// $Id$ #include "flopc.hpp" using namespace flopc; #include "OsiCbcSolverInterface.hpp" /* FLOPC++ implementation of a financial planning and control model from "StAMPL: A filtration-oriented modeling toll for stochastic programming" by Fourer and Lopes The FLOPC++ formulation is in many aspects similar to the StAMPL solution, it is however different in that the scenario generation is recursive and is not separated from the model. The formulation could off course be improoved by accepting data (4 and 80) as parameters, etc.. But it shows that multistage stochastic programs can conviently be formulated with FLOPC++ and that extensions or tools built on top of FLOPC++ could make the modelling of this type of models even easier */ enum { STOCKS, BONDS, numINSTR}; class Stage { public: Stage(Stage* p, int numINSTR, double probability=0.5) : parent(p), INSTR(numINSTR), Buy(INSTR), pathprob(probability) { if (parent != 0) pathprob *= parent->pathprob; } MP_set INSTR; MP_variable Buy; MP_expression Final_wealth; Stage* parent; vector children; double pathprob; }; class Stage_1 : public Stage { public: MP_data initial_wealth; MP_constraint InvestAll; Stage_1(int numINSTR, double w, MP_data& Good, MP_data& Bad, int n); }; class Stage_i : public Stage { public: MP_constraint ReinvestAll; Stage_i(int numINSTR, MP_data& Return, int n, Stage* p, MP_data& Good, MP_data& Bad); }; class Stage_n : public Stage { public: MP_variable Shortage, Overage; MP_constraint ReinvestAll; Stage_n(int numINSTR, MP_data& Return, double goal, Stage* p) : Stage(p,numINSTR) { ReinvestAll() = sum(INSTR, parent->Buy(INSTR) * Return(INSTR)) == goal - Shortage() + Overage(); Final_wealth = pathprob*(Overage() - 4*Shortage()); } }; Stage_1::Stage_1(int numINSTR, double w, MP_data& Good, MP_data& Bad, int n) : Stage(0, numINSTR, 1) { initial_wealth() = w; InvestAll() = sum(INSTR, Buy(INSTR)) == initial_wealth(); children.push_back(new Stage_i(numINSTR, Good, n-1, this, Good, Bad)); children.push_back(new Stage_i(numINSTR, Bad, n-1, this, Good, Bad)); maximize(children[0]->Final_wealth + children[1]->Final_wealth); } Stage_i::Stage_i(int numINSTR, MP_data& Return, int n, Stage* p, MP_data& Good, MP_data& Bad) : Stage(p, numINSTR) { ReinvestAll() = sum(INSTR, parent->Buy(INSTR) * Return(INSTR)) == sum(INSTR, Buy(INSTR)); if (n==2) { children.push_back(new Stage_n(numINSTR, Good, 80, this)); children.push_back(new Stage_n(numINSTR, Bad, 80, this)); } else { children.push_back(new Stage_i(numINSTR, Good, n-1, this, Good, Bad)); children.push_back(new Stage_i(numINSTR, Bad, n-1, this, Good, Bad)); } Final_wealth = children[0]->Final_wealth + children[1]->Final_wealth; } main() { const int numStages = 4; MP_model::getDefaultModel().setSolver(new OsiCbcSolverInterface); MP_model::getDefaultModel().verbose(); MP_set INSTR(numINSTR); MP_data GoodReturn(INSTR); MP_data BadReturn(INSTR); GoodReturn(STOCKS) = 1.25; GoodReturn(BONDS) = 1.14; BadReturn(STOCKS) = 1.06; BadReturn(BONDS) = 1.12; Stage_1 M(numINSTR, 55, GoodReturn, BadReturn, numStages); M.Buy.display(); } // part of the expected output // FlopCpp: Number of constraint blocks: 15 // FlopCpp: Number of individual constraints: 15 // FlopCpp: Number of variable blocks: 23 // FlopCpp: Number of individual variables: 30 // FlopCpp: Number of non-zeroes (including rhs): 67 // FlopCpp: Generation time: 0 // FlopCpp: Optimal obj. value = -1.51408 // FlopCpp: Solver(m, n, nz) = 15 30 58 // 0 41.4793 // 1 13.5207