|
Couenne
0.2
|
class sum,
More...
#include <CouenneExprSum.hpp>
Public Member Functions | |
| exprSum (expression **=NULL, int=0) | |
| Constructors, destructor. More... | |
| exprSum (expression *, expression *) | |
| Constructor with two elements. More... | |
| virtual | ~exprSum () |
| Empty destructor. More... | |
| virtual expression * | clone (Domain *d=NULL) const |
| Cloning method. More... | |
| std::string | printOp () const |
| Print operator. More... | |
| virtual CouNumber | operator() () |
| Function for the evaluation of the expression. More... | |
| virtual expression * | differentiate (int index) |
| Differentiation. More... | |
| virtual expression * | simplify () |
| Simplification. More... | |
| virtual int | Linearity () |
| Get a measure of "how linear" the expression is: More... | |
| virtual void | getBounds (expression *&, expression *&) |
| Get lower and upper bound of an expression (if any) More... | |
| virtual void | getBounds (CouNumber &, CouNumber &) |
| Get lower and upper bound of an expression (if any) More... | |
| virtual exprAux * | standardize (CouenneProblem *p, bool addAux=true) |
| Reduce expression in standard form, creating additional aux variables (and constraints) More... | |
| virtual void | generateCuts (expression *, OsiCuts &, const CouenneCutGenerator *, t_chg_bounds *=NULL, int=-1, CouNumber=-COUENNE_INFINITY, CouNumber=COUENNE_INFINITY) |
| Special version for linear constraints. More... | |
| virtual enum expr_type | code () |
| Code for comparison. More... | |
| virtual bool | impliedBound (int, CouNumber *, CouNumber *, t_chg_bounds *, enum auxSign=expression::AUX_EQ) |
| Implied bound. More... | |
| exprAux * | createQuadratic (CouenneProblem *) |
| Checks for quadratic terms in the expression and returns an exprQuad if there are enough to create something that can be convexified. More... | |
Public Member Functions inherited from Couenne::exprOp | |
| virtual enum nodeType | Type () const |
| Node type. More... | |
| exprOp (expression **arglist, int nargs) | |
| Constructor. More... | |
| exprOp (expression *arg0, expression *arg1) | |
| Constructor with two arguments (for convenience) More... | |
| virtual | ~exprOp () |
| Destructor. More... | |
| exprOp (const exprOp &e, Domain *d=NULL) | |
| Copy constructor: only allocate space for argument list, which will be copied with clonearglist() More... | |
| expression ** | ArgList () const |
| return argument list More... | |
| virtual void | ArgList (expression **al) |
| set arglist (used in deleting nodes without deleting children) More... | |
| int | nArgs () const |
| return number of arguments More... | |
| virtual void | print (std::ostream &out=std::cout, bool=false) const |
| I/O. More... | |
| virtual enum pos | printPos () const |
| print position (PRE, INSIDE, POST) More... | |
| virtual int | DepList (std::set< int > &deplist, enum dig_type type=ORIG_ONLY) |
| fill in the set with all indices of variables appearing in the expression More... | |
| expression ** | clonearglist (Domain *d=NULL) const |
| clone argument list (for use with clone method) More... | |
| int | shrink_arglist (CouNumber, CouNumber) |
| compress argument list More... | |
| virtual bool | isInteger () |
| is this expression integer? More... | |
| virtual int | compare (exprOp &) |
| compare with other generic exprOp More... | |
| virtual int | rank () |
| used in rank-based branching variable choice More... | |
| virtual void | fillDepSet (std::set< DepNode *, compNode > *dep, DepGraph *g) |
| fill in dependence structure update dependence set with index of this variable More... | |
| virtual void | replace (exprVar *, exprVar *) |
| replace variable with other More... | |
| virtual void | realign (const CouenneProblem *p) |
| empty function to redirect variables to proper variable vector More... | |
Public Member Functions inherited from Couenne::expression | |
| expression () | |
| Constructor. More... | |
| expression (const expression &e, Domain *d=NULL) | |
| Copy constructor. More... | |
| virtual | ~expression () |
| Destructor. More... | |
| virtual int | Index () const |
| Return index of variable (only valid for exprVar and exprAux) More... | |
| virtual expression * | Argument () const |
| return argument (when applicable, i.e., with univariate functions) More... | |
| virtual expression ** | ArgPtr () |
| return pointer to argument (when applicable, i.e., with univariate functions) More... | |
| virtual expression * | Image () const |
| return pointer to corresponding expression (for auxiliary variables only) More... | |
| virtual void | Image (expression *image) |
| set expression associated with this auxiliary variable (for compatibility with exprAux) More... | |
| virtual CouNumber | Value () const |
| value (empty) More... | |
| virtual const expression * | Original () const |
| If this is an exprClone of a exprClone of an expr???, point to the original expr??? instead of an exprClone – improve computing efficiency. More... | |
| virtual CouNumber | gradientNorm (const double *x) |
| return l-2 norm of gradient at given point More... | |
| virtual int | dependsOn (int *ind, int n, enum dig_type type=STOP_AT_AUX) |
| dependence on variable set: return cardinality of subset of the set of indices in first argument which occur in expression. More... | |
| int | dependsOn (int singleton, enum dig_type type=STOP_AT_AUX) |
| version with one index only More... | |
| virtual bool | isDefinedInteger () |
| is this expression defined as an integer? More... | |
| virtual enum convexity | convexity () const |
| either CONVEX, CONCAVE, AFFINE, or NONCONVEX More... | |
| virtual int | compare (expression &) |
| compare expressions More... | |
| virtual int | compare (exprCopy &) |
| compare copies of expressions More... | |
| virtual int | Multiplicity () |
| multiplicity of a variable More... | |
| virtual CouNumber | selectBranch (const CouenneObject *obj, const OsiBranchingInformation *info, expression *&var, double *&brpts, double *&brDist, int &way) |
| set up branching object by evaluating many branching points for each expression's arguments. More... | |
| virtual void | linkDomain (Domain *d) |
| empty function to update domain pointer More... | |
| virtual bool | isBijective () const |
| indicating if function is monotonically increasing More... | |
| virtual CouNumber | inverse (expression *vardep) const |
| compute the inverse function More... | |
| virtual void | closestFeasible (expression *varind, expression *vardep, CouNumber &left, CouNumber &right) const |
| closest feasible points in function in both directions More... | |
| virtual bool | isCuttable (CouenneProblem *problem, int index) const |
| can this expression be further linearized or are we on its concave ("bad") side More... | |
| virtual bool | isaCopy () const |
| return true if this is a copy of something (i.e. an exprCopy) More... | |
| virtual expression * | Copy () const |
| return copy of this expression (only makes sense in exprCopy) More... | |
Protected Member Functions | |
| int | impliedBoundSum (CouNumber wl, CouNumber wu, std::vector< CouNumber > &xl, std::vector< CouNumber > &xu, std::vector< std::pair< int, CouNumber > > &nl, std::vector< std::pair< int, CouNumber > > &nu) |
| inferring bounds on factors of a product More... | |
Additional Inherited Members | |
Public Types inherited from Couenne::expression | |
| enum | auxSign { AUX_UNDEF =-2, AUX_LEQ =-1, AUX_EQ, AUX_GEQ } |
| "sign" of the constraint defining an auxiliary. More... | |
Protected Attributes inherited from Couenne::exprOp | |
| expression ** | arglist_ |
| argument list is an array of pointers to other expressions More... | |
| int | nargs_ |
| number of arguments (cardinality of arglist) More... | |
class sum,
Definition at line 22 of file CouenneExprSum.hpp.
| Couenne::exprSum::exprSum | ( | expression ** | = NULL, |
| int | = 0 |
||
| ) |
Constructors, destructor.
Referenced by clone().
| Couenne::exprSum::exprSum | ( | expression * | , |
| expression * | |||
| ) |
Constructor with two elements.
|
inlinevirtual |
Empty destructor.
Definition at line 33 of file CouenneExprSum.hpp.
|
inlinevirtual |
Cloning method.
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
Definition at line 36 of file CouenneExprSum.hpp.
References Couenne::exprOp::clonearglist(), exprSum(), and Couenne::exprOp::nargs_.
|
inlinevirtual |
Print operator.
Reimplemented from Couenne::exprOp.
Definition at line 40 of file CouenneExprSum.hpp.
|
inlinevirtual |
Function for the evaluation of the expression.
compute sum
Implements Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
Definition at line 118 of file CouenneExprSum.hpp.
References Couenne::exprOp::arglist_, and Couenne::exprOp::nargs_.
Referenced by Couenne::exprGroup::operator()().
|
virtual |
Differentiation.
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
|
virtual |
Simplification.
Reimplemented from Couenne::exprOp.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
|
virtual |
Get a measure of "how linear" the expression is:
Reimplemented from Couenne::exprOp.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
Referenced by Couenne::exprQuad::Linearity().
|
virtual |
Get lower and upper bound of an expression (if any)
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
Get lower and upper bound of an expression (if any)
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
|
virtual |
Reduce expression in standard form, creating additional aux variables (and constraints)
Reimplemented from Couenne::exprOp.
|
virtual |
Special version for linear constraints.
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
|
inlinevirtual |
Code for comparison.
Reimplemented from Couenne::exprOp.
Reimplemented in Couenne::exprQuad, and Couenne::exprGroup.
Definition at line 73 of file CouenneExprSum.hpp.
References Couenne::COU_EXPRSUM.
|
virtual |
Implied bound.
An expression

is given such that all
are positive for
and negative for
. If the bounds on
, implied bounds on all
are as follows:

,
where
and
are lower and upper bound, respectively, of
. We also have to check if some of these bounds are infinite.
Reimplemented from Couenne::expression.
Reimplemented in Couenne::exprQuad.
| exprAux* Couenne::exprSum::createQuadratic | ( | CouenneProblem * | ) |
Checks for quadratic terms in the expression and returns an exprQuad if there are enough to create something that can be convexified.
|
protected |
inferring bounds on factors of a product
1.8.5