Class implementating Example 4. More...
#include <MittelmannDistCntrlNeumB.hpp>


Public Member Functions | |
| MittelmannDistCntrlNeumB1 () | |
| virtual | ~MittelmannDistCntrlNeumB1 () |
| virtual bool | InitializeProblem (Index N) |
| Initialize internal parameters, where N is a parameter determining the problme size. | |
Protected Member Functions | |
| virtual Number | y_d_cont (Number x1, Number x2) const |
| Target profile function for y. | |
| virtual Number | fint_cont (Number x1, Number x2, Number y, Number u) const |
| Integrant in objective function. | |
| virtual Number | fint_cont_dy (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_du (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dydy (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dydy_alwayszero () const |
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dudu (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dudu_alwayszero () const |
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dydu (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dydu_alwayszero () const |
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | d_cont (Number x1, Number x2, Number y, Number u) const |
| Forcing function for the elliptic equation. | |
| virtual Number | d_cont_dy (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of forcing function w.r.t. | |
| virtual Number | d_cont_du (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of forcing function w.r.t. | |
| virtual Number | d_cont_dydy (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of forcing function w.r.t y,y. | |
| virtual bool | d_cont_dydy_alwayszero () const |
| returns true if second partial derivative of d_cont w.r.t. | |
| virtual Number | d_cont_dudu (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of forcing function w.r.t. | |
| virtual bool | d_cont_dudu_alwayszero () const |
| returns true if second partial derivative of d_cont w.r.t. | |
| virtual Number | d_cont_dydu (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of forcing function w.r.t. | |
| virtual bool | d_cont_dydu_alwayszero () const |
| returns true if second partial derivative of d_cont w.r.t. | |
Private Member Functions | |
hide implicitly defined contructors copy operators | |
| MittelmannDistCntrlNeumB1 (const MittelmannDistCntrlNeumB1 &) | |
| MittelmannDistCntrlNeumB1 & | operator= (const MittelmannDistCntrlNeumB1 &) |
| Overloaded Equals Operator. | |
Private Attributes | |
| const Number | pi_ |
| Value of pi (made available for convenience). | |
| const Number | alpha_ |
| Value for parameter alpha in objective functin. | |
Class implementating Example 4.
Definition at line 248 of file MittelmannDistCntrlNeumB.hpp.
| MittelmannDistCntrlNeumB1::MittelmannDistCntrlNeumB1 | ( | ) | [inline] |
Definition at line 251 of file MittelmannDistCntrlNeumB.hpp.
| virtual MittelmannDistCntrlNeumB1::~MittelmannDistCntrlNeumB1 | ( | ) | [inline, virtual] |
Definition at line 257 of file MittelmannDistCntrlNeumB.hpp.
| MittelmannDistCntrlNeumB1::MittelmannDistCntrlNeumB1 | ( | const MittelmannDistCntrlNeumB1 & | ) | [private] |
| virtual bool MittelmannDistCntrlNeumB1::InitializeProblem | ( | Index | N | ) | [inline, virtual] |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 260 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::y_d_cont | ( | Number | x1, | |
| Number | x2 | |||
| ) | const [inline, protected, virtual] |
Target profile function for y.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 281 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Integrant in objective function.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 286 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of fint_cont w.r.t.
y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 292 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont_du | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of fint_cont w.r.t.
u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 298 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
y,y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 303 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::fint_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 309 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont_dudu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
u,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 314 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::fint_cont_dudu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
u,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 320 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::fint_cont_dydu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of fint_cont w.r.t.
y,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 325 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::fint_cont_dydu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of fint_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 331 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Forcing function for the elliptic equation.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 336 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannDistCntrlNeumBBase.
Definition at line 341 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont_du | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 346 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 351 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::d_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 357 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont_dudu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t.
u,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 362 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::d_cont_dudu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 368 of file MittelmannDistCntrlNeumB.hpp.
| virtual Number MittelmannDistCntrlNeumB1::d_cont_dydu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t.
y,u
Implements MittelmannDistCntrlNeumBBase.
Definition at line 373 of file MittelmannDistCntrlNeumB.hpp.
| virtual bool MittelmannDistCntrlNeumB1::d_cont_dydu_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumBBase.
Definition at line 379 of file MittelmannDistCntrlNeumB.hpp.
| MittelmannDistCntrlNeumB1& MittelmannDistCntrlNeumB1::operator= | ( | const MittelmannDistCntrlNeumB1 & | ) | [private] |
Overloaded Equals Operator.
Reimplemented from MittelmannDistCntrlNeumBBase.
const Number MittelmannDistCntrlNeumB1::pi_ [private] |
Value of pi (made available for convenience).
Definition at line 390 of file MittelmannDistCntrlNeumB.hpp.
const Number MittelmannDistCntrlNeumB1::alpha_ [private] |
Value for parameter alpha in objective functin.
Definition at line 392 of file MittelmannDistCntrlNeumB.hpp.
1.6.1