Ipopt
3.12.12
|
Base class for boundary control problems with Neumann boundary conditions, as formulated by Hans Mittelmann as Examples 5-8 in "Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints. More...
#include <MittelmannBndryCntrlNeum.hpp>
Public Member Functions | |
MittelmannBndryCntrlNeumBase () | |
Constructor. More... | |
virtual | ~MittelmannBndryCntrlNeumBase () |
Default destructor. More... | |
virtual bool | get_scaling_parameters (Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling) |
Method for returning scaling parameters. More... | |
Overloaded from TNLP | |
virtual bool | get_nlp_info (Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, IndexStyleEnum &index_style) |
Method to return some info about the nlp. More... | |
virtual bool | get_bounds_info (Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u) |
Method to return the bounds for my problem. More... | |
virtual bool | get_starting_point (Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda) |
Method to return the starting point for the algorithm. More... | |
virtual bool | eval_f (Index n, const Number *x, bool new_x, Number &obj_value) |
Method to return the objective value. More... | |
virtual bool | eval_grad_f (Index n, const Number *x, bool new_x, Number *grad_f) |
Method to return the gradient of the objective. More... | |
virtual bool | eval_g (Index n, const Number *x, bool new_x, Index m, Number *g) |
Method to return the constraint residuals. More... | |
virtual bool | eval_jac_g (Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values) |
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobian (if "values" is not NULL) More... | |
virtual bool | eval_h (Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values) |
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The values of the hessian of the lagrangian (if "values" is not NULL) More... | |
Solution Methods | |
virtual void | finalize_solution (SolverReturn status, Index n, const Number *x, const Number *z_L, const Number *z_U, Index m, const Number *g, const Number *lambda, Number obj_value, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq) |
This method is called after the optimization, and could write an output file with the optimal profiles. More... | |
![]() | |
virtual bool | InitializeProblem (Index N)=0 |
Initialize internal parameters, where N is a parameter determining the problme size. More... | |
![]() | |
DECLARE_STD_EXCEPTION (INVALID_TNLP) | |
TNLP () | |
virtual | ~TNLP () |
Default destructor. More... | |
virtual void | finalize_metadata (Index n, const StringMetaDataMapType &var_string_md, const IntegerMetaDataMapType &var_integer_md, const NumericMetaDataMapType &var_numeric_md, Index m, const StringMetaDataMapType &con_string_md, const IntegerMetaDataMapType &con_integer_md, const NumericMetaDataMapType &con_numeric_md) |
This method is called just before finalize_solution. More... | |
virtual bool | intermediate_callback (AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq) |
Intermediate Callback method for the user. More... | |
virtual Index | get_number_of_nonlinear_variables () |
virtual bool | get_list_of_nonlinear_variables (Index num_nonlin_vars, Index *pos_nonlin_vars) |
virtual bool | get_var_con_metadata (Index n, StringMetaDataMapType &var_string_md, IntegerMetaDataMapType &var_integer_md, NumericMetaDataMapType &var_numeric_md, Index m, StringMetaDataMapType &con_string_md, IntegerMetaDataMapType &con_integer_md, NumericMetaDataMapType &con_numeric_md) |
overload this method to return any meta data for the variables and the constraints More... | |
virtual bool | get_variables_linearity (Index n, LinearityType *var_types) |
overload this method to return the variables linearity (TNLP::LINEAR or TNLP::NON_LINEAR). More... | |
virtual bool | get_constraints_linearity (Index m, LinearityType *const_types) |
overload this method to return the constraint linearity. More... | |
virtual bool | get_warm_start_iterate (IteratesVector &warm_start_iterate) |
overload this method to provide an Ipopt iterate (already in the form Ipopt requires it internally) for a warm start. More... | |
![]() | |
ReferencedObject () | |
virtual | ~ReferencedObject () |
Index | ReferenceCount () const |
void | AddRef (const Referencer *referencer) const |
void | ReleaseRef (const Referencer *referencer) const |
Protected Member Functions | |
void | SetBaseParameters (Index N, Number alpha, Number lb_y, Number ub_y, Number lb_u, Number ub_u, Number u_init) |
Method for setting the internal parameters that define the problem. More... | |
Functions that defines a particular instance. | |
virtual Number | y_d_cont (Number x1, Number x2) const =0 |
Target profile function for y (and initial guess function) More... | |
virtual Number | d_cont (Number x1, Number x2, Number y) const =0 |
Forcing function for the elliptic equation. More... | |
virtual Number | d_cont_dy (Number x1, Number x2, Number y) const =0 |
First partial derivative of forcing function w.r.t. More... | |
virtual Number | d_cont_dydy (Number x1, Number x2, Number y) const =0 |
Second partial derivative of forcing function w.r.t. More... | |
virtual bool | d_cont_dydy_alwayszero () const =0 |
returns true if second partial derivative of d_cont w.r.t. More... | |
virtual Number | b_cont (Number x1, Number x2, Number y, Number u) const =0 |
Function in Neuman boundary condition. More... | |
virtual Number | b_cont_dy (Number x1, Number x2, Number y, Number u) const =0 |
First partial derivative of b_cont w.r.t. More... | |
virtual Number | b_cont_du (Number x1, Number x2, Number y, Number u) const =0 |
First partial derivative of b_cont w.r.t. More... | |
virtual Number | b_cont_dydy (Number x1, Number x2, Number y, Number u) const =0 |
Second partial derivative of b_cont w.r.t. More... | |
virtual bool | b_cont_dydy_alwayszero () const =0 |
returns true if second partial derivative of b_cont w.r.t. More... | |
Private Member Functions | |
Methods to block default compiler methods. | |
The compiler automatically generates the following three methods. Since the default compiler implementation is generally not what you want (for all but the most simple classes), we usually put the declarations of these methods in the private section and never implement them. This prevents the compiler from implementing an incorrect "default" behavior without us knowing. (See Scott Meyers book, "Effective C++") | |
MittelmannBndryCntrlNeumBase (const MittelmannBndryCntrlNeumBase &) | |
MittelmannBndryCntrlNeumBase & | operator= (const MittelmannBndryCntrlNeumBase &) |
Auxilliary methods | |
Index | y_index (Index i, Index j) const |
Translation of mesh point indices to NLP variable indices for y(x_ij) More... | |
Index | u0j_index (Index j) const |
Translation of mesh point indices to NLP variable indices for u(x_ij) on {0} x (0,1) boudnary. More... | |
Index | u1j_index (Index j) const |
Translation of mesh point indices to NLP variable indices for u(x_ij) on {1} x (0,1) boudnary. More... | |
Index | ui0_index (Index j) const |
Translation of mesh point indices to NLP variable indices for u(x_ij) on (0,1) x {0} boudnary. More... | |
Index | ui1_index (Index j) const |
Translation of mesh point indices to NLP variable indices for u(x_ij) on (0,1) x {1} boudnary. More... | |
Number | x1_grid (Index i) const |
Compute the grid coordinate for given index in x1 direction. More... | |
Number | x2_grid (Index j) const |
Compute the grid coordinate for given index in x2 direction. More... | |
Private Attributes | |
Problem specification | |
Index | N_ |
Number of mesh points in one dimension (excluding boundary) More... | |
Number | h_ |
Step size. More... | |
Number | hh_ |
h_ squaredd More... | |
Number | lb_y_ |
overall lower bound on y More... | |
Number | ub_y_ |
overall upper bound on y More... | |
Number | lb_u_ |
overall lower bound on u More... | |
Number | ub_u_ |
overall upper bound on u More... | |
Number | u_init_ |
Initial value for the constrols u. More... | |
Number | alpha_ |
Weighting parameter for the control target deviation functional in the objective. More... | |
Number * | y_d_ |
Array for the target profile for y. More... | |
Additional Inherited Members | |
![]() | |
enum | LinearityType { LINEAR, NON_LINEAR } |
Type of the constraints. More... | |
enum | IndexStyleEnum { C_STYLE =0, FORTRAN_STYLE =1 } |
overload this method to return the number of variables and constraints, and the number of non-zeros in the jacobian and the hessian. More... | |
typedef std::map< std::string, std::vector< std::string > > | StringMetaDataMapType |
typedef std::map< std::string, std::vector< Index > > | IntegerMetaDataMapType |
typedef std::map< std::string, std::vector< Number > > | NumericMetaDataMapType |
Base class for boundary control problems with Neumann boundary conditions, as formulated by Hans Mittelmann as Examples 5-8 in "Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints.
Part 1: Boundary Control"
Definition at line 49 of file MittelmannBndryCntrlNeum.hpp.
MittelmannBndryCntrlNeumBase::MittelmannBndryCntrlNeumBase | ( | ) |
Constructor.
N is the number of mesh points in one dimension (excluding boundary).
|
virtual |
Default destructor.
|
private |
|
virtual |
Method to return some info about the nlp.
Implements Ipopt::TNLP.
|
virtual |
Method to return the bounds for my problem.
Implements Ipopt::TNLP.
|
virtual |
Method to return the starting point for the algorithm.
Implements Ipopt::TNLP.
|
virtual |
Method to return the objective value.
Implements Ipopt::TNLP.
|
virtual |
Method to return the gradient of the objective.
Implements Ipopt::TNLP.
|
virtual |
Method to return the constraint residuals.
Implements Ipopt::TNLP.
|
virtual |
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobian (if "values" is not NULL)
Implements Ipopt::TNLP.
|
virtual |
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The values of the hessian of the lagrangian (if "values" is not NULL)
Reimplemented from Ipopt::TNLP.
|
virtual |
Method for returning scaling parameters.
Reimplemented from Ipopt::TNLP.
|
virtual |
This method is called after the optimization, and could write an output file with the optimal profiles.
Implements Ipopt::TNLP.
|
protected |
Method for setting the internal parameters that define the problem.
It must be called by the child class in its implementation of InitializeParameters.
|
protectedpure virtual |
Target profile function for y (and initial guess function)
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
Forcing function for the elliptic equation.
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
First partial derivative of forcing function w.r.t.
y
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
Second partial derivative of forcing function w.r.t.
y,y
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
returns true if second partial derivative of d_cont w.r.t.
y,y is always zero.
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
Function in Neuman boundary condition.
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
First partial derivative of b_cont w.r.t.
y
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
First partial derivative of b_cont w.r.t.
u
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
Second partial derivative of b_cont w.r.t.
y,y
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
protectedpure virtual |
returns true if second partial derivative of b_cont w.r.t.
y,y is always zero.
Implemented in MittelmannBndryCntrlNeum4, MittelmannBndryCntrlNeum3, MittelmannBndryCntrlNeum2, and MittelmannBndryCntrlNeum1.
|
private |
Translation of mesh point indices to NLP variable indices for y(x_ij)
Definition at line 201 of file MittelmannBndryCntrlNeum.hpp.
Translation of mesh point indices to NLP variable indices for u(x_ij) on {0} x (0,1) boudnary.
Definition at line 207 of file MittelmannBndryCntrlNeum.hpp.
Translation of mesh point indices to NLP variable indices for u(x_ij) on {1} x (0,1) boudnary.
Definition at line 213 of file MittelmannBndryCntrlNeum.hpp.
Translation of mesh point indices to NLP variable indices for u(x_ij) on (0,1) x {0} boudnary.
Definition at line 219 of file MittelmannBndryCntrlNeum.hpp.
Translation of mesh point indices to NLP variable indices for u(x_ij) on (0,1) x {1} boudnary.
Definition at line 225 of file MittelmannBndryCntrlNeum.hpp.
Compute the grid coordinate for given index in x1 direction.
Definition at line 230 of file MittelmannBndryCntrlNeum.hpp.
Compute the grid coordinate for given index in x2 direction.
Definition at line 235 of file MittelmannBndryCntrlNeum.hpp.
|
private |
Number of mesh points in one dimension (excluding boundary)
Definition at line 175 of file MittelmannBndryCntrlNeum.hpp.
|
private |
Step size.
Definition at line 177 of file MittelmannBndryCntrlNeum.hpp.
|
private |
h_ squaredd
Definition at line 179 of file MittelmannBndryCntrlNeum.hpp.
|
private |
overall lower bound on y
Definition at line 181 of file MittelmannBndryCntrlNeum.hpp.
|
private |
overall upper bound on y
Definition at line 183 of file MittelmannBndryCntrlNeum.hpp.
|
private |
overall lower bound on u
Definition at line 185 of file MittelmannBndryCntrlNeum.hpp.
|
private |
overall upper bound on u
Definition at line 187 of file MittelmannBndryCntrlNeum.hpp.
|
private |
Initial value for the constrols u.
Definition at line 189 of file MittelmannBndryCntrlNeum.hpp.
|
private |
Weighting parameter for the control target deviation functional in the objective.
Definition at line 192 of file MittelmannBndryCntrlNeum.hpp.
|
private |
Array for the target profile for y.
Definition at line 194 of file MittelmannBndryCntrlNeum.hpp.