left( \begin{array}{c} 0 \\ x_0 + 2 x_1 \\ x_0 x_0 + x_1 x_1 ) \end{array} \right) @]@

Class Definition
This example uses the file atomic_eigen_mat_mul.hpp which defines matrix multiply as a atomic_base operation.

Use Atomic Function
# include <cppad/cppad.hpp>
# include <cppad/example/eigen_mat_mul.hpp>

bool eigen_mat_mul(void)
{     //
     typedef double                                            scalar;
     typedef CppAD::AD<scalar>                                 ad_scalar;
     typedef typename atomic_eigen_mat_mul<scalar>::ad_matrix  ad_matrix;
     //
     bool ok    = true;
     scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
     using CppAD::NearEqual;
     //

Constructor
     // -------------------------------------------------------------------
     // object that multiplies arbitrary matrices
     atomic_eigen_mat_mul<scalar> mat_mul;
     // -------------------------------------------------------------------
     // declare independent variable vector x
     size_t n = 2;
     CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
     for(size_t j = 0; j < n; j++)
          ad_x[j] = ad_scalar(j);
     CppAD::Independent(ad_x);
     // -------------------------------------------------------------------
     //        [ 0     0    ]
     // left = [ 1     2    ]
     //        [ x[0]  x[1] ]
     size_t nr_left  = 3;
     size_t n_middle   = 2;
     ad_matrix ad_left(nr_left, n_middle);
     ad_left(0, 0) = ad_scalar(0.0);
     ad_left(0, 1) = ad_scalar(0.0);
     ad_left(1, 0) = ad_scalar(1.0);
     ad_left(1, 1) = ad_scalar(2.0);
     ad_left(2, 0) = ad_x[0];
     ad_left(2, 1) = ad_x[1];
     // -------------------------------------------------------------------
     // right = [ x[0] , x[1] ]^T
     size_t nc_right = 1;
     ad_matrix ad_right(n_middle, nc_right);
     ad_right(0, 0) = ad_x[0];
     ad_right(1, 0) = ad_x[1];
     // -------------------------------------------------------------------
     // use atomic operation to multiply left * right
     ad_matrix ad_result = mat_mul.op(ad_left, ad_right);
     // -------------------------------------------------------------------
     // check that first component of result is a parameter
     // and the other components are varaibles.
     ok &= Parameter( ad_result(0, 0) );
     ok &= Variable(  ad_result(1, 0) );
     ok &= Variable(  ad_result(2, 0) );
     // -------------------------------------------------------------------
     // declare the dependent variable vector y
     size_t m = 3;
     CPPAD_TESTVECTOR(ad_scalar) ad_y(m);
     for(size_t i = 0; i < m; i++)
          ad_y[i] = ad_result(i, 0);
     CppAD::ADFun<scalar> f(ad_x, ad_y);
     // -------------------------------------------------------------------
     // check zero order forward mode
     CPPAD_TESTVECTOR(scalar) x(n), y(m);
     for(size_t i = 0; i < n; i++)
          x[i] = scalar(i + 2);
     y   = f.Forward(0, x);
     ok &= NearEqual(y[0], 0.0,                       eps, eps);
     ok &= NearEqual(y[1], x[0] + 2.0 * x[1],         eps, eps);
     ok &= NearEqual(y[2], x[0] * x[0] + x[1] * x[1], eps, eps);
     // -------------------------------------------------------------------
     // check first order forward mode
     CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
     x1[0] = 1.0;
     x1[1] = 0.0;
     y1    = f.Forward(1, x1);
     ok   &= NearEqual(y1[0], 0.0,        eps, eps);
     ok   &= NearEqual(y1[1], 1.0,        eps, eps);
     ok   &= NearEqual(y1[2], 2.0 * x[0], eps, eps);
     x1[0] = 0.0;
     x1[1] = 1.0;
     y1    = f.Forward(1, x1);
     ok   &= NearEqual(y1[0], 0.0,        eps, eps);
     ok   &= NearEqual(y1[1], 2.0,        eps, eps);
     ok   &= NearEqual(y1[2], 2.0 * x[1], eps, eps);
     // -------------------------------------------------------------------
     // check second order forward mode
     CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
     x2[0] = 0.0;
     x2[1] = 0.0;
     y2    = f.Forward(2, x2);
     ok   &= NearEqual(y2[0], 0.0, eps, eps);
     ok   &= NearEqual(y2[1], 0.0, eps, eps);
     ok   &= NearEqual(y2[2], 1.0, eps, eps); // 1/2 * f_1''(x)
     // -------------------------------------------------------------------
     // check first order reverse mode
     CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
     w[0]  = 0.0;
     w[1]  = 1.0;
     w[2]  = 0.0;
     d1w   = f.Reverse(1, w);
     ok   &= NearEqual(d1w[0], 1.0, eps, eps);
     ok   &= NearEqual(d1w[1], 2.0, eps, eps);
     w[0]  = 0.0;
     w[1]  = 0.0;
     w[2]  = 1.0;
     d1w   = f.Reverse(1, w);
     ok   &= NearEqual(d1w[0], 2.0 * x[0], eps, eps);
     ok   &= NearEqual(d1w[1], 2.0 * x[1], eps, eps);
     // -------------------------------------------------------------------
     // check second order reverse mode
     CPPAD_TESTVECTOR(scalar) d2w(2 * n);
     d2w   = f.Reverse(2, w);
     // partial f_2 w.r.t. x_0
     ok   &= NearEqual(d2w[0 * 2 + 0], 2.0 * x[0], eps, eps);
     // partial f_2 w.r.t  x_1
     ok   &= NearEqual(d2w[1 * 2 + 0], 2.0 * x[1], eps, eps);
     // partial f_2 w.r.t x_1, x_0
     ok   &= NearEqual(d2w[0 * 2 + 1], 0.0,        eps, eps);
     // partial f_2 w.r.t x_1, x_1
     ok   &= NearEqual(d2w[1 * 2 + 1], 2.0,        eps, eps);
     // -------------------------------------------------------------------
     // check forward Jacobian sparsity
     CPPAD_TESTVECTOR( std::set<size_t> ) r(n), s(m);
     std::set<size_t> check_set;
     for(size_t j = 0; j < n; j++)
          r[j].insert(j);
     s      = f.ForSparseJac(n, r);
     check_set.clear();
     ok    &= s[0] == check_set;
     check_set.insert(0);
     check_set.insert(1);
     ok    &= s[1] == check_set;
     ok    &= s[2] == check_set;
     // -------------------------------------------------------------------
     // check reverse Jacobian sparsity
     r.resize(m);
     for(size_t i = 0; i < m; i++)
          r[i].insert(i);
     s  = f.RevSparseJac(m, r);
     check_set.clear();
     ok    &= s[0] == check_set;
     check_set.insert(0);
     check_set.insert(1);
     ok    &= s[1] == check_set;
     ok    &= s[2] == check_set;
     // -------------------------------------------------------------------
     // check forward Hessian sparsity for f_2 (x)
     CPPAD_TESTVECTOR( std::set<size_t> ) r2(1), s2(1), h(n);
     for(size_t j = 0; j < n; j++)
          r2[0].insert(j);
     s2[0].clear();
     s2[0].insert(2);
     h = f.ForSparseHes(r2, s2);
     check_set.clear();
     check_set.insert(0);
     ok &= h[0] == check_set;
     check_set.clear();
     check_set.insert(1);
     ok &= h[1] == check_set;
     // -------------------------------------------------------------------
     // check reverse Hessian sparsity for f_2 (x)
     CPPAD_TESTVECTOR( std::set<size_t> ) s3(1);
     s3[0].clear();
     s3[0].insert(2);
     h = f.RevSparseHes(n, s3);
     check_set.clear();
     check_set.insert(0);
     ok &= h[0] == check_set;
     check_set.clear();
     check_set.insert(1);
     ok &= h[1] == check_set;
     // -------------------------------------------------------------------
     return ok;
}

Input File: example/atomic/eigen_mat_mul.cpp