|
GAMSlinks
0.4
|
A TNLP for Ipopt that uses SMAG to interface the problem formulation. More...
#include <SmagMINLP.hpp>


Public Member Functions | |
| SMAG_MINLP (smagHandle_t prob) | |
| Contructor. More... | |
| virtual | ~SMAG_MINLP () |
| Default destructor. More... | |
| virtual bool | get_nlp_info (Index &n, Index &m, Index &nnz_jac_g, Index &nnz_h_lag, TNLP::IndexStyleEnum &index_style) |
| Method to return some info about the nlp. More... | |
| virtual bool | get_bounds_info (Index n, Number *x_l, Number *x_u, Index m, Number *g_l, Number *g_u) |
| Method to return the bounds for my problem. More... | |
| virtual bool | get_variables_types (Index n, VariableType *var_types) |
| Pass the type of the variables (INTEGER, BINARY, CONTINUOUS) to the optimizer. More... | |
| virtual bool | get_variables_linearity (Index n, Ipopt::TNLP::LinearityType *var_linearity) |
| Pass the type of the variables linearity (LINEAR, NON_LINEAR) to the optimizer. More... | |
| virtual bool | get_constraints_linearity (Index m, Ipopt::TNLP::LinearityType *const_types) |
| Pass the type of the constraints (LINEAR, NON_LINEAR) to the optimizer. More... | |
| virtual bool | get_starting_point (Index n, bool init_x, Number *x, bool init_z, Number *z_L, Number *z_U, Index m, bool init_lambda, Number *lambda) |
| Method to return the starting point for the algorithm. More... | |
| virtual bool | get_scaling_parameters (Number &obj_scaling, bool &use_x_scaling, Index n, Number *x_scaling, bool &use_g_scaling, Index m, Number *g_scaling) |
| virtual bool | eval_f (Index n, const Number *x, bool new_x, Number &obj_value) |
| Method to return the objective value. More... | |
| virtual bool | eval_grad_f (Index n, const Number *x, bool new_x, Number *grad_f) |
| Method to return the gradient of the objective. More... | |
| virtual bool | eval_g (Index n, const Number *x, bool new_x, Index m, Number *g) |
| Method to return the constraint residuals. More... | |
| virtual bool | eval_jac_g (Index n, const Number *x, bool new_x, Index m, Index nele_jac, Index *iRow, Index *jCol, Number *values) |
| Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobian (if "values" is not NULL) More... | |
| virtual bool | eval_gi (Index n, const Number *x, bool new_x, Index i, Number &gi) |
| Compute the value of a single constraint. More... | |
| virtual bool | eval_grad_gi (Index n, const Number *x, bool new_x, Index i, Index &nele_grad_gi, Index *jCol, Number *values) |
| Compute the structure or values of the gradient for one constraint. More... | |
| virtual bool | eval_h (Index n, const Number *x, bool new_x, Number obj_factor, Index m, const Number *lambda, bool new_lambda, Index nele_hess, Index *iRow, Index *jCol, Number *values) |
| Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The values of the hessian of the lagrangian (if "values" is not NULL) More... | |
| virtual void | finalize_solution (TMINLP::SolverReturn status, Index n, const Number *x, Number obj_value) |
| virtual const SosInfo * | sosConstraints () const |
| Provides information about SOS constraints. More... | |
| virtual const BranchingInfo * | branchingInfo () const |
| Provides information about branching priorities. More... | |
Public Attributes | |
| double | div_iter_tol |
| long int | domviolations |
| double | clock_start |
| int | model_status |
| int | solver_status |
Private Member Functions | |
| SMAG_MINLP () | |
| SMAG_MINLP (const SMAG_MINLP &) | |
| SMAG_MINLP & | operator= (const SMAG_MINLP &) |
| void | setupPrioritiesSOS () |
| Internal routine to initialize sosinfo and branchinginfo. More... | |
Private Attributes | |
| smagHandle_t | prob |
| double * | negLambda |
| double | isMin |
| SosInfo | sosinfo |
| BranchingInfo | branchinginfo |
A TNLP for Ipopt that uses SMAG to interface the problem formulation.
Definition at line 31 of file SmagMINLP.hpp.
| SMAG_MINLP::SMAG_MINLP | ( | smagHandle_t | prob | ) |
Contructor.
| prob | The SMAG handle for the problem. |
|
virtual |
Default destructor.
|
private |
|
private |
|
virtual |
Method to return some info about the nlp.
|
virtual |
Method to return the bounds for my problem.
|
virtual |
Pass the type of the variables (INTEGER, BINARY, CONTINUOUS) to the optimizer.
| n | size of var_types (has to be equal to the number of variables in the problem). |
| var_types | types of the variables (has to be filled by function). |
|
virtual |
Pass the type of the variables linearity (LINEAR, NON_LINEAR) to the optimizer.
| n | size of var_linearity (has to be equal to the number of variables in the problem). |
| var_linearity | linearity of the variables (has to be filled by function). |
|
virtual |
Pass the type of the constraints (LINEAR, NON_LINEAR) to the optimizer.
| m | size of const_types (has to be equal to the number of constraints in the problem). |
| const_types | types of the constraints (has to be filled by function). |
|
virtual |
Method to return the starting point for the algorithm.
|
virtual |
|
virtual |
Method to return the objective value.
|
virtual |
Method to return the gradient of the objective.
|
virtual |
Method to return the constraint residuals.
|
virtual |
Method to return: 1) The structure of the jacobian (if "values" is NULL) 2) The values of the jacobian (if "values" is not NULL)
|
virtual |
Compute the value of a single constraint.
| n | the number of variables |
| x | the point to evaluate |
| new_x | whether x is a new point |
| i | the constraint number (starting counting from 0) |
| gi | to store the value of g_i at x |
|
virtual |
Compute the structure or values of the gradient for one constraint.
Things are like with eval_jac_g.
| n | the number of variables |
| x | the point to compute the gradient for |
| new_x | whether x is a new point |
| i | the constraint number (starting counting from 0) |
| nele_grad_gi | the number of nonzero elements in the gradient of g_i |
| jCol | the indices of the nonzero columns |
| values | the values for the nonzero columns |
|
virtual |
Method to return: 1) The structure of the hessian of the lagrangian (if "values" is NULL) 2) The values of the hessian of the lagrangian (if "values" is not NULL)
|
virtual |
|
virtual |
Provides information about SOS constraints.
|
virtual |
Provides information about branching priorities.
|
private |
|
private |
Internal routine to initialize sosinfo and branchinginfo.
| double SMAG_MINLP::div_iter_tol |
Definition at line 136 of file SmagMINLP.hpp.
| long int SMAG_MINLP::domviolations |
Definition at line 137 of file SmagMINLP.hpp.
| double SMAG_MINLP::clock_start |
Definition at line 138 of file SmagMINLP.hpp.
| int SMAG_MINLP::model_status |
Definition at line 139 of file SmagMINLP.hpp.
| int SMAG_MINLP::solver_status |
Definition at line 139 of file SmagMINLP.hpp.
|
private |
Definition at line 141 of file SmagMINLP.hpp.
|
private |
Definition at line 142 of file SmagMINLP.hpp.
|
private |
Definition at line 143 of file SmagMINLP.hpp.
|
private |
Definition at line 146 of file SmagMINLP.hpp.
|
private |
Definition at line 147 of file SmagMINLP.hpp.
1.8.5