
1 Introduction
FlopC++ is a modelling language for linear and mixed-integer programming written in
the general programming language C++. With the stochastic extensions to FlopC++
it is also possible to model stochastic programs with recourse. It supports independent
random variable based and scenario based stochastic programs. The website can be
found at https://projects.coin-or.org/FlopC++. Information about the use of
FlopC++ to model linear and mixed-integer programs is available at the website. This
document is concerned with the use of FlopC++ to model stochastic programs with
recourse. Knowledge about the use of FlopC++ is desirable but not necessary. Basic
knowledge about stochastic programming is required.

2 Installation
You have several options to install FlopC++.

2.1 Linux
Under Linux just follow these steps to compile FlopC++ to obtain a library.

1. svn co https://projects.coin-or.org/svn/FlopC++/branches/stochastic coin-FlopCpp

2. cd coin-FlopCpp/ThirdParty

3. ./get.ThirdParty

4. cd ..

5. ./configure

6. make

7. make test

8. make install

Step 1 issues the subversion command to obtain the source code and store it in
the directory coin-FlopCpp. Besides FLOPC++, the sources of these required Coin
projects will also be retrieved.

Step 3 gets the ThirdParty libraries boost, googletest and google-glog from the web
and unpacks them.
Step 5 runs a configure script that generates the make file.
Step 6 builds the libraries of all the required Coin-OR projects, the external libraries

and the FLOPC++ library.
Step 7 builds and runs the FLOPC++ unit test program.
Step 8 installs libraries, executables and header files in the directories coin-FlopCpp/lib,

coin-FlopCpp/bin and coin-FlopCpp/include.

1

https://projects.coin-or.org/FlopC++
thttps://projects.coin-or.org/FlopC++/browser/trunk/Externals?format=raw
http://www.boost.org/
http://code.google.com/p/googletest/
http://code.google.com/p/google-glog/

It may be necessary to copy the folder ThirdParty/boost/boost to the directory where
the install command has installed the include files, this is coin-FlopCpp/include if you
follow the procedure above.

2.2 Windows
If you have Visual Studio 2008 installed, you can use the solution file FlopCpp/MsVisu-
alStudio/v9/FlopCpp.sln to load the solution. Then you can start a new C++ project
and set a project dependency on libflopcpp.

2.3 Bleeding Edge
You can download the current development version with mercurial at https://dsor-
mercurial.upb.de/flopcpp by issuing the command hg clone https://dsor-mercurial.upb.de/flopcpp.
You have to enter the username “anonymous” as well as password “anonymous”.

2.4 Troubleshooting
This section covers some errors that are likely to happen on different architectures.

Linux

1. The UnitTests of FlopCpp fail. Answer: Reduce the optimization level from O3
to O2 in the Makefile residing in FlopCpp/test.

3 An illustrative example
An investment problem [1] illustrates the use of FlopC++ to model multistage stochastic
programs with recourse, that uses scenarios. The program is used to maximize the
wealth of an investor after a given number of periods. In each period the investor has
to buy assets with his available money. In the next period his investments return some
money which must then be reinvested. An initial wealth level and a goal are given up
front. An excess of the goal is encouraged in the objective function but a shortage is
penalized. In the following all the important statements get explained one by one.

Line 1 defines a MP_model with an associated solver, in this case an instance of Clp.
Every program should start with an explicit MP_model so that you can reference it
easily later on, instead of relying on the global default model. The parameters for
initialWealth and the goal are defined in the lines 2 to 4. The number of stages is
defined via the so called enum hack in line 6. The stage set is defined in line 7. The
same technique is used to define the scenario set and the set of assets. The array that
holds the scenario values for all the eight scenarios and the four stage (three stages
actually, as there are never random variables in the first stage) is declared in line 12.
The values for the returns of the investments in the second stage are given in line 16
for the first asset and in line 17 for the second asset. This is repeated for the third and
fourth stage. The array that holds the stochastic values is then given to the random

2

http://mercurial.selenic.com/
https://dsor-mercurial.upb.de/flopcpp
https://dsor-mercurial.upb.de/flopcpp
https://projects.coin-or.org/Clp
http://www.linuxtopia.org/online_books/programming_books/thinking_in_c++/Chapter08_023.html

parameter returns in line 28. The MP_random_data expects a pointer to a double array,
therefore one has to take the adress of the first element of the array with the & operator.
The constraints of the model are declared first in the lines 34 to 38. All the constraints
without the stage set T are pure first stage constraints. The allocationConstr in line 41
is a constraint that holds at every stage, it is therefore indexed over T. The constraint
returnConstr on the other hand is a constraint that does not hold for the first stage.
Therefore it is indexed over T+1, so the first stage is left out. Notice that you have to
use the T+1 also as the index on the right side, if you want to index variables with
the same stage as the constraint. It makes no sense to adress variables in a constraint
with a greater stage than the constraint stage. As you can see from this example you
can still access earlier stages by reducing the index expression. Most often you connect
variables from two adjacent stages, like it is the case with the returnConstr in line 42.

The shortage and overage variables are connected in constraint goalConstr on line 44.
This constraint only holds in the last stage, therefore it is indexed using T.last (). The
same holds for the objective in line 45 which is set in line 47. From this statement on
the model knows the objective. The direction of the optimization is not known at this
point but has to be provided when the solve () method gets called, in line 49. If the
model is not attached to the solver when you call the solve () method, it gets attached
automatically, so the statement in line 48 is not needed, unless you intend to solve the
model again (with a new set of sampled random variates if you use random variables
in your formulation).

4 A more advanced example
To be done. Contains usage of random variables.

5 Classes and methods

5.1 Language constructs
The C++ classes necessary for the formulation of stochastic programs are described in
the following.

MP_stage A special set that enumerates the available stages of the model.

MP_scenario_set A special set that enumerates all available scenarios. It is only
specified in the case of a scenario based problem. It is never used anywhere else
by the user expect for indexing an array that holds values for the probabilities
for the scenarios.

MP_random_data An indexable entity that contains either RandomVariable’s or the
result of an algebraic function applied on MP_data and MP_random_data. If the
user wants to model a scenario based problem it can be feed directly with an
array of double arrays, where the values for each scenario are stored.

3

1 MP_model investmentModel (new Os iC lpSo l v e r In t e r f a c e ()) ;
2 MP_data in i t i a lWea l th , goa l ;
3 i n i t i a lWea l t h () = 55 ; // s e t i n i t i a l data
4 goa l () = 80 ;
5
6 enum {numStage=4};
7 MP_stage T(numStage) ;
8 enum {numScen=8};
9 MP_scenario_set scen (numScen) ;

10 enum { asset1 , as se t2 , numAssets=2};
11 MP_set a s s e t s (numAssets) ;
12 double s c e n a r i o s [numStage −1] [numAssets] [numScen]=
13 {//T
14 {// a s s e t s
15 // s tage 2
16 { 1 . 2 5 , 1 . 2 5 , 1 . 2 5 , 1 . 2 5 , 1 . 0 6 , 1 . 0 6 , 1 . 0 6 , 1 . 0 6 } , // asset1 , scen 1 to 8

17 { 1 . 1 4 , 1 . 1 4 , 1 . 1 4 , 1 . 1 4 , 1 . 1 6 , 1 . 1 6 , 1 . 1 6 , 1 . 1 6 } // asset2 , scen 1 to 8

18 } ,
19 {// s tage 3
20 { 1 . 2 1 , 1 . 2 1 , 1 . 0 7 , 1 . 0 7 , 1 . 1 5 , 1 . 1 5 , 1 . 0 6 , 1 . 0 6 } ,
21 { 1 . 1 7 , 1 . 1 7 , 1 . 1 2 , 1 . 1 2 , 1 . 1 8 , 1 . 1 8 , 1 . 1 2 , 1 . 1 2 }
22 } ,
23 {// s tage 4
24 { 1 . 2 6 , 1 . 0 7 , 1 . 2 5 , 1 . 0 6 , 1 . 0 5 , 1 . 0 6 , 1 . 0 5 , 1 . 0 6 } ,
25 { 1 . 1 3 , 1 . 1 4 , 1 . 1 5 , 1 . 1 2 , 1 . 1 7 , 1 . 1 5 , 1 . 1 4 , 1 . 1 2 }
26 }
27 } ;
28 MP_random_data r e tu rn s (& s c ena r i o s [0] [0] [0] , T, a s s e t s) ; // crea t e random

parameter " re turns "
29
30 MP_variable x (T, a s s e t s) ;
31 MP_variable wealth (T) ;
32 MP_variable shor tage (T) , overage (T) ; // only needed in l a s t s t age
33
34 MP_constraint
35 in i t i a lWea l thConst r ,
36 returnConstr (T) ,
37 a l l o c a t i onCon s t r (T) ,
38 goalConstr (T) ;
39
40 in i t i a lWea l thCons t r () = sum(as s e t s , x (0 , a s s e t s)) == in i t i a lWea l t h () ;
41 a l l o c a t i onCons t r (T) = sum(as s e t s , x (T, a s s e t s)) == wealth (T) ;
42 returnConstr (T+1) = sum(as s e t s , r e tu rn s (T+1, a s s e t s) ∗x (T, a s s e t s)) ==

wealth (T+1) ; // only v a l i d f o r s t age 2 to 4
43
44 goalConstr (T. l a s t ()) = wealth (T. l a s t ()) == goa l () + overage (T. l a s t ()) −

shor tage (T. l a s t ()) ; // only v a l i d in l a s t s t age
45 MP_expression valueFunct ion (−1.3∗ shor tage (T. l a s t ()) + 1 .1∗ overage (T. l a s t

())) ;
46
47 investmentModel . s e tOb j e c t i v e (valueFunct ion) ;
48 investmentModel . attach (investmentModel . So lve r) ;
49 investmentModel . s o l v e (MP_model : :MAXIMIZE) ;

Listing 1: Investment Example in FlopC++

4

5.2 Random variable hierarchy
There are some predefined random variables present in FlopC++ that cover some impor-
tant distributions like the normal, lognormal, exponential and continuous distributions.
It is fairly easy to add own random distributions, by looking at the implementation of
these predefined distributions. You can take a look at the doxygen documentation to
see what random variables are already available to you.

5.3 Methods
The following methods can be called on the MP_model to enforce a specific behaviour.

setSampleOnlyScenarioGeneration(bool sampleOnly, int defaultSampleSize) If the
user does not want a combine all-against-all approach for independent random
variables in the scenario generation process, but instead only wants to sample
from every random variable exactly defaultSampleSize many variates, then this
method should be called with sampleSize = true. This allows the user to precisely
define the number of scenarios, given random variables with distributions.

6 Bibliography

References
[1] Michal Kaut. COIN-OR Tools for Stochastic Programming. In Miloš

Kopa, editor, On Selected Software for Stochastic Programming, pages 88–116,
Prague, 2008. matfyzpress. URL http://www.springerlink.com/index/10.
1007/978-0-387-75714-8.

5

http://www.springerlink.com/index/10.1007/978-0-387-75714-8
http://www.springerlink.com/index/10.1007/978-0-387-75714-8

	Introduction
	Installation
	Linux
	Windows
	Bleeding Edge
	Troubleshooting

	An illustrative example
	A more advanced example
	Classes and methods
	Language constructs
	Random variable hierarchy
	Methods

	Bibliography

