// Copyright (C) 2005, International Business Machines // Corporation and others. All Rights Reserved. #if defined(_MSC_VER) // Turn off compiler warning about long names # pragma warning(disable:4786) #endif #include //#include //#include //#include #include "OsiCbcSolverInterface.hpp" #include "OsiCuts.hpp" #include "OsiRowCut.hpp" #include "OsiColCut.hpp" #include "CoinMessage.hpp" #include "CoinModel.hpp" #ifdef COIN_HAS_OSL #include "OsiOslSolverInterface.hpp" #endif //############################################################################# #ifdef NDEBUG #undef NDEBUG #endif namespace { CoinPackedMatrix &BuildExmip1Mtx () /* Simple function to build a packed matrix for the exmip1 example used in tests. The function exists solely to hide the intermediate variables. Probably could be written as an initialised declaration. See COIN/Mps/Sample/exmip1.mps for a human-readable presentation. Ordered triples seem easiest. They're listed in row-major order. */ { int rowndxs[] = { 0, 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4 } ; int colndxs[] = { 0, 1, 3, 4, 7, 1, 2, 2, 5, 3, 6, 0, 4, 7 } ; double coeffs[] = { 3.0, 1.0, -2.0, -1.0, -1.0, 2.0, 1.1, 1.0, 1.0, 2.8, -1.2, 5.6, 1.0, 1.9 } ; static CoinPackedMatrix exmip1mtx = CoinPackedMatrix(true,&rowndxs[0],&colndxs[0],&coeffs[0],14) ; return (exmip1mtx) ; } } //-------------------------------------------------------------------------- // test solution methods. void OsiCbcSolverInterfaceUnitTest(const std::string & mpsDir, const std::string & netlibDir) { { CoinRelFltEq eq; OsiCbcSolverInterface m; std::string fn = mpsDir+"exmip1"; m.readMps(fn.c_str(),"mps"); { OsiCbcSolverInterface im; assert( im.getNumCols() == 0 ); assert( im.getModelPtr()!=NULL ); } // Test copy constructor and assignment operator { OsiCbcSolverInterface lhs; { OsiCbcSolverInterface im(m); OsiCbcSolverInterface imC1(im); assert( imC1.getModelPtr()!=im.getModelPtr() ); assert( imC1.getNumCols() == im.getNumCols() ); assert( imC1.getNumRows() == im.getNumRows() ); OsiCbcSolverInterface imC2(im); assert( imC2.getModelPtr()!=im.getModelPtr() ); assert( imC2.getNumCols() == im.getNumCols() ); assert( imC2.getNumRows() == im.getNumRows() ); assert( imC2.getModelPtr()!=imC1.getModelPtr() ); lhs=imC2; } // Test that lhs has correct values even though rhs has gone out of scope assert( lhs.getModelPtr() != m.getModelPtr() ); assert( lhs.getNumCols() == m.getNumCols() ); assert( lhs.getNumRows() == m.getNumRows() ); } // Test clone { OsiCbcSolverInterface oslSi(m); OsiSolverInterface * siPtr = &oslSi; OsiSolverInterface * siClone = siPtr->clone(); OsiCbcSolverInterface * oslClone = dynamic_cast(siClone); assert( oslClone != NULL ); assert( oslClone->getModelPtr() != oslSi.getModelPtr() ); assert( oslClone->getNumRows() == oslSi.getNumRows() ); assert( oslClone->getNumCols() == m.getNumCols() ); delete siClone; } // test infinity { OsiCbcSolverInterface si; assert( eq(si.getInfinity(),OsiCbcInfinity)); } // Test setting solution { OsiCbcSolverInterface m1(m); int i; double * cs = new double[m1.getNumCols()]; for ( i = 0; i < m1.getNumCols(); i++ ) cs[i] = i + .5; m1.setColSolution(cs); for ( i = 0; i < m1.getNumCols(); i++ ) assert(m1.getColSolution()[i] == i + .5); double * rs = new double[m1.getNumRows()]; for ( i = 0; i < m1.getNumRows(); i++ ) rs[i] = i - .5; m1.setRowPrice(rs); for ( i = 0; i < m1.getNumRows(); i++ ) assert(m1.getRowPrice()[i] == i - .5); delete [] cs; delete [] rs; } // Test fraction Indices { OsiCbcSolverInterface fim; std::string fn = mpsDir+"exmip1"; fim.readMps(fn.c_str(),"mps"); // exmip1.mps has 2 integer variables with index 2 & 3 assert( fim.isContinuous(0) ); assert( fim.isContinuous(1) ); assert( !fim.isContinuous(2) ); assert( !fim.isContinuous(3) ); assert( fim.isContinuous(4) ); assert( !fim.isInteger(0) ); assert( !fim.isInteger(1) ); assert( fim.isInteger(2) ); assert( fim.isInteger(3) ); assert( !fim.isInteger(4) ); assert( !fim.isBinary(0) ); assert( !fim.isBinary(1) ); assert( fim.isBinary(2) ); assert( fim.isBinary(3) ); assert( !fim.isBinary(4) ); assert( !fim.isIntegerNonBinary(0) ); assert( !fim.isIntegerNonBinary(1) ); assert( !fim.isIntegerNonBinary(2) ); assert( !fim.isIntegerNonBinary(3) ); assert( !fim.isIntegerNonBinary(4) ); } // Test some catches { bool thrown ; thrown = false ; OsiCbcSolverInterface solver; try { solver.setObjCoeff(0,0.0); } catch (CoinError e) { std::cout<<"Correct throw"<setEffectiveness(-1.); cuts.insert(rcP); assert(rcP==NULL); OsiColCut * ccP= new OsiColCut; ccP->setEffectiveness(-12.); cuts.insert(ccP); assert(ccP==NULL); } { //Generate inconsistent Row cut OsiRowCut rc; const int ne=1; int inx[ne]={-10}; double el[ne]={2.5}; rc.setRow(ne,inx,el); rc.setLb(3.); rc.setUb(4.); assert(!rc.consistent()); cuts.insert(rc); } { //Generate inconsistent col cut OsiColCut cc; const int ne=1; int inx[ne]={-10}; double el[ne]={2.5}; cc.setUbs(ne,inx,el); assert(!cc.consistent()); cuts.insert(cc); } { // Generate row cut which is inconsistent for model m OsiRowCut rc; const int ne=1; int inx[ne]={10}; double el[ne]={2.5}; rc.setRow(ne,inx,el); assert(rc.consistent()); assert(!rc.consistent(im)); cuts.insert(rc); } { // Generate col cut which is inconsistent for model m OsiColCut cc; const int ne=1; int inx[ne]={30}; double el[ne]={2.0}; cc.setLbs(ne,inx,el); assert(cc.consistent()); assert(!cc.consistent(im)); cuts.insert(cc); } { // Generate col cut which is infeasible OsiColCut cc; const int ne=1; int inx[ne]={0}; double el[ne]={2.0}; cc.setUbs(ne,inx,el); cc.setEffectiveness(1000.); assert(cc.consistent()); assert(cc.consistent(im)); assert(cc.infeasible(im)); cuts.insert(cc); } } assert(cuts.sizeRowCuts()==4); assert(cuts.sizeColCuts()==5); OsiSolverInterface::ApplyCutsReturnCode rc = im.applyCuts(cuts); assert( rc.getNumIneffective() == 2 ); assert( rc.getNumApplied() == 2 ); assert( rc.getNumInfeasible() == 1 ); assert( rc.getNumInconsistentWrtIntegerModel() == 2 ); assert( rc.getNumInconsistent() == 2 ); assert( cuts.sizeCuts() == rc.getNumIneffective() + rc.getNumApplied() + rc.getNumInfeasible() + rc.getNumInconsistentWrtIntegerModel() + rc.getNumInconsistent() ); } { OsiCbcSolverInterface oslSi(m); int nc = oslSi.getNumCols(); int nr = oslSi.getNumRows(); const double * cl = oslSi.getColLower(); const double * cu = oslSi.getColUpper(); const double * rl = oslSi.getRowLower(); const double * ru = oslSi.getRowUpper(); assert( nc == 8 ); assert( nr == 5 ); assert( eq(cl[0],2.5) ); assert( eq(cl[1],0.0) ); assert( eq(cu[1],4.1) ); assert( eq(cu[2],1.0) ); assert( eq(rl[0],2.5) ); assert( eq(rl[4],3.0) ); assert( eq(ru[1],2.1) ); assert( eq(ru[4],15.0) ); const double * cs = oslSi.getColSolution(); assert( eq(cs[0],2.5) ); assert( eq(cs[7],0.0) ); assert( !eq(cl[3],1.2345) ); oslSi.setColLower( 3, 1.2345 ); assert( eq(oslSi.getColLower()[3],1.2345) ); assert( !eq(cu[4],10.2345) ); oslSi.setColUpper( 4, 10.2345 ); assert( eq(oslSi.getColUpper()[4],10.2345) ); // LH: Objective will depend on how underlying solver constructs and // LH: maintains initial solution. double objValue = oslSi.getObjValue(); assert( eq(objValue,3.5) || eq(objValue,10.5) ); assert( eq( oslSi.getObjCoefficients()[0], 1.0) ); assert( eq( oslSi.getObjCoefficients()[1], 0.0) ); assert( eq( oslSi.getObjCoefficients()[2], 0.0) ); assert( eq( oslSi.getObjCoefficients()[3], 0.0) ); assert( eq( oslSi.getObjCoefficients()[4], 2.0) ); assert( eq( oslSi.getObjCoefficients()[5], 0.0) ); assert( eq( oslSi.getObjCoefficients()[6], 0.0) ); assert( eq( oslSi.getObjCoefficients()[7], -1.0) ); } // Test matrixByRow method { const OsiCbcSolverInterface si(m); const CoinPackedMatrix * smP = si.getMatrixByRow(); // LL: const OsiCbcPackedMatrix * osmP = dynamic_cast(smP); // LL: assert( osmP!=NULL ); #ifdef OSICBC_TEST_MTX_STRUCTURE CoinRelFltEq eq; const double * ev = smP->getElements(); assert( eq(ev[0], 3.0) ); assert( eq(ev[1], 1.0) ); assert( eq(ev[2], -2.0) ); assert( eq(ev[3], -1.0) ); assert( eq(ev[4], -1.0) ); assert( eq(ev[5], 2.0) ); assert( eq(ev[6], 1.1) ); assert( eq(ev[7], 1.0) ); assert( eq(ev[8], 1.0) ); assert( eq(ev[9], 2.8) ); assert( eq(ev[10], -1.2) ); assert( eq(ev[11], 5.6) ); assert( eq(ev[12], 1.0) ); assert( eq(ev[13], 1.9) ); const CoinBigIndex * mi = smP->getVectorStarts(); assert( mi[0]==0 ); assert( mi[1]==5 ); assert( mi[2]==7 ); assert( mi[3]==9 ); assert( mi[4]==11 ); assert( mi[5]==14 ); const int * ei = smP->getIndices(); assert( ei[0] == 0 ); assert( ei[1] == 1 ); assert( ei[2] == 3 ); assert( ei[3] == 4 ); assert( ei[4] == 7 ); assert( ei[5] == 1 ); assert( ei[6] == 2 ); assert( ei[7] == 2 ); assert( ei[8] == 5 ); assert( ei[9] == 3 ); assert( ei[10] == 6 ); assert( ei[11] == 0 ); assert( ei[12] == 4 ); assert( ei[13] == 7 ); #else // OSICBC_TEST_MTX_STRUCTURE CoinPackedMatrix exmip1Mtx ; exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ; assert( exmip1Mtx.isEquivalent(*smP) ) ; #endif // OSICBC_TEST_MTX_STRUCTURE assert( smP->getMajorDim() == 5 ); assert( smP->getMinorDim() == 8 ); assert( smP->getNumElements() == 14 ); assert( smP->getSizeVectorStarts() == 6 ); } // Test adding several cuts, and handling of a coefficient of infinity // in the constraint matrix. { OsiCbcSolverInterface fim; std::string fn = mpsDir+"exmip1"; fim.readMps(fn.c_str(),"mps"); // exmip1.mps has 2 integer variables with index 2 & 3 fim.initialSolve(); OsiRowCut cuts[3]; // Generate one ineffective cut plus two trivial cuts int c; int nc = fim.getNumCols(); int *inx = new int[nc]; for (c=0;c(smP); // LL: assert( osmP!=NULL ); #ifdef OSICBC_TEST_MTX_STRUCTURE CoinRelFltEq eq; const double * ev = smP->getElements(); assert( eq(ev[0], 3.0) ); assert( eq(ev[1], 5.6) ); assert( eq(ev[2], 1.0) ); assert( eq(ev[3], 2.0) ); assert( eq(ev[4], 1.1) ); assert( eq(ev[5], 1.0) ); assert( eq(ev[6], -2.0) ); assert( eq(ev[7], 2.8) ); assert( eq(ev[8], -1.0) ); assert( eq(ev[9], 1.0) ); assert( eq(ev[10], 1.0) ); assert( eq(ev[11], -1.2) ); assert( eq(ev[12], -1.0) ); assert( eq(ev[13], 1.9) ); const CoinBigIndex * mi = smP->getVectorStarts(); assert( mi[0]==0 ); assert( mi[1]==2 ); assert( mi[2]==4 ); assert( mi[3]==6 ); assert( mi[4]==8 ); assert( mi[5]==10 ); assert( mi[6]==11 ); assert( mi[7]==12 ); assert( mi[8]==14 ); const int * ei = smP->getIndices(); assert( ei[0] == 0 ); assert( ei[1] == 4 ); assert( ei[2] == 0 ); assert( ei[3] == 1 ); assert( ei[4] == 1 ); assert( ei[5] == 2 ); assert( ei[6] == 0 ); assert( ei[7] == 3 ); assert( ei[8] == 0 ); assert( ei[9] == 4 ); assert( ei[10] == 2 ); assert( ei[11] == 3 ); assert( ei[12] == 0 ); assert( ei[13] == 4 ); #else // OSICBC_TEST_MTX_STRUCTURE CoinPackedMatrix &exmip1Mtx = BuildExmip1Mtx() ; assert( exmip1Mtx.isEquivalent(*smP) ) ; #endif // OSICBC_TEST_MTX_STRUCTURE assert( smP->getMajorDim() == 8 ); assert( smP->getMinorDim() == 5 ); assert( smP->getNumElements() == 14 ); assert( smP->getSizeVectorStarts() == 9 ); } //-------------- // Test rowsense, rhs, rowrange, matrixByRow, solver assignment { OsiCbcSolverInterface lhs; { OsiCbcSolverInterface siC1(m); const char * siC1rs = siC1.getRowSense(); assert( siC1rs[0]=='G' ); assert( siC1rs[1]=='L' ); assert( siC1rs[2]=='E' ); assert( siC1rs[3]=='R' ); assert( siC1rs[4]=='R' ); const double * siC1rhs = siC1.getRightHandSide(); assert( eq(siC1rhs[0],2.5) ); assert( eq(siC1rhs[1],2.1) ); assert( eq(siC1rhs[2],4.0) ); assert( eq(siC1rhs[3],5.0) ); assert( eq(siC1rhs[4],15.) ); const double * siC1rr = siC1.getRowRange(); assert( eq(siC1rr[0],0.0) ); assert( eq(siC1rr[1],0.0) ); assert( eq(siC1rr[2],0.0) ); assert( eq(siC1rr[3],5.0-1.8) ); assert( eq(siC1rr[4],15.0-3.0) ); const CoinPackedMatrix * siC1mbr = siC1.getMatrixByRow(); assert( siC1mbr != NULL ); #ifdef OSICBC_TEST_MTX_STRUCTURE const double * ev = siC1mbr->getElements(); assert( eq(ev[0], 3.0) ); assert( eq(ev[1], 1.0) ); assert( eq(ev[2], -2.0) ); assert( eq(ev[3], -1.0) ); assert( eq(ev[4], -1.0) ); assert( eq(ev[5], 2.0) ); assert( eq(ev[6], 1.1) ); assert( eq(ev[7], 1.0) ); assert( eq(ev[8], 1.0) ); assert( eq(ev[9], 2.8) ); assert( eq(ev[10], -1.2) ); assert( eq(ev[11], 5.6) ); assert( eq(ev[12], 1.0) ); assert( eq(ev[13], 1.9) ); const CoinBigIndex * mi = siC1mbr->getVectorStarts(); assert( mi[0]==0 ); assert( mi[1]==5 ); assert( mi[2]==7 ); assert( mi[3]==9 ); assert( mi[4]==11 ); assert( mi[5]==14 ); const int * ei = siC1mbr->getIndices(); assert( ei[0] == 0 ); assert( ei[1] == 1 ); assert( ei[2] == 3 ); assert( ei[3] == 4 ); assert( ei[4] == 7 ); assert( ei[5] == 1 ); assert( ei[6] == 2 ); assert( ei[7] == 2 ); assert( ei[8] == 5 ); assert( ei[9] == 3 ); assert( ei[10] == 6 ); assert( ei[11] == 0 ); assert( ei[12] == 4 ); assert( ei[13] == 7 ); #else // OSICBC_TEST_MTX_STRUCTURE CoinPackedMatrix exmip1Mtx ; exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ; assert( exmip1Mtx.isEquivalent(*siC1mbr) ) ; #endif // OSICBC_TEST_MTX_STRUCTURE assert( siC1mbr->getMajorDim() == 5 ); assert( siC1mbr->getMinorDim() == 8 ); assert( siC1mbr->getNumElements() == 14 ); assert( siC1mbr->getSizeVectorStarts()==6 ); assert( siC1rs == siC1.getRowSense() ); assert( siC1rhs == siC1.getRightHandSide() ); assert( siC1rr == siC1.getRowRange() ); // Change OSL Model by adding free row OsiRowCut rc; rc.setLb(-DBL_MAX); rc.setUb( DBL_MAX); OsiCuts cuts; cuts.insert(rc); siC1.applyCuts(cuts); siC1rs = siC1.getRowSense(); assert( siC1rs[0]=='G' ); assert( siC1rs[1]=='L' ); assert( siC1rs[2]=='E' ); assert( siC1rs[3]=='R' ); assert( siC1rs[4]=='R' ); assert( siC1rs[5]=='N' ); siC1rhs = siC1.getRightHandSide(); assert( eq(siC1rhs[0],2.5) ); assert( eq(siC1rhs[1],2.1) ); assert( eq(siC1rhs[2],4.0) ); assert( eq(siC1rhs[3],5.0) ); assert( eq(siC1rhs[4],15.) ); assert( eq(siC1rhs[5],0.0 ) ); siC1rr = siC1.getRowRange(); assert( eq(siC1rr[0],0.0) ); assert( eq(siC1rr[1],0.0) ); assert( eq(siC1rr[2],0.0) ); assert( eq(siC1rr[3],5.0-1.8) ); assert( eq(siC1rr[4],15.0-3.0) ); assert( eq(siC1rr[5],0.0) ); lhs=siC1; } // Test that lhs has correct values even though siC1 has gone out of scope const char * lhsrs = lhs.getRowSense(); assert( lhsrs[0]=='G' ); assert( lhsrs[1]=='L' ); assert( lhsrs[2]=='E' ); assert( lhsrs[3]=='R' ); assert( lhsrs[4]=='R' ); assert( lhsrs[5]=='N' ); const double * lhsrhs = lhs.getRightHandSide(); assert( eq(lhsrhs[0],2.5) ); assert( eq(lhsrhs[1],2.1) ); assert( eq(lhsrhs[2],4.0) ); assert( eq(lhsrhs[3],5.0) ); assert( eq(lhsrhs[4],15.) ); assert( eq(lhsrhs[5],0.0) ); const double *lhsrr = lhs.getRowRange(); assert( eq(lhsrr[0],0.0) ); assert( eq(lhsrr[1],0.0) ); assert( eq(lhsrr[2],0.0) ); assert( eq(lhsrr[3],5.0-1.8) ); assert( eq(lhsrr[4],15.0-3.0) ); assert( eq(lhsrr[5],0.0) ); const CoinPackedMatrix * lhsmbr = lhs.getMatrixByRow(); assert( lhsmbr != NULL ); #ifdef OSICBC_TEST_MTX_STRUCTURE const double * ev = lhsmbr->getElements(); assert( eq(ev[0], 3.0) ); assert( eq(ev[1], 1.0) ); assert( eq(ev[2], -2.0) ); assert( eq(ev[3], -1.0) ); assert( eq(ev[4], -1.0) ); assert( eq(ev[5], 2.0) ); assert( eq(ev[6], 1.1) ); assert( eq(ev[7], 1.0) ); assert( eq(ev[8], 1.0) ); assert( eq(ev[9], 2.8) ); assert( eq(ev[10], -1.2) ); assert( eq(ev[11], 5.6) ); assert( eq(ev[12], 1.0) ); assert( eq(ev[13], 1.9) ); const CoinBigIndex * mi = lhsmbr->getVectorStarts(); assert( mi[0]==0 ); assert( mi[1]==5 ); assert( mi[2]==7 ); assert( mi[3]==9 ); assert( mi[4]==11 ); assert( mi[5]==14 ); const int * ei = lhsmbr->getIndices(); assert( ei[0] == 0 ); assert( ei[1] == 1 ); assert( ei[2] == 3 ); assert( ei[3] == 4 ); assert( ei[4] == 7 ); assert( ei[5] == 1 ); assert( ei[6] == 2 ); assert( ei[7] == 2 ); assert( ei[8] == 5 ); assert( ei[9] == 3 ); assert( ei[10] == 6 ); assert( ei[11] == 0 ); assert( ei[12] == 4 ); assert( ei[13] == 7 ); #else // OSICBC_TEST_MTX_STRUCTURE /* This admittedly looks bogus, but it's the equivalent operation on the matrix for inserting a cut of the form -Inf <= +Inf (i.e., a cut with no coefficients). */ CoinPackedMatrix exmip1Mtx ; exmip1Mtx.reverseOrderedCopyOf(BuildExmip1Mtx()) ; CoinPackedVector freeRow ; exmip1Mtx.appendRow(freeRow) ; assert( exmip1Mtx.isEquivalent(*lhsmbr) ) ; #endif // OSICBC_TEST_MTX_STRUCTURE int md = lhsmbr->getMajorDim(); assert( md == 6 ); assert( lhsmbr->getNumElements() == 14 ); } } // Test add/delete columns { OsiCbcSolverInterface m; std::string fn = mpsDir+"p0033"; m.readMps(fn.c_str(),"mps"); double inf = m.getInfinity(); CoinPackedVector c0; c0.insert(0, 4); c0.insert(1, 1); m.addCol(c0, 0, inf, 3); m.initialSolve(); double objValue = m.getObjValue(); CoinRelFltEq eq(1.0e-2); assert( eq(objValue,2520.57) ); // Try deleting first column that's nonbasic at lower bound (0). int * d = new int[1]; CoinWarmStartBasis *cwsb = dynamic_cast(m.getWarmStart()) ; assert(cwsb) ; CoinWarmStartBasis::Status stati ; int iCol ; for (iCol = 0 ; iCol < cwsb->getNumStructural() ; iCol++) { stati = cwsb->getStructStatus(iCol) ; if (stati == CoinWarmStartBasis::atLowerBound) break ; } d[0]=iCol; m.deleteCols(1,d); delete [] d; d=NULL; m.resolve(); objValue = m.getObjValue(); assert( eq(objValue,2520.57) ); // Try deleting column we added. If basic, go to initialSolve as deleting // basic variable trashes basis required for warm start. iCol = m.getNumCols()-1; cwsb = dynamic_cast(m.getWarmStart()) ; stati = cwsb->getStructStatus(iCol) ; m.deleteCols(1,&iCol); if (stati == CoinWarmStartBasis::basic) { m.initialSolve() ; } else { m.resolve(); } objValue = m.getObjValue(); assert( eq(objValue,2520.57) ); } // Test matt if (fopen("../Cbc/matt.mps","r")) { OsiCbcSolverInterface m; m.readMps("../Cbc/matt","mps"); m.setHintParam(OsiDoPresolveInResolve, true, OsiHintDo); m.resolve(); std::vector rays = m.getDualRays(1); std::cout << "Dual Ray: " << std::endl; for(int i = 0; i < m.getNumRows(); i++){ if(fabs(rays[0][i]) > 0.00001) std::cout << i << " : " << rays[0][i] << std::endl; } std::cout << "isProvenOptimal = " << m.isProvenOptimal() << std::endl; std::cout << "isProvenPrimalInfeasible = " << m.isProvenPrimalInfeasible() << std::endl; delete [] rays[0]; } // Build a model { OsiCbcSolverInterface model; std::string fn = mpsDir+"p0033"; model.readMps(fn.c_str(),"mps"); // Point to data int numberRows = model.getNumRows(); const double * rowLower = model.getRowLower(); const double * rowUpper = model.getRowUpper(); int numberColumns = model.getNumCols(); const double * columnLower = model.getColLower(); const double * columnUpper = model.getColUpper(); const double * columnObjective = model.getObjCoefficients(); // get row copy CoinPackedMatrix rowCopy = *model.getMatrixByRow(); const int * column = rowCopy.getIndices(); const int * rowLength = rowCopy.getVectorLengths(); const CoinBigIndex * rowStart = rowCopy.getVectorStarts(); const double * element = rowCopy.getElements(); // solve model.initialSolve(); // Now build new model CoinModel build; // Row bounds int iRow; for (iRow=0;iRow=0;iRow--) { int start = rowStart[iRow]; for (int j=start;j=0) { int iColumn = triple.column(); if (iColumn*2setLogLevel(0); m.getModelPtr()->messageHandler()->setLogLevel(0); m.branchAndBound(); } // branch and bound using CbcModel!!!!!!! { OsiCbcSolverInterface mm; OsiCbcSolverInterface m(&mm); std::string fn = mpsDir+"p0033"; m.readMps(fn.c_str(),"mps"); m.initialSolve(); m.branchAndBound(); } #ifdef COIN_HAS_OSL // branch and bound using OSL { OsiOslSolverInterface mmm; OsiCbcSolverInterface mm(&mmm); CbcStrategyNull strategy; OsiCbcSolverInterface m(&mm,&strategy); std::string fn = mpsDir+"p0033"; m.readMps(fn.c_str(),"mps"); //m.initialSolve(); m.branchAndBound(); } #endif // Do common solverInterface testing { OsiCbcSolverInterface m; OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir); } { OsiCbcSolverInterface mm; OsiCbcSolverInterface m(&mm); OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir); } #ifdef COIN_HAS_OSL { OsiOslSolverInterface mm; OsiCbcSolverInterface m(&mm); OsiSolverInterfaceCommonUnitTest(&m, mpsDir,netlibDir); } #endif }