CppAD: A C++ Algorithmic Differentiation Package
20171217


inline 
Compute reverse mode partial derivatives for result of op = TanOp.
The C++ source code corresponding to this operation is
z = tan(x)
The auxillary result is
y = cos(x)
The value of y is computed along with the value of z.
This routine is given the partial derivatives of a function G( z , y , x , w , ... ) and it uses them to compute the partial derivatives of
H( x , w , u , ... ) = G[ z(x) , y(x), x , w , u , ... ]
Base  base type for the operator; i.e., this operation was recorded using AD< Base > and computations by this routine are done using type Base . 
d  highest order Taylor coefficient that we are computing the partial derivatives with respect to. 
i_z  variable index corresponding to the last (primary) result for this operation; i.e. the row index in taylor to z. The auxillary result is called y and has index i_z  1. 
i_x  variable index corresponding to the argument for this operation; i.e. the row index in taylor corresponding to x. 
cap_order  maximum number of orders that will fit in the taylor array. 
taylor  taylor [ i_x * cap_order + k ] for k = 0 , ... , d is the kth order Taylor coefficient corresponding to x. taylor [ i_z * cap_order + k ] for k = 0 , ... , d is the kth order Taylor coefficient corresponding to z. taylor [ ( i_z  1) * cap_order + k ] for k = 0 , ... , d is the kth order Taylor coefficient corresponding to the auxillary variable y. 
nc_partial  number of colums in the matrix containing all the partial derivatives. 
partial  Input: partial [ i_x * nc_partial + k ] for k = 0 , ... , d is the partial derivative of G( z , y , x , w , u , ... ) with respect to the kth order Taylor coefficient for x. Input: partial [ i_z * nc_partial + k ] for k = 0 , ... , d is the partial derivative of G( z , y , x , w , u , ... ) with respect to the kth order Taylor coefficient for z. Input: partial [ ( i_z  1) * nc_partial + k ] for k = 0 , ... , d is the partial derivative of G( z , x , w , u , ... ) with respect to the kth order Taylor coefficient for the auxillary variable y. Output: partial [ i_x * nc_partial + k ] for k = 0 , ... , d is the partial derivative of H( x , w , u , ... ) with respect to the kth order Taylor coefficient for x. Output: partial [ ( i_z  j ) * nc_partial + k ] for j = 0 , 1 , and for k = 0 , ... , d may be used as work space; i.e., may change in an unspecified manner. 
Definition at line 183 of file tan_op.hpp.
Referenced by reverse_sweep().