Ipopt  3.12.9
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
MittelmannBndryCntrlDiri3D_27.hpp
Go to the documentation of this file.
1 // Copyright (C) 2005, 2007 International Business Machines and others.
2 // All Rights Reserved.
3 // This code is published under the Eclipse Public License.
4 //
5 // $Id: MittelmannBndryCntrlDiri3D_27.hpp 2005 2011-06-06 12:55:16Z stefan $
6 //
7 // Authors: Olaf Schenk (Univ. of Basel) 2007-08-01
8 // modified MittelmannBndryCntrlDiri.hpp for 3-dim problem
9 // based on MyNLP.hpp
10 
11 #ifndef __MITTELMANNBNDRYCNTRLDIRI3D_27_HPP__
12 #define __MITTELMANNBNDRYCNTRLDIRI3D_27_HPP__
13 
14 #include "RegisteredTNLP.hpp"
15 
16 #ifdef HAVE_CONFIG_H
17 #include "config.h"
18 #else
19 #include "configall_system.h"
20 #endif
21 
22 #ifdef HAVE_CMATH
23 # include <cmath>
24 #else
25 # ifdef HAVE_MATH_H
26 # include <math.h>
27 # else
28 # error "don't have header file for math"
29 # endif
30 #endif
31 
32 #ifdef HAVE_CSTDIO
33 # include <cstdio>
34 #else
35 # ifdef HAVE_STDIO_H
36 # include <stdio.h>
37 # else
38 # error "don't have header file for stdio"
39 # endif
40 #endif
41 
42 using namespace Ipopt;
43 
54 {
55 public:
58 
61 
65  virtual bool get_nlp_info(Index& n, Index& m, Index& nnz_jac_g,
66  Index& nnz_h_lag, IndexStyleEnum& index_style);
67 
69  virtual bool get_bounds_info(Index n, Number* x_l, Number* x_u,
70  Index m, Number* g_l, Number* g_u);
71 
73  virtual bool get_starting_point(Index n, bool init_x, Number* x,
74  bool init_z, Number* z_L, Number* z_U,
75  Index m, bool init_lambda,
76  Number* lambda);
77 
79  virtual bool eval_f(Index n, const Number* x, bool new_x, Number& obj_value);
80 
82  virtual bool eval_grad_f(Index n, const Number* x, bool new_x, Number* grad_f);
83 
85  virtual bool eval_g(Index n, const Number* x, bool new_x, Index m, Number* g);
86 
91  virtual bool eval_jac_g(Index n, const Number* x, bool new_x,
92  Index m, Index nele_jac, Index* iRow, Index *jCol,
93  Number* values);
94 
99  virtual bool eval_h(Index n, const Number* x, bool new_x,
100  Number obj_factor, Index m, const Number* lambda,
101  bool new_lambda, Index nele_hess, Index* iRow,
102  Index* jCol, Number* values);
103 
105 
107  virtual bool get_scaling_parameters(Number& obj_scaling,
108  bool& use_x_scaling, Index n,
109  Number* x_scaling,
110  bool& use_g_scaling, Index m,
111  Number* g_scaling);
112 
117  virtual void finalize_solution(SolverReturn status,
118  Index n, const Number* x, const Number* z_L, const Number* z_U,
119  Index m, const Number* g, const Number* lambda,
120  Number obj_valu,
121  const IpoptData* ip_data,
124 
125 protected:
129  void SetBaseParameters(Index N, Number alpha, Number lb_y,
130  Number ub_y, Number lb_u, Number ub_u,
131  Number d_const, Number B, Number C);
132 
136  virtual Number y_d_cont(Number x1, Number x2, Number x3) const =0;
138 
139 private:
154 
181 
186  inline Index y_index(Index i, Index j, Index k) const
187  {
188  return k + (N_+2)*j + (N_+2)*(N_+2)*i;
189  }
192  inline Index pde_index(Index i, Index j, Index k) const
193  {
194  return (k-1) + N_*(j-1) + N_*N_*(i-1);
195  }
197  inline Number x1_grid(Index i) const
198  {
199  return h_*(Number)i;
200  }
202  inline Number x2_grid(Index i) const
203  {
204  return h_*(Number)i;
205  }
207  inline Number x3_grid(Index i) const
208  {
209  return h_*(Number)i;
210  }
212  inline Number PenObj(Number t) const
213  {
214  if (B_ == 0.) {
215  return 0.5*t*t;
216  }
217  else if (t > B_) {
218  return B_*B_/2. + C_*(t - B_);
219  }
220  else if (t < -B_) {
221  return B_*B_/2. + C_*(-t - B_);
222  }
223  else {
224  const Number t2 = t*t;
225  const Number t4 = t2*t2;
226  const Number t6 = t4*t2;
227  return PenA_*t2 + PenB_*t4 + PenC_*t6;
228  }
229  }
231  inline Number PenObj_1(Number t) const
232  {
233  if (B_ == 0.) {
234  return t;
235  }
236  else if (t > B_) {
237  return C_;
238  }
239  else if (t < -B_) {
240  return -C_;
241  }
242  else {
243  const Number t2 = t*t;
244  const Number t3 = t*t2;
245  const Number t5 = t3*t2;
246  return 2.*PenA_*t + 4.*PenB_*t3 + 6.*PenC_*t5;
247  }
248  }
250  inline Number PenObj_2(Number t) const
251  {
252  if (B_ == 0.) {
253  return 1.;
254  }
255  else if (t > B_) {
256  return 0.;
257  }
258  else if (t < -B_) {
259  return 0.;
260  }
261  else {
262  const Number t2 = t*t;
263  const Number t4 = t2*t2;
264  return 2.*PenA_ + 12.*PenB_*t2 + 30.*PenC_*t4;
265  }
266  }
268 
277 };
278 
281 {
282 public:
284  {}
285 
287  {}
288 
289  virtual bool InitializeProblem(Index N)
290  {
291  if (N<1) {
292  printf("N has to be at least 1.");
293  return false;
294  }
295  Number alpha = 1e-2;
296  Number lb_y = -1e20;
297  Number ub_y = 3.5;
298  Number lb_u = 0.;
299  Number ub_u = 10.;
300  Number d_const = -20.;
301  Number B = 0.; // convex case (quadratic penalty)
302  Number C = 0.;
303  SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const, B, C);
304  return true;
305  }
306 protected:
308  virtual Number y_d_cont(Number x1, Number x2, Number x3) const
309  {
310  return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
311  }
312 private:
318 
319 };
320 
324 {
325 public:
327  {}
328 
330  {}
331 
332  virtual bool InitializeProblem(Index N)
333  {
334  if (N<1) {
335  printf("N has to be at least 1.");
336  return false;
337  }
338  Number alpha = 1e-2;
339  Number lb_y = -1e20;
340  Number ub_y = 3.5;
341  Number lb_u = 0.;
342  Number ub_u = 10.;
343  Number d_const = -20.;
344  Number B = .25; // nonconves case with beaton-tukey-type penalty function
345  Number C = 0.01;
346  SetBaseParameters(N, alpha, lb_y, ub_y, lb_u, ub_u, d_const, B, C);
347  return true;
348  }
349 protected:
351  virtual Number y_d_cont(Number x1, Number x2, Number x3) const
352  {
353  return 3. + 5.*(x1*(x1-1.)*x2*(x2-1.));
354  }
355 private:
361 
362 };
363 
364 #endif
Number * y_d_
Array for the target profile for y.
Number * x
Input: Starting point Output: Optimal solution.
Number d_const_
Constant value of d appearing in elliptical equation.
Class for all IPOPT specific calculated quantities.
Number Number Index Number Number Index Index Index index_style
indexing style for iRow &amp; jCol, 0 for C style, 1 for Fortran style
Number Number Index m
Number of constraints.
Index y_index(Index i, Index j, Index k) const
Translation of mesh point indices to NLP variable indices for y(x_ijk)
Base class for boundary control problems with Dirichlet boundary conditions, as formulated by Hans Mi...
Number Number * g
Values of constraint at final point (output only - ignored if set to NULL)
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB Eval_Jac_G_CB Eval_H_CB eval_h
Callback function for evaluating Hessian of Lagrangian function.
double Number
Type of all numbers.
Definition: IpTypes.hpp:17
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB eval_grad_f
Callback function for evaluating gradient of objective function.
Index pde_index(Index i, Index j, Index k) const
Translation of interior mesh point indices to the corresponding PDE constraint number.
Number PenObj_2(Number t) const
second derivative of penalty function term
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB Eval_Grad_F_CB Eval_Jac_G_CB eval_jac_g
Callback function for evaluating Jacobian of constraint functions.
SolverReturn
enum for the return from the optimize algorithm (obviously we need to add more)
Definition: IpAlgTypes.hpp:22
Number Number Index Number Number Index nele_jac
Number of non-zero elements in constraint Jacobian.
Class implementating case with convex quadratic penalty function.
virtual Number y_d_cont(Number x1, Number x2, Number x3) const
Target profile function for y.
virtual Number y_d_cont(Number x1, Number x2, Number x3) const
Target profile function for y.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
Class to organize all the data required by the algorithm.
Definition: IpIpoptData.hpp:83
Number Number Index Number Number Index Index Index Eval_F_CB Eval_G_CB eval_g
Callback function for evaluating constraint functions.
virtual bool InitializeProblem(Index N)
Initialize internal parameters, where N is a parameter determining the problme size.
int Index
Type of all indices of vectors, matrices etc.
Definition: IpTypes.hpp:19
Number Number * x_scaling
Number alpha_
Weighting parameter for the control target deviation functional in the objective. ...
Number Number Index Number Number Index Index nele_hess
Number of non-zero elements in Hessian of Lagrangian.
Class implemented the NLP discretization of.
Number Number Number * g_scaling
Number PenObj_1(Number t) const
first derivative of penalty function term
Number x2_grid(Index i) const
Compute the grid coordinate for given index in x2 direction.
IndexStyleEnum
overload this method to return the number of variables and constraints, and the number of non-zeros i...
Definition: IpTNLP.hpp:80
Number x1_grid(Index i) const
Compute the grid coordinate for given index in x1 direction.
Number x3_grid(Index i) const
Compute the grid coordinate for given index in x3 direction.
Number PenObj(Number t) const
value of penalty function term
Number obj_scaling
Class implementating case with nonconvex Beaton-Tukey like penalty function.
Number Number Index Number Number Index Index Index Eval_F_CB eval_f
Callback function for evaluating objective function.
Index N_
Number of mesh points in one dimension (excluding boundary)