/* $Id$ * * Name: exprCeil.hpp * Author: Pietro Belotti * Purpose: definition of ceiling * * (C) Pietro Belotti, 2011. * This file is licensed under the Eclipse Public License (EPL) */ #ifndef COUENNE_EXPRCEIL_HPP #define COUENNE_EXPRCEIL_HPP #include "CouenneExpression.hpp" namespace Couenne { /// class ceiling, \f$ \lceil f(x) \rceil \f$ class exprCeil: public exprUnary { public: /// constructor, destructor exprCeil (expression *arg): exprUnary (arg) {} /// cloning method expression *clone (Domain *d = NULL) const {return new exprCeil (argument_ -> clone (d));} //// the operator's function inline unary_function F () {return ceil;} /// print operator std::string printOp () const {return "ceil";} /// return l-2 norm of gradient at given point inline CouNumber gradientNorm (const double *x) { return (argument_ -> Index () < 0) ? 0. : fabs (x [argument_ -> Index ()]); } /// obtain derivative of expression expression *differentiate (int index); /// Get lower and upper bound of an expression (if any) void getBounds (expression *&, expression *&); /// Get value of lower and upper bound of an expression void getBounds (CouNumber &lb, CouNumber &ub); /// generate equality between *this and *w void generateCuts (expression *w, //const OsiSolverInterface &si, OsiCuts &cs, const CouenneCutGenerator *cg, t_chg_bounds * = NULL, int = -1, CouNumber = -COUENNE_INFINITY, CouNumber = COUENNE_INFINITY); /// code for comparisons virtual enum expr_type code () {return COU_EXPRCEIL;} /// implied bound processing bool impliedBound (int index, CouNumber *l, CouNumber *u, t_chg_bounds *chg, enum auxSign = expression::AUX_EQ) { bool impl = true; return impl; } /// Set up branching object by evaluating many branching points for /// each expression's arguments virtual CouNumber selectBranch (const CouenneObject *obj, const OsiBranchingInformation *info, expression * &var, double * &brpts, double * &brDist, // distance of current LP // point to new convexifications int &way) {return 0.;} /// closest feasible points in function in both directions virtual void closestFeasible (expression *varind, expression *vardep, CouNumber& left, CouNumber& right) const; /// can this expression be further linearized or are we on its /// concave ("bad") side? virtual bool isCuttable (CouenneProblem *problem, int index) const {return false;} /// either CONVEX, CONCAVE, AFFINE, or NONCONVEX //virtual enum convexity convexity () const; }; } #endif