CppAD: A C++ Algorithmic Differentiation Package
20171217


inline 
Compute reverse mode partial derivatives for result of op = AbsOp.
The C++ source code corresponding to this operation is
z = fabs(x)
This routine is given the partial derivatives of a function G(z , x , w, u ... ) and it uses them to compute the partial derivatives of
H( x , w , u , ... ) = G[ z(x) , x , w , u , ... ]
Base  base type for the operator; i.e., this operation was recorded using AD< Base > and computations by this routine are done using type Base . 
d  highest order Taylor coefficient that we are computing the partial derivatives with respect to. 
i_z  variable index corresponding to the result for this operation; i.e. the row index in taylor to z. 
i_x  variable index corresponding to the argument for this operation; i.e. the row index in taylor corresponding to x. 
cap_order  maximum number of orders that will fit in the taylor array. 
taylor  taylor [ i_x * cap_order + k ] for k = 0 , ... , d is the kth order Taylor coefficient corresponding to x. taylor [ i_z * cap_order + k ] for k = 0 , ... , d is the kth order Taylor coefficient corresponding to z. 
nc_partial  number of colums in the matrix containing all the partial derivatives. 
partial  Input: partial [ i_x * nc_partial + k ] for k = 0 , ... , d is the partial derivative of G( z , x , w , u , ... ) with respect to the kth order Taylor coefficient for x. Input: partial [ i_z * nc_partial + k ] for k = 0 , ... , d is the partial derivative of G( z , x , w , u , ... ) with respect to the kth order Taylor coefficient for z. Output: partial [ i_x * nc_partial + k ] for k = 0 , ... , d is the partial derivative of H( x , w , u , ... ) with respect to the kth order Taylor coefficient for x. Output: partial [ i_z * nc_partial + k ] for k = 0 , ... , d may be used as work space; i.e., may change in an unspecified manner. 
Definition at line 131 of file abs_op.hpp.
Referenced by reverse_sweep().