Ipopt  3.12.11
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
hs071_nlp.hpp
Go to the documentation of this file.
1 // Copyright (C) 2005, 2007 International Business Machines and others.
2 // All Rights Reserved.
3 // This code is published under the Eclipse Public License.
4 //
5 // $Id: hs071_nlp.hpp 1861 2010-12-21 21:34:47Z andreasw $
6 //
7 // Authors: Carl Laird, Andreas Waechter IBM 2005-08-09
8 
9 #ifndef __HS071_NLP_HPP__
10 #define __HS071_NLP_HPP__
11 
12 #include "IpTNLP.hpp"
13 
14 using namespace Ipopt;
15 
37 class HS071_NLP : public TNLP
38 {
39 public:
41  HS071_NLP();
42 
44  virtual ~HS071_NLP();
45 
49  virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
50  Index& nnz_h_lag, IndexStyleEnum& index_style);
51 
53  virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
54  Index m, Number* g_l, Number* g_u);
55 
57  virtual bool get_starting_point(Index n, bool init_x, Number* x,
58  bool init_z, Number* z_L, Number* z_U,
59  Index m, bool init_lambda,
60  Number* lambda);
61 
63  virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
64 
66  virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
67 
69  virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
70 
75  virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
76  Index m, Index nele_jac, Index* iRow, Index *jCol,
77  Number* values);
78 
83  virtual bool eval_h(Index n, const Number* x, bool new_x,
84  Number obj_factor, Index m, const Number* lambda,
85  bool new_lambda, Index nele_hess, Index* iRow,
86  Index* jCol, Number* values);
87 
89 
93  virtual void finalize_solution(SolverReturn status,
94  Index n, const Number* x, const Number* z_L, const Number* z_U,
95  Index m, const Number* g, const Number* lambda,
96  Number obj_value,
97  const IpoptData* ip_data,
100 
101 private:
113  // HS071_NLP();
114  HS071_NLP(const HS071_NLP&);
115  HS071_NLP& operator=(const HS071_NLP&);
117 };
118 
119 
120 #endif
Number * x
Input: Starting point Output: Optimal solution.
Class for all IPOPT specific calculated quantities.
Number Number Index Number Number Index Index Index index_style
indexing style for iRow & jCol, 0 for C style, 1 for Fortran style
Number Number Index m
Number of constraints.
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB Eval_Jac_G_CB Eval_H_CB eval_h
Callback function for evaluating Hessian of Lagrangian function.
double Number
Type of all numbers.
Definition: IpTypes.hpp:17
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB eval_grad_f
Callback function for evaluating gradient of objective function.
C++ Example NLP for interfacing a problem with IPOPT.
Definition: hs071_nlp.hpp:37
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB Eval_Jac_G_CB eval_jac_g
Callback function for evaluating Jacobian of constraint functions.
SolverReturn
enum for the return from the optimize algorithm (obviously we need to add more)
Definition: IpAlgTypes.hpp:22
Number Number Index Number Number Index nele_jac
Number of non-zero elements in constraint Jacobian.
Class to organize all the data required by the algorithm.
Definition: IpIpoptData.hpp:83
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB eval_g
Callback function for evaluating constraint functions.
int Index
Type of all indices of vectors, matrices etc.
Definition: IpTypes.hpp:19
Number Number Index Number Number Index Index nele_hess
Number of non-zero elements in Hessian of Lagrangian.
IndexStyleEnum
overload this method to return the number of variables and constraints, and the number of non-zeros i...
Definition: IpTNLP.hpp:80
Base class for all NLP's that use standard triplet matrix form and dense vectors. ...
Definition: IpTNLP.hpp:50
Number Number Index Number Number Index Index Index Eval_F_CB eval_f
Callback function for evaluating objective function.