Class implementating Example 6. More...
#include <MittelmannBndryCntrlNeum.hpp>


Public Member Functions | |
| MittelmannBndryCntrlNeum2 () | |
| virtual | ~MittelmannBndryCntrlNeum2 () |
| virtual bool | InitializeProblem (Index N) |
| Initialize internal parameters, where N is a parameter determining the problme size. | |
Protected Member Functions | |
| virtual Number | y_d_cont (Number x1, Number x2) const |
| Target profile function for y. | |
| virtual Number | d_cont (Number x1, Number x2, Number y) const |
| Forcing function for the elliptic equation. | |
| virtual Number | d_cont_dy (Number x1, Number x2, Number y) const |
| First partial derivative of forcing function w.r.t. | |
| virtual Number | d_cont_dydy (Number x1, Number x2, Number y) const |
| Second partial derivative of forcing function w.r.t y,y. | |
| virtual bool | d_cont_dydy_alwayszero () const |
| returns true if second partial derivative of d_cont w.r.t. | |
| virtual Number | b_cont (Number x1, Number x2, Number y, Number u) const |
| Function in Neuman boundary condition. | |
| virtual Number | b_cont_dy (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of b_cont w.r.t. | |
| virtual Number | b_cont_du (Number x1, Number x2, Number y, Number u) const |
| First partial derivative of b_cont w.r.t. | |
| virtual Number | b_cont_dydy (Number x1, Number x2, Number y, Number u) const |
| Second partial derivative of b_cont w.r.t. | |
| virtual bool | b_cont_dydy_alwayszero () const |
| returns true if second partial derivative of b_cont w.r.t. | |
Private Member Functions | |
hide implicitly defined contructors copy operators | |
| MittelmannBndryCntrlNeum2 (const MittelmannBndryCntrlNeum2 &) | |
| MittelmannBndryCntrlNeum2 & | operator= (const MittelmannBndryCntrlNeum2 &) |
| Overloaded Equals Operator. | |
Class implementating Example 6.
Definition at line 314 of file MittelmannBndryCntrlNeum.hpp.
| MittelmannBndryCntrlNeum2::MittelmannBndryCntrlNeum2 | ( | ) | [inline] |
Definition at line 317 of file MittelmannBndryCntrlNeum.hpp.
| virtual MittelmannBndryCntrlNeum2::~MittelmannBndryCntrlNeum2 | ( | ) | [inline, virtual] |
Definition at line 320 of file MittelmannBndryCntrlNeum.hpp.
| MittelmannBndryCntrlNeum2::MittelmannBndryCntrlNeum2 | ( | const MittelmannBndryCntrlNeum2 & | ) | [private] |
| virtual bool MittelmannBndryCntrlNeum2::InitializeProblem | ( | Index | N | ) | [inline, virtual] |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 323 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::y_d_cont | ( | Number | x1, | |
| Number | x2 | |||
| ) | const [inline, protected, virtual] |
Target profile function for y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 341 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::d_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y | |||
| ) | const [inline, protected, virtual] |
Forcing function for the elliptic equation.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 346 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::d_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y | |||
| ) | const [inline, protected, virtual] |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 351 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::d_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 356 of file MittelmannBndryCntrlNeum.hpp.
| virtual bool MittelmannBndryCntrlNeum2::d_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 362 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::b_cont | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Function in Neuman boundary condition.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 367 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::b_cont_dy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 372 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::b_cont_du | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
First partial derivative of b_cont w.r.t.
u
Implements MittelmannBndryCntrlNeumBase.
Definition at line 377 of file MittelmannBndryCntrlNeum.hpp.
| virtual Number MittelmannBndryCntrlNeum2::b_cont_dydy | ( | Number | x1, | |
| Number | x2, | |||
| Number | y, | |||
| Number | u | |||
| ) | const [inline, protected, virtual] |
Second partial derivative of b_cont w.r.t.
y,y
Implements MittelmannBndryCntrlNeumBase.
Definition at line 382 of file MittelmannBndryCntrlNeum.hpp.
| virtual bool MittelmannBndryCntrlNeum2::b_cont_dydy_alwayszero | ( | ) | const [inline, protected, virtual] |
returns true if second partial derivative of b_cont w.r.t.
y,y is always zero.
Implements MittelmannBndryCntrlNeumBase.
Definition at line 388 of file MittelmannBndryCntrlNeum.hpp.
| MittelmannBndryCntrlNeum2& MittelmannBndryCntrlNeum2::operator= | ( | const MittelmannBndryCntrlNeum2 & | ) | [private] |
Overloaded Equals Operator.
Reimplemented from MittelmannBndryCntrlNeumBase.
1.6.1