Prev Next ode_evaluate.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
ode_evaluate: Example and test
# include <cppad/speed/ode_evaluate.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/cppad.hpp>

bool ode_evaluate(void)
{     using CppAD::NearEqual;
     using CppAD::AD;

     bool ok = true;

     size_t n = 3;
     CppAD::vector<double>       x(n);
     CppAD::vector<double>       ym(n * n);
     CppAD::vector< AD<double> > X(n);
     CppAD::vector< AD<double> > Ym(n);

     // choose x
     size_t j;
     for(j = 0; j < n; j++)
     {     x[j] = double(j + 1);
          X[j] = x[j];
     }

     // declare independent variables
     Independent(X);

     // evaluate function
     size_t m = 0;
     CppAD::ode_evaluate(X, m, Ym);

     // evaluate derivative
     m = 1;
     CppAD::ode_evaluate(x, m, ym);

     // use AD to evaluate derivative
     CppAD::ADFun<double>   F(X, Ym);
     CppAD::vector<double>  dy(n * n);
     dy = F.Jacobian(x);

     size_t k;
     for(k = 0; k < n * n; k++)
          ok &= NearEqual(ym[k], dy[k] , 1e-7, 1e-7);

     return ok;
}

Input File: speed/example/ode_evaluate.cpp