Prev Next ode_evaluate.hpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
Source: ode_evaluate
# ifndef CPPAD_ODE_EVALUATE_HPP
# define CPPAD_ODE_EVALUATE_HPP
# include <cppad/utility/vector.hpp>
# include <cppad/utility/ode_err_control.hpp>
# include <cppad/utility/runge_45.hpp>

namespace CppAD {

     template <class Float>
     class ode_evaluate_fun {
     public:
          // Given that y_i (0) = x_i,
          // the following y_i (t) satisfy the ODE below:
          // y_0 (t) = x[0]
          // y_1 (t) = x[1] + x[0] * t
          // y_2 (t) = x[2] + x[1] * t + x[0] * t^2/2
          // y_3 (t) = x[3] + x[2] * t + x[1] * t^2/2 + x[0] * t^3 / 3!
          // ...
          void Ode(
               const Float&                    t,
               const CppAD::vector<Float>&     y,
               CppAD::vector<Float>&           f)
          {     size_t n  = y.size();
               f[0]      = 0.;
               for(size_t k = 1; k < n; k++)
                    f[k] = y[k-1];
          }
     };
     //
     template <class Float>
     void ode_evaluate(
          const CppAD::vector<Float>& x  ,
          size_t                      p  ,
          CppAD::vector<Float>&       fp )
     {     using CppAD::vector;
          typedef vector<Float> VectorFloat;

          size_t n = x.size();
          CPPAD_ASSERT_KNOWN( p == 0 || p == 1,
               "ode_evaluate: p is not zero or one"
          );
          CPPAD_ASSERT_KNOWN(
               ((p==0) & (fp.size()==n)) || ((p==1) & (fp.size()==n*n)),
               "ode_evaluate: the size of fp is not correct"
          );
          if( p == 0 )
          {     // function that defines the ode
               ode_evaluate_fun<Float> F;

               // number of Runge45 steps to use
               size_t M = 10;

               // initial and final time
               Float ti = 0.0;
               Float tf = 1.0;

               // initial value for y(x, t); i.e. y(x, 0)
               // (is a reference to x)
               const VectorFloat& yi = x;

               // final value for y(x, t); i.e., y(x, 1)
               // (is a reference to fp)
               VectorFloat& yf = fp;

               // Use fourth order Runge-Kutta to solve ODE
               yf = CppAD::Runge45(F, M, ti, tf, yi);

               return;
          }
          /* Compute derivaitve of y(x, 1) w.r.t x
          y_0 (x, t) = x[0]
          y_1 (x, t) = x[1] + x[0] * t
          y_2 (x, t) = x[2] + x[1] * t + x[0] * t^2/2
          y_3 (x, t) = x[3] + x[2] * t + x[1] * t^2/2 + x[0] * t^3 / 3!
          ...
          */
          size_t i, j, k;
          for(i = 0; i < n; i++)
          {     for(j = 0; j < n; j++)
                    fp[ i * n + j ] = 0.0;
          }
          size_t factorial = 1;
          for(k = 0; k < n; k++)
          {     if( k > 1 )
                    factorial *= k;
               for(i = k; i < n; i++)
               {     // partial w.r.t x[i-k] of x[i-k] * t^k / k!
                    j = i - k;
                    fp[ i * n + j ] += 1.0 / Float(factorial);
               }
          }
     }
}
# endif

Input File: omh/ode_evaluate.omh