Class implementating Example 5. More...
#include <MittelmannDistCntrlNeumA.hpp>


| Public Member Functions | |
| MittelmannDistCntrlNeumA2 () | |
| virtual | ~MittelmannDistCntrlNeumA2 () | 
| virtual bool | InitializeProblem (Index N) | 
| Initialize internal parameters, where N is a parameter determining the problme size. | |
| Protected Member Functions | |
| virtual Number | y_d_cont (Number x1, Number x2) const | 
| Target profile function for y. | |
| virtual Number | fint_cont (Number x1, Number x2, Number y, Number u) const | 
| Integrant in objective function. | |
| virtual Number | fint_cont_dy (Number x1, Number x2, Number y, Number u) const | 
| First partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_du (Number x1, Number x2, Number y, Number u) const | 
| First partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dydy (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dydy_alwayszero () const | 
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dudu (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dudu_alwayszero () const | 
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | fint_cont_dydu (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of fint_cont w.r.t. | |
| virtual bool | fint_cont_dydu_alwayszero () const | 
| returns true if second partial derivative of fint_cont w.r.t. | |
| virtual Number | d_cont (Number x1, Number x2, Number y, Number u) const | 
| Forcing function for the elliptic equation. | |
| virtual Number | d_cont_dy (Number x1, Number x2, Number y, Number u) const | 
| First partial derivative of forcing function w.r.t. | |
| virtual Number | d_cont_du (Number x1, Number x2, Number y, Number u) const | 
| First partial derivative of forcing function w.r.t. | |
| virtual Number | d_cont_dydy (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of forcing function w.r.t y,y. | |
| virtual bool | d_cont_dydy_alwayszero () const | 
| returns true if second partial derivative of d_cont w.r.t. | |
| virtual Number | d_cont_dudu (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of forcing function w.r.t. | |
| virtual bool | d_cont_dudu_alwayszero () const | 
| returns true if second partial derivative of d_cont w.r.t. | |
| virtual Number | d_cont_dydu (Number x1, Number x2, Number y, Number u) const | 
| Second partial derivative of forcing function w.r.t. | |
| virtual bool | d_cont_dydu_alwayszero () const | 
| returns true if second partial derivative of d_cont w.r.t. | |
| Private Member Functions | |
| hide implicitly defined contructors copy operators | |
| MittelmannDistCntrlNeumA2 (const MittelmannDistCntrlNeumA2 &) | |
| MittelmannDistCntrlNeumA2 & | operator= (const MittelmannDistCntrlNeumA2 &) | 
| Overloaded Equals Operator. | |
| Private Attributes | |
| const Number | pi_ | 
| Value of pi (made available for convenience). | |
Class implementating Example 5.
Definition at line 396 of file MittelmannDistCntrlNeumA.hpp.
| MittelmannDistCntrlNeumA2::MittelmannDistCntrlNeumA2 | ( | ) |  [inline] | 
Definition at line 399 of file MittelmannDistCntrlNeumA.hpp.
| virtual MittelmannDistCntrlNeumA2::~MittelmannDistCntrlNeumA2 | ( | ) |  [inline, virtual] | 
Definition at line 404 of file MittelmannDistCntrlNeumA.hpp.
| MittelmannDistCntrlNeumA2::MittelmannDistCntrlNeumA2 | ( | const MittelmannDistCntrlNeumA2 & | ) |  [private] | 
| virtual bool MittelmannDistCntrlNeumA2::InitializeProblem | ( | Index | N | ) |  [inline, virtual] | 
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 407 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::y_d_cont | ( | Number | x1, | |
| Number | x2 | |||
| ) | const  [inline, protected, virtual] | 
Target profile function for y.
Implements MittelmannDistCntrlNeumABase.
Definition at line 428 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Integrant in objective function.
Implements MittelmannDistCntrlNeumABase.
Definition at line 433 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
First partial derivative of fint_cont w.r.t.
y
Implements MittelmannDistCntrlNeumABase.
Definition at line 439 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont_du | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
First partial derivative of fint_cont w.r.t.
u
Implements MittelmannDistCntrlNeumABase.
Definition at line 445 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of fint_cont w.r.t.
y,y
Implements MittelmannDistCntrlNeumABase.
Definition at line 450 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::fint_cont_dydy_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of fint_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 456 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont_dudu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of fint_cont w.r.t.
u,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 461 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::fint_cont_dudu_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of fint_cont w.r.t.
u,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 467 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::fint_cont_dydu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of fint_cont w.r.t.
y,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 472 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::fint_cont_dydu_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of fint_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 478 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Forcing function for the elliptic equation.
Implements MittelmannDistCntrlNeumABase.
Definition at line 483 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
First partial derivative of forcing function w.r.t.
y
Implements MittelmannDistCntrlNeumABase.
Definition at line 488 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont_du | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
First partial derivative of forcing function w.r.t.
u
Implements MittelmannDistCntrlNeumABase.
Definition at line 493 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannDistCntrlNeumABase.
Definition at line 498 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::d_cont_dydy_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 504 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont_dudu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of forcing function w.r.t.
u,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 509 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::d_cont_dudu_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 515 of file MittelmannDistCntrlNeumA.hpp.
| virtual Number MittelmannDistCntrlNeumA2::d_cont_dydu | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const  [inline, protected, virtual] | 
Second partial derivative of forcing function w.r.t.
y,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 520 of file MittelmannDistCntrlNeumA.hpp.
| virtual bool MittelmannDistCntrlNeumA2::d_cont_dydu_alwayszero | ( | ) | const  [inline, protected, virtual] | 
returns true if second partial derivative of d_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 526 of file MittelmannDistCntrlNeumA.hpp.
| MittelmannDistCntrlNeumA2& MittelmannDistCntrlNeumA2::operator= | ( | const MittelmannDistCntrlNeumA2 & | ) |  [private] | 
Overloaded Equals Operator.
Reimplemented from MittelmannDistCntrlNeumABase.
| const Number MittelmannDistCntrlNeumA2::pi_  [private] | 
Value of pi (made available for convenience).
Definition at line 537 of file MittelmannDistCntrlNeumA.hpp.
 1.6.1
 1.6.1