Prev Next Index-> contents reference index search external Up-> CppAD Appendix Theory ReverseTheory sin_cos_reverse Appendix-> Faq directory Theory glossary Bib wish_list whats_new deprecated compare_c numeric_ad addon License Theory-> ForwardTheory ReverseTheory reverse_identity ReverseTheory-> exp_reverse log_reverse sqrt_reverse sin_cos_reverse atan_reverse asin_reverse acos_reverse tan_reverse erf_reverse sin_cos_reverse Headings

$\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }$
Trigonometric and Hyperbolic Sine and Cosine Reverse Theory
We use the reverse theory standard math function definition for the functions $H$ and $G$. In addition, we use the following definitions for $s$ and $c$ and the integer $\ell$
 Coefficients $s$ $c$ $\ell$ Trigonometric Case $\sin [ X(t) ]$ $\cos [ X(t) ]$ 1 Hyperbolic Case $\sinh [ X(t) ]$ $\cosh [ X(t) ]$ -1
We use the value $$z^{(j)} = ( s^{(j)} , c^{(j)} )$$ in the definition for $G$ and $H$. The forward mode formulas for the sine and cosine functions are $$\begin{array}{rcl} s^{(j)} & = & \frac{1 + \ell}{2} \sin ( x^{(0)} ) + \frac{1 - \ell}{2} \sinh ( x^{(0)} ) \\ c^{(j)} & = & \frac{1 + \ell}{2} \cos ( x^{(0)} ) + \frac{1 - \ell}{2} \cosh ( x^{(0)} ) \end{array}$$ for the case $j = 0$, and for $j > 0$, $$\begin{array}{rcl} s^{(j)} & = & \frac{1}{j} \sum_{k=1}^{j} k x^{(k)} c^{(j-k)} \\ c^{(j)} & = & \ell \frac{1}{j} \sum_{k=1}^{j} k x^{(k)} s^{(j-k)} \end{array}$$ If $j = 0$, we have the relation $$\begin{array}{rcl} \D{H}{ x^{(j)} } & = & \D{G}{ x^{(j)} } + \D{G}{ s^{(j)} } c^{(0)} + \ell \D{G}{ c^{(j)} } s^{(0)} \end{array}$$ If $j > 0$, then for $k = 1, \ldots , j-1$ $$\begin{array}{rcl} \D{H}{ x^{(k)} } & = & \D{G}{ x^{(k)} } + \D{G}{ s^{(j)} } \frac{1}{j} k c^{(j-k)} + \ell \D{G}{ c^{(j)} } \frac{1}{j} k s^{(j-k)} \\ \D{H}{ s^{(j-k)} } & = & \D{G}{ s^{(j-k)} } + \ell \D{G}{ c^{(j)} } k x^{(k)} \\ \D{H}{ c^{(j-k)} } & = & \D{G}{ c^{(j-k)} } + \D{G}{ s^{(j)} } k x^{(k)} \end{array}$$
Input File: omh/appendix/theory/sin_cos_reverse.omh