/* $Id$ * * Name: exprAbs.hpp * Author: Pietro Belotti * Purpose: definition of the absolute value of a function * * (C) Carnegie-Mellon University, 2006-10. * This file is licensed under the Eclipse Public License (EPL) */ #ifndef COUENNE_EXPRABS_HPP #define COUENNE_EXPRABS_HPP #include #include "CouenneExprUnary.hpp" #include "CouenneExprConst.hpp" namespace Couenne { /// class for \f$ |f(x)| \f$ class COUENNELIB_EXPORT exprAbs: public exprUnary { public: /// Constructor exprAbs (expression *al): exprUnary (al) {} //< non-leaf expression, with argument list /// The operator's function inline unary_function F () {return fabs;} /// cloning method expression *clone (Domain *d = NULL) const {return new exprAbs (argument_ -> clone (d));} /// output std::string printOp () const {return "abs";} /// return l_2 norm of gradient at given point inline CouNumber gradientNorm (const double *x) {return ((argument_ -> Index () < 0) ? 0. : 1.);} /// differentiation expression *differentiate (int index); /// Get lower and upper bound of an expression (if any) virtual void getBounds (expression *&, expression *&); /// Get value of lower and upper bound of an expression (if any) virtual void getBounds (CouNumber &lb, CouNumber &ub); /// generate equality between *this and *w void generateCuts (expression *w, //const OsiSolverInterface &si, OsiCuts &cs, const CouenneCutGenerator *cg, t_chg_bounds * = NULL, int = -1, CouNumber = -COUENNE_INFINITY, CouNumber = COUENNE_INFINITY); /// code for comparisons enum expr_type code () {return COU_EXPRABS;} /// is this expression integer? inline bool isInteger () {return argument_ -> isInteger ();} /// implied bound processing bool impliedBound (int, CouNumber *, CouNumber *, t_chg_bounds *, enum auxSign = expression::AUX_EQ); /// set up branching object by evaluating many branching points for /// each expression's arguments virtual CouNumber selectBranch (const CouenneObject *obj, const OsiBranchingInformation *info, expression * &var, double * &brpts, double * &brDist, // distance of current LP // point to new convexifications int &way); /// closest feasible points in function in both directions virtual void closestFeasible (expression *varind, expression *vardep, CouNumber& left, CouNumber& right) const; /// can this expression be further linearized or are we on its /// concave ("bad") side virtual bool isCuttable (CouenneProblem *problem, int index) const; /// either CONVEX, CONCAVE, AFFINE, or NONCONVEX //virtual enum convexity convexity () const; }; } #endif