Ipopt
3.12.12
|
Class implementating Example 6. More...
#include <MittelmannDistCntrlNeumA.hpp>
Public Member Functions | |
MittelmannDistCntrlNeumA3 () | |
virtual | ~MittelmannDistCntrlNeumA3 () |
virtual bool | InitializeProblem (Index N) |
Initialize internal parameters, where N is a parameter determining the problme size. More... | |
![]() | |
MittelmannDistCntrlNeumABase () | |
Constructor. More... | |
virtual | ~MittelmannDistCntrlNeumABase () |
Default destructor. More... | |
virtual bool | get_scaling_parameters (Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling) |
Method for returning scaling parameters. More... | |
virtual bool | get_nlp_info (Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style) |
Method to return some info about the nlp. More... | |
virtual bool | get_bounds_info (Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u) |
Method to return the bounds for my problem. More... | |
virtual bool | get_starting_point (Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda) |
Method to return the starting point for the algorithm. More... | |
virtual bool | eval_f (Index n, const Number *x, bool new_x, Number &obj_value) |
Method to return the objective value. More... | |
virtual bool | eval_grad_f (Index n, const Number *x, bool new_x, Number *grad_f) |
Method to return the gradient of the objective. More... | |
virtual bool | eval_g (Index n, const Number *x, bool new_x, Index m, Number *g) |
Method to return the constraint residuals. More... | |
virtual bool | eval_jac_g (Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values) |
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobian (if "values" is not NULL) More... | |
virtual bool | eval_h (Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values) |
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The values of the hessian of the lagrangian (if "values" is not NULL) More... | |
virtual void | finalize_solution (SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_value, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq) |
This method is called after the optimization, and could write an output file with the optimal profiles. More... | |
![]() | |
DECLARE_STD_EXCEPTION (INVALID_TNLP) | |
TNLP () | |
virtual | ~TNLP () |
Default destructor. More... | |
virtual void | finalize_metadata (Index n, const StringMetaDataMapType &var_string_md, const IntegerMetaDataMapType &var_integer_md, const NumericMetaDataMapType &var_numeric_md, Index m, const StringMetaDataMapType &con_string_md, const IntegerMetaDataMapType &con_integer_md, const NumericMetaDataMapType &con_numeric_md) |
This method is called just before finalize_solution. More... | |
virtual bool | intermediate_callback (AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq) |
Intermediate Callback method for the user. More... | |
virtual Index | get_number_of_nonlinear_variables () |
virtual bool | get_list_of_nonlinear_variables (Index num_nonlin_vars, Index *pos_nonlin_vars) |
virtual bool | get_var_con_metadata (Index n, StringMetaDataMapType &var_string_md, IntegerMetaDataMapType &var_integer_md, NumericMetaDataMapType &var_numeric_md, Index m, StringMetaDataMapType &con_string_md, IntegerMetaDataMapType &con_integer_md, NumericMetaDataMapType &con_numeric_md) |
overload this method to return any meta data for the variables and the constraints More... | |
virtual bool | get_variables_linearity (Index n, LinearityType *var_types) |
overload this method to return the variables linearity (TNLP::LINEAR or TNLP::NON_LINEAR). More... | |
virtual bool | get_constraints_linearity (Index m, LinearityType *const_types) |
overload this method to return the constraint linearity. More... | |
virtual bool | get_warm_start_iterate (IteratesVector &warm_start_iterate) |
overload this method to provide an Ipopt iterate (already in the form Ipopt requires it internally) for a warm start. More... | |
![]() | |
ReferencedObject () | |
virtual | ~ReferencedObject () |
Index | ReferenceCount () const |
void | AddRef (const Referencer *referencer) const |
void | ReleaseRef (const Referencer *referencer) const |
Protected Member Functions | |
virtual Number | y_d_cont (Number x1, Number x2) const |
Profile function for initial y. More... | |
virtual Number | fint_cont (Number x1, Number x2, Number y, Number u) const |
Integrant in objective function. More... | |
virtual Number | fint_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of fint_cont w.r.t. More... | |
virtual Number | fint_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of fint_cont w.r.t. More... | |
virtual Number | fint_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. More... | |
virtual bool | fint_cont_dydy_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. More... | |
virtual Number | fint_cont_dudu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. More... | |
virtual bool | fint_cont_dudu_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. More... | |
virtual Number | fint_cont_dydu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of fint_cont w.r.t. More... | |
virtual bool | fint_cont_dydu_alwayszero () const |
returns true if second partial derivative of fint_cont w.r.t. More... | |
virtual Number | d_cont (Number x1, Number x2, Number y, Number u) const |
Forcing function for the elliptic equation. More... | |
virtual Number | d_cont_dy (Number x1, Number x2, Number y, Number u) const |
First partial derivative of forcing function w.r.t. More... | |
virtual Number | d_cont_du (Number x1, Number x2, Number y, Number u) const |
First partial derivative of forcing function w.r.t. More... | |
virtual Number | d_cont_dydy (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t y,y. More... | |
virtual bool | d_cont_dydy_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. More... | |
virtual Number | d_cont_dudu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t. More... | |
virtual bool | d_cont_dudu_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. More... | |
virtual Number | d_cont_dydu (Number x1, Number x2, Number y, Number u) const |
Second partial derivative of forcing function w.r.t. More... | |
virtual bool | d_cont_dydu_alwayszero () const |
returns true if second partial derivative of d_cont w.r.t. More... | |
![]() | |
void | SetBaseParameters (Index N, Number lb_y, Number ub_y, Number lb_u, Number ub_u, Number b_0j, Number b_1j, Number b_i0, Number b_i1, Number u_init) |
Method for setting the internal parameters that define the problem. More... | |
Private Member Functions | |
Number | a (Number x1, Number x2) const |
hide implicitly defined contructors copy operators | |
MittelmannDistCntrlNeumA3 (const MittelmannDistCntrlNeumA3 &) | |
MittelmannDistCntrlNeumA3 & | operator= (const MittelmannDistCntrlNeumA3 &) |
Private Attributes | |
const Number | pi_ |
Value of pi (made available for convenience) More... | |
const Number | M_ |
const Number | K_ |
const Number | b_ |
Additional Inherited Members | |
![]() | |
enum | LinearityType { LINEAR, NON_LINEAR } |
Type of the constraints. More... | |
enum | IndexStyleEnum { C_STYLE =0, FORTRAN_STYLE =1 } |
overload this method to return the number of variables and constraints, and the number of non-zeros in the jacobian and the hessian. More... | |
typedef std::map< std::string, std::vector< std::string > > | StringMetaDataMapType |
typedef std::map< std::string, std::vector< Index > > | IntegerMetaDataMapType |
typedef std::map< std::string, std::vector< Number > > | NumericMetaDataMapType |
Class implementating Example 6.
Definition at line 557 of file MittelmannDistCntrlNeumA.hpp.
|
inline |
Definition at line 560 of file MittelmannDistCntrlNeumA.hpp.
|
inlinevirtual |
Definition at line 568 of file MittelmannDistCntrlNeumA.hpp.
|
private |
|
inlinevirtual |
Initialize internal parameters, where N is a parameter determining the problme size.
This returns false, if N has an invalid value.
Implements RegisteredTNLP.
Definition at line 571 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Profile function for initial y.
Implements MittelmannDistCntrlNeumABase.
Definition at line 592 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Integrant in objective function.
Implements MittelmannDistCntrlNeumABase.
Definition at line 597 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
First partial derivative of fint_cont w.r.t.
y
Implements MittelmannDistCntrlNeumABase.
Definition at line 602 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
First partial derivative of fint_cont w.r.t.
u
Implements MittelmannDistCntrlNeumABase.
Definition at line 608 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of fint_cont w.r.t.
y,y
Implements MittelmannDistCntrlNeumABase.
Definition at line 613 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of fint_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 619 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of fint_cont w.r.t.
u,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 624 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of fint_cont w.r.t.
u,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 630 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of fint_cont w.r.t.
y,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 635 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of fint_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 641 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Forcing function for the elliptic equation.
Implements MittelmannDistCntrlNeumABase.
Definition at line 646 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
First partial derivative of forcing function w.r.t.
y
Implements MittelmannDistCntrlNeumABase.
Definition at line 651 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
First partial derivative of forcing function w.r.t.
u
Implements MittelmannDistCntrlNeumABase.
Definition at line 656 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of forcing function w.r.t y,y.
Implements MittelmannDistCntrlNeumABase.
Definition at line 661 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 667 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of forcing function w.r.t.
u,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 672 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 678 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
Second partial derivative of forcing function w.r.t.
y,u
Implements MittelmannDistCntrlNeumABase.
Definition at line 683 of file MittelmannDistCntrlNeumA.hpp.
|
inlineprotectedvirtual |
returns true if second partial derivative of d_cont w.r.t.
y,u is always zero.
Implements MittelmannDistCntrlNeumABase.
Definition at line 689 of file MittelmannDistCntrlNeumA.hpp.
|
private |
Definition at line 708 of file MittelmannDistCntrlNeumA.hpp.
|
private |
Value of pi (made available for convenience)
Definition at line 700 of file MittelmannDistCntrlNeumA.hpp.
|
private |
Definition at line 703 of file MittelmannDistCntrlNeumA.hpp.
|
private |
Definition at line 704 of file MittelmannDistCntrlNeumA.hpp.
|
private |
Definition at line 705 of file MittelmannDistCntrlNeumA.hpp.