
Optimization Services 1.0 User’s Manual

Robert Fourer, Jun Ma, Kipp Martin, Wayne Sheng

November 1, 2007

Abstract

This is the User’s Manual for the Optimization Services (OS) project. The objective of (OS)
is to provide a general framework consisting of a set of standards for representing optimization
instances, results, solver options, and communication between clients and solvers in a distributed
environment using Web Services. This COIN-OR project provides C++ and Java source code
for libraries and executable programs that implement OS standards. The OS library includes
a robust solver and modeling language interface (API) for linear, nonlinear and other types of
optimization problems. Also included is the C++ source code for a command line executable
OSSolverService for reading problem instances (OSiL format, nl format, MPS format) and
calling a solver either locally or on a remote server. Finally, both Java source code and a Java
war, are provided for users who wish to set up a solver service on a server running Apache
Tomcat. See the Optimization Services (OS) Home Site www.optimizationservices.org and
the COIN-OR Trac page projects.coin-or.org/OS for more information.

1

Contents

1 The Optimization Services (OS) Project 5

2 Quick Roadmap 5

3 Downloading the OS Project 6
3.1 Obtaining OS Source Code Using Subversion (SVN) 6
3.2 Obtaining the OS Source Code From a Tarball or Zip File 7
3.3 Obtaining the Binaries . 7

4 Building and Testing the OS Project 10
4.1 Building the OS Project on Unix/Linux Systems . 10
4.2 Building the OS Project on Windows . 12

4.2.1 Microsoft Visual Studio . 12
4.2.2 Cygwin . 13
4.2.3 MinGW . 14
4.2.4 MSYS . 15

4.3 VPATH Installations . 16
4.4 Using Ipopt . 16
4.5 Third-Party Software . 17

4.5.1 AMPL . 18
4.5.2 Cplex . 19
4.5.3 GLPK . 19
4.5.4 Knitro . 19
4.5.5 LINDO . 20
4.5.6 MATLAB . 20
4.5.7 Library Paths . 20

4.6 Bug Reporting . 20
4.7 Documentation . 20
4.8 Platforms . 21

5 The OS Project Components 22

6 OS Protocols 24

7 The OS Library Components 29
7.1 OSAgent . 29
7.2 OSCommonInterfaces . 29

7.2.1 The OSInstance Class . 29
7.2.2 Creating an OSInstance Object . 29
7.2.3 Mapping Rules . 30
7.2.4 The OSExpressionTree OSnLNode Classes . 32

7.3 OSModelInterfaces . 34
7.3.1 Converting MPS Files . 34
7.3.2 Converting AMPL nl Files . 34
7.3.3 Using MATLAB . 35

7.4 OSParsers . 37
7.5 OSSolverInterfaces . 38

2

7.6 OSUtils . 39

8 The OSInstance API 40
8.1 Get Methods . 40
8.2 Set Methods . 41
8.3 Calculate Methods . 41

9 The OS Algorithmic Differentiation Implementation 41
9.1 Algorithmic Differentiation: Brief Review . 41
9.2 Using OSInstance Methods: Low Level Calls . 42

9.2.1 First Derivative Reverse Sweep Calculations 46
9.2.2 Second Derivative Reverse Sweep Calculations 46

9.3 Using OSInstance Methods: High Level Calls . 47
9.3.1 Sparsity Methods . 47
9.3.2 Function Evaluation Methods . 48
9.3.3 Gradient Evaluation Methods . 50
9.3.4 Hessian Evaluation Methods . 51

10 The OSSolverService 51
10.1 OSSolverService Input Parameters . 51
10.2 Solving Problems Locally . 53
10.3 Solving Problems Remotely with Web Services . 54

10.3.1 The solve Service Method . 55
10.3.2 The send Service Method . 56
10.3.3 The retrieve Service Method . 58
10.3.4 The getJobID Service Method . 59
10.3.5 The knock Service Method . 59
10.3.6 The kill Service Method . 61
10.3.7 Summary . 61

11 Setting up a Solver Service with Tomcat 62

12 Examples 65
12.1 AMPL Client: Hooking AMPL to Solvers . 65
12.2 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Methods . . . 66
12.3 File Upload: Using a File Upload Package . 66
12.4 Instance Generator: Using the OSInstance API to Generate Instances 68
12.5 osTestCode . 69

13 Appendix 69
13.1 Building a Model in MATLAB . 69
13.2 OSiL representation for problem given in (1)–(4) . 71
13.3 OSiL representation for problem given in (20)–(23) 73

List of Figures

1 The OS project root directory. 8
2 The OS binary distribution. 9
3 The OS directory. 23

3

4 The <variables> element for the example (1)–(4). 25
5 The Variables complexType in the OSiL schema. 25
6 The Variable complexType in the OSiL schema. 26
7 The <linearConstraintCoefficients> element for constraints (2) and (3). 27
8 The <quadraticCoefficients> element for constraint (2). 27
9 The <nl> element for the nonlinear part of the objective (1). 28
10 Creating an OSInstance Object . 30
11 The OSInstance class . 30
12 The InstanceData class . 30
13 The <variables> element as an OSInstance object 31
14 Conceptual expression tree for the nonlinear part of the objective (1). 32
15 The function calculation method for the “plus” node class with polymorphism 33
16 A local call to solve. 54
17 A remote call to solve. 55
18 Downloading the instance from a remote source. 57
19 The OS Communication Methods . 63

List of Tables

1 Tested Platforms for Solvers . 21
2 Platform Description . 21

4

1 The Optimization Services (OS) Project

The objective of Optimization Services (OS) is to provide a general framework consisting of a set
of standards for representing optimization instances, results, solver options, and communication
between clients and solvers in a distributed environment using Web Services. This COIN-OR
project provides source code for libraries and executable programs that implement OS standards.
See the COIN-OR Trac page projects.coin-or.org/OS or the Optimization Services (OS) Home
Site www.optimizationservices.org for more information. The OS project provides the following:

1. A set of XML based standards for representing optimization instances (OSiL), optimization
results (OSrL), and optimization solver options (OSoL). There are other standards, but these
are the main ones. The schemas for these standards are described in Section 6.

2. A robust solver and modeling language interface (API) for linear and nonlinear optimization
problems. Corresponding to the OSiL problem instance representation there is an in-memory
object, OSInstance, along with a set of get(), set(), and calculate() methods for accessing
and creating problem instances. This is a very general API for linear, integer, and nonlinear
programs. Extensions for other major types of optimization problems are also in the works.
Any modeling language that can produce OSiL can easily communicate with any solver that
uses the OSInstance API. The OSInstance object is described in more detail in Section 8. The
nonlinear part of the API is based on the COIN-OR project projects.coin-or.org/CppAD
by Brad Bell but is written in a very general manner and could be used with other algorithmic
differentiation packages. More detail on algorithmic differentiation is provided in Section 9.

3. A command line executable OSSolverService for reading problem instances (OSiL format,
AMPL nl format, MPS format) and calling a solver either locally or on a remote server. This
is described in Section 10.

4. Utilities that convert AMPL nl files into the OSiL XML format and MPS files into the OSiL
XML format. This is described in Section 7.3.

5. Standards that facilitate the communication between clients and optimization solvers using
Web Services. In Section 7.1 we describe the OSAgent part of the OS library that is used to
create Web Services SOAP packages with OSiL instances and contact a server for solution.

6. An executable program amplClient that is designed to work with the AMPL modeling lan-
guage. The amplClient appears as a “solver” to AMPL and, based on options given in
AMPL, contacts solvers either remotely or locally to solve instances created in AMPL. This
is described in Section 12.1.

7. Server software that works with Apache Tomcat and Apache Axis. This software uses Web
Services technology and acts as middleware between the client that creates the instance, and
solver on the server that optimizes the instance and returns the result. This is illustrated in
Section 11

2 Quick Roadmap

If you want to:

• Download the OS source code – see Section 3.

5

• Build the OS project from the source code – see Section 4.

• Use the OS library to build model instances or use solver APIs – see Sections 7.3, 7.5, and 8.

• Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely – see Section 10.

• Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, Knitro, or LINDO – see Section 12.1.

• Build a remote solver service using Apache Tomcat – see Section 11.

• Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally – see Section 7.3.3.

• Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) –
see Section 9.

3 Downloading the OS Project

The OS project is an open-source project with source code under the Common Public License
(CPL). This project was created by Robert Fourer, Jun Ma, and Kipp Martin. The code has
been written primarily by Jun Ma, Kipp Martin, Robert Fourer, and Huanyuan Sheng. Jun Ma
and Kipp Martin are the COIN project leaders for OS. Below we describe different methods for
obtaining the C++ source code or the binaries.

3.1 Obtaining OS Source Code Using Subversion (SVN)

The C++ source code can be obtained using the Subversion version control package. Users with
Unix operating systems will most likely have a command line svn client. If an svn client is not
present, see http://subversion.tigris.org to download an svn client. For Windows users we
recommend the SVN client TortoiseSVN. See tortoisesvn.tigris.org. The TortoiseSVN client
is integrated within the Windows Explorer.

For Users on a Unix system such as Linux, Solaris, Mac OS X, etc., the source code is obtained
as follows. In a command window execute:

svn co https://projects.coin-or.org/svn/OS/releases/1.0.0 COIN-OS

It is possible that on some systems you may get a message such as:

Error validating server certificate for ’https://projects.coin-or.org:443’:
- The certificate is not issued by a trusted authority. Use the

fingerprint to validate the certificate manually!
Certificate information:
- Hostname: projects.coin-or.org
- Valid: from Jun 10 22:51:18 2007 GMT until Jun 15 21:00:28 2009 GMT
- Issuer: 07969287, http://certificates.godaddy.com/repository, GoDaddy.com, In
c., Scottsdale, Arizona, US
- Fingerprint: f7:26:0f:bb:e1:94:a5:23:7f:5c:cb:c3:9a:c4:74:51:e5:c7:4d:29
(R)eject, accept (t)emporarily or accept (p)ermanently?

6

If so, select (p) and you should not get this message again.
On Windows with TortoiseSVN, create a directory COIN-OS in the desired location and right-

click on this directory. Select the menu item SVN Checkout ... and in the textbox, URL of
Repository give the URL for the version of the OS project you wish to checkout, e.g. https://projects.coin-
or.org/svn/OS/stable/1.0.

Now build the project as described in Section 4.
For the rest of this documentation, we assume that COIN-OS is the name of the root directory

of the OS project and that the user has defined an environment variable OS that is the path
to COIN-OS. The COIN-OS directory structure is illustrated in Figure 1. OS source code is mainly
contained inside of the OS subdirectory. Other first level subdirectories are mostly external projects
(COIN-OR or third party) that the OS project depend on.

For more information on downloading the OS project or other COIN-OR projects using SVN see
https://projects.coin-or.org/BuildTools/wiki/user-download#DownloadingtheSourceCode.

The Java source code for the setting up a solver service with Apache Tomcat is checked out as
follows:

svn co https://projects.coin-or.org/svn/branches/OSjava OSJava

For more detail on running a Tomcat solver service see Section 11.

3.2 Obtaining the OS Source Code From a Tarball or Zip File

The OS source code can also be obtained from either a tarball or zip file. This may be preferred
for users who are not managing other COIN-OR projects wish to only work with periodic release
versions of the code. In order to obtain the code from a Tarball or Zip file do the following.

Step 1: In a browser go the link http://www.coin-or.org/Tarballs/OS/. Listed at this page
are files in the format:

OS-release_number.tgz
OS-release_number.zip

Step 2: Click on either the tgz or zip file and download to the desired directory.

Step 3: Upack the files. For tgz do the following at the command line:

gunzip OS-release_number.tgz
tar -xvf OS-release_number.tar

Windows users should be able to double click on the file OS-release_number.zip and have the
directory unpacked.

Step 4: Rename OS-release_number to COIN-OS.
Now build the project as described in Section 4.

3.3 Obtaining the Binaries

If the user does not wish to compile source code, the OS library, OSSolverService executable, and
Tomcat server software configuration are available at http://www.coin-or.org/Binaries/OS in
binary format. In the binary OS root there are cpp and java directories for the compiled C++
and Java code.

7

Figure 1: The OS project root directory.

8

Figure 2: The OS binary distribution.

In the cpp directory you will find binaries for the OS library (see Section 7), along with the
necessary COIN-OR supporting libraries, and the OSSolverService (see Section 10) executable.
All the files are packaged together as a tgz file for Unix distributions and zip file for Windows.
The distribution follows the following naming convention:

OS-release_number-operating_system-chip-compiler-tgz (zip)

For example, Release 1.0 on Linux is

OS-1.0-linux-ix86-gcc3.4.tgz

and on Windows

OS-1.0-win32-msvc-v7.zip

After unpacking the tgz or zip archives, the files in the resulting OS binary distribution are
illustrated in Figure 2. In the bin directory is the executable file OSSolverService. r any other
related COIN-OR executables. The doc directory contains this document, osUsersManual_1.pdf.
In the include directory are the header files that are required if the user wishes to write code to
link to OS library or any other supporting COIN-OR library in the lib directory.

In the java directory are the binary files required to build an Apache Tomcat-based Web service
that will take SOAP envelopes with model instances in OSiL format and/or options in OSoL format,
call the OSSolverService, and return the optimization result in OSrL format. This distribution is
named

os-distribution-release_number.zip

and the details and use of this distribution are described in Section 11.

9

4 Building and Testing the OS Project

Once the OS source code is obtained, the OS libraries, OSSolverService executable, and test
examples can be built. We describe how to do this on Unix/Linux systems (see Section 4.1) and
on Windows (see Section 4.2).

4.1 Building the OS Project on Unix/Linux Systems

In order to build the OS project on Unix/Linux systems do the following.

Step 1: Make and connect to the distribution root directory.

mkdir COIN-OS
cd COIN-OS

Step 2: Run the configure script that will generate the makefiles. If you are running on a machine
with a FORTRAN 95 compiler present (e.g. gfortran) run the command

./configure

otherwise for now use

./configure COIN_SKIP_PROJECTS=Ipopt

as COIN-OR’s Ipopt project currently uses Fortran to compile some of its dependent libraries.

Note:

• If gfortran is not present and you wish to build the nonlinear solver Ipopt see the instructions
in Section 4.4.

• When using configure you may wish to use the -C option. This instructs configure to use a
cache file, config.cache, to speed up configuration by remembering and reusing the results
of tests already performed.

• For more information and options on the ./configure script see

https://projects.coin-or.org/BuildTools/wiki/user-configure#PreparingtheCompilation.

Step 3: Run the make files.

make

Step 4: Run the unitTest.

make test

Depending upon which third party software you have installed, the result of running the unitTest
should look something like (we have included the third-party solvers LINDO and Knitro in the test
results below; they are not part of the default build):

10

HERE ARE THE UNIT TEST RESULTS:

Solved problem avion2.osil with Ipopt
Solved problem HS071.osil with Ipopt
Solved problem rosenbrockmod.osil with Ipopt
Solved problem parincQuadratic.osil with Ipopt
Solved problem parincLinear.osil with Ipopt
Solved problem callBack.osil with Ipopt
Solved problem callBackRowMajor.osil with Ipopt
Solved problem parincLinear.osil with Clp
Solved problem p0033.osil with Cbc
Solved problem rosenbrockmod.osil with Knitro
Solved problem callBackTest.osil with Knitro
Solved problem parincQuadratic.osil with Knitro
Solved problem HS071_NLP.osil with Knitro
Solved problem p0033.osil with SYMPHONY
Solved problem parincLinear.osil with DyLP
Solved problem volumeTest.osil with Vol
Solved problem p0033.osil with GLPK
Solved problem lindoapiaddins.osil with Lindo
Solved problem rosenbrockmod.osil with Lindo
Solved problem parincQuadratic.osil with Lindo
Solved problem wayneQuadratic.osil with Lindo
Test the MPS -> OSiL converter on parinc.mps usig Cbc
Test the AMPL nl -> OSiL converter on hs71.nl using LINDO
Test a problem written in b64 and then converted to OSInstance
Successful test of OSiL parser on problem parincLinear.osil
Successful test of OSrL parser on problem parincLinear.osrl
Successful test of prefix and postfix conversion routines on problem rosenbrockmod.osil
Successful test of all of the nonlinear operators on file testOperators.osil
Successful test of AD gradient and Hessian calculations on problem CppADTestLag.osil

CONGRATULATIONS! YOU PASSED THE UNIT TEST

If you do not see

CONGRATULATIONS! YOU PASSED THE UNIT TEST

then you have not passed the unitTest and hopefully some semi-inteligble error message was given.

Step 5: Install the libraries and executables. In addition you will have the following directories.

make install

This will install all of the libraries in the lib directory. In particuar, the main OS library
libOS along with the libraries of the other COIN-OR project that download with the OS project
will get installed in the lib directory. In addtion the make install command will install four
executable programs in the bin directory. One of these binaries is OSSolverService which is main
OS project executable. This is described in Section 10. In addition clp, cbc, ipopt, and symphony
get installed in the bin directory. Necessary header files are installed in the include directory. In
this case, bin, lib, and include are all subdirectories of where ./configure is run. If the user
wants these files installed elsewhere, then configure should specify the prefix of these directories.
That is,

11

./configure --prefix=prefixDirctory COIN_SKIP_PROJECTS=Ipopt

For example, running

./configure --prefix=/usr/local COIN_SKIP_PROJECTS=Ipopt

and then running make and make install will put the relevant files in

/usr/local/bin
/usr/local/include
/usr/local/lilb

Run an Example! If make test works, proceed to Section 10 to run the key executable,
OSSolverService.

4.2 Building the OS Project on Windows

There are a number of options open to Windows users. First, if you wish to work with source code
we recommend downloading the svn client, TortoiseSVN. See tortoisesvn.tigris.org. With
TortoiseSVN in the Windows Explorer connect to the directory (e.g. COIN-OS) where you wish
to put the OS code. Right click on the directory and select SVN Checkout. In the textbox,
URL of Repository give the URL for the version of the OS project you wish to checkout, e.g.
https://projects.coin-or.org/svn/OS/stable/1.0.

Also, if you plan to build any of the projects contained in ThirdParty (e.g. ASL) we recom-
mend using wget. The wget executable is used by the scripts, get.ASL, get.Blas, etc. in the
corresponding third party subdirectories and makes it easy to download the software. A Windows
version of wget is available at

http://www.christopherlewis.com/WGet/WGetFiles.htm

4.2.1 Microsoft Visual Studio

Microsoft Visual Studio solution files are provided for users of Windows and the Microsoft Visual
Studio IDE. It is assumed that the user has installed a copy of Microsoft Visual Studio. Users inter-
ested in a Visual Studio build of the OS project can obtain Visual C++ 2008 Express Edition for
free at http://msdn2.microsoft.com/en-us/express/future/bb421473.aspx. This download
will include the Microsoft cl C++ compiler along with necessary libraries.

There is a directory MSVisualStudio in the COIN-OS/OS directory. The MSVisualStudio con-
tains root directories organized by the version of Visual Studio. We currently provide solution files
for Version 7 and Version 8. There are project files for building the unitTest (OSTest.vcproj), the
OSSolverService (OSSolverService.vcproj), and the OS library libOS.vcproj. The Microsoft
Visual Studio files are automatically downloaded with an SVN checkout. They are also contained
in the tarballs. See Section 3.2.

Important Note For Users of Visual Studio Express: The part of the OS library respon-
sible for communication with a remote server depends on some underlying Windows socket header
files and libraries. If you are using the Visual Studio Express Edition, these files are not included
in the download and it is necessary to also download and install the Windows Platform SDK.
Download the necessary files at http://msdn2.microsoft.com/en-us/express/aa700755.aspx

12

Important Note for Running Executables: There are two projects that build executable
files. These are OSTest and OSSolverService. These executable files are located in the Debug direc-
tory that is the Visual Studio project root. These must be moved to the appropriate directories. The
OSTest executable should be moved to the COIN-OS/OS/test directory and the OSSolverService
executable should be moved to either the COIN-OS/OS/src directory or COIN-OS/OS/bin.

4.2.2 Cygwin

Cygwin provides a Unix emulation environment for Windows. It comes with numerous tools and
libraries including the gcc compilers. See www.cygwin.com. Cygwin can be used the Gnu Compiler
Collection (gcc) or with the Microsoft cl compiler.

Using Cygwin with gcc: With Cygwin and the corresponding gcc compilers the OS project
is built exactly as described in Section 3.1. If you have previously downloaded Cygwin with ver-
sion gnome make version 3.81-1, you must obtain a fixed 3.81 version from http://www.cmake.
org/files/cygwin/make.exe. (See also the Cygwin mailing list postings http://cygwin.com/ml/
cygwin/2006-09/msg00315.html and http://cygwin.com/ml/cygwin/2006-09/msg00153.html).
See also the discussion at https://projects.coin-or.org/BuildTools.

Using Cygwin with Microsoft cl: Users who are extremely adventuresome and have an
abundance of free time on their hands may wish to use Cygwin the Microsoft cl compiler to build
the OS project. The following steps have led to a successful build.

Step 1: Download Cygwin from http://www.cygwin.com/setup.exe and install.

Step 2: Download Visual Studio Express C++ at http://msdn2.microsoft.com/en-us/express/
aa975050.aspx.

Step 3: The part of the OS library responsible for communication with a remote server depends on
some underlying Windows socket header files and libraries. Therefore it is necessary to also
download and install the Windows Platform SDK. Download the necessary files at

http://msdn2.microsoft.com/en-us/express/aa700755.aspx

and install.

Step 4: Set the Cygwin search path configuration. This is important. This step is necessary to insure
that Cygwin looks for compilers, linkers, etc in the correct order. The right order of directories
is: MSVS command directories, Cygwin command directories, and finally Windows command
directories. This is illustrated below.

– First, Cygwin should look in the Microsoft Visual Studio directories. If a standard Visual
Studio install is done, the following should part of the Cygwin search path

.
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/IDE
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/Common7/Tools
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/SDK/v2.0/Bin
:/cygdrive/c/Program Files/Microsoft Visual Studio 8/VC/vcpackages
:/cygdrive/c/WINDOWS/Microsoft.NET/Framework/v2.0.50727

– Second, Cygwin should next search its command directories. The following is typical of
a standard install.

13

/bin:/usr/local/bin:/usr/bin:/bin:/usr/X11R6/bin

– Third, Cygwin should search the Windows specific command directories. The following
is typical.
:/cygdrive/c/WINDOWS/system32:/cygdrive/c/WINDOWS

:/cygdrive/c/WINDOWS/System32/Wbem:/cygdrive/c/Program Files/ATI Technologies/ATI Control Panel

:/cygdrive/c/Program Files/Common Files/Roxio Shared/DLLShared/

:/cygdrive/c/Program Files/QuickTime/QTSystem/:/cygdrive/c/Program Files/Microsoft SQL Server/90/Tools/binn/

:/cygdrive/c/Program Files/Microsoft Platform SDKfor Windows Server 2003 R2/Bin/

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/

:/cygdrive/c/Program Files/SSH Communications Security/SSH Secure Shell

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/

:/cygdrive/c/Program Files/Microsoft Platform SDK for Windows Server 2003 R2/Bin/WinNT/

:/cygdrive/d/SSH

Open the Cygwin shell and check the value of $PATH. If directories don’t appear in an order
described above, then $PATH value needs to be reset.

Step 5: This step is necessary only if you wish to build with the AMPL ASL solver library. Unfor-
tunately, and we regret this, but at the time of this writing the working version of ASL for
cygwin/cl build is its trunk version. This means that it is necessary to download the trunk
version separately and replace the release version we have distributed with the trunk version.
The URL for the trunk version is

co https://projects.coin-or.org/svn/BuildTools/ThirdParty/ASL/trunk ASL

Step 6: Build the OS project (or any COIN-OR project). If you wish to avoid the FORTRAN related
issues you should build without Ipopt. Issue the following command in the project root.

./configure COIN_SKIP_PROJECTS=Ipopt --enable-doscompile=msvc

If you wish to build with Ipopt, then FORTRAN is required and Visual Studio does not ship
with FORTRAN compiler. The following is a work-around.

Step a. Obtain one of the Harwell Subroutine Library (HSL) routines ma27ad.f or MA57ad.f.
See http://www.cse.scitech.ac.uk/nag/hsl/. Put the Harwell code in the directory
ThirdParty/HSL.

Step b. Follow the instructions for downloading and installing f2c compiler from Netlib. The
installation instructions for this are in the INSTALL file in

../data/BuildTools/compile_f2c

Step c. Run configure

./configure --enable-doscompile=msvc

4.2.3 MinGW

MinGW (Minimalist GNU for Windows) is set of runtime headers to be used with the GNU gcc
compilers for Windows. See www.mingw.org. As with Cygwin, the OS project is built exactly as
described in Section 3.1.

14

4.2.4 MSYS

MSYS (Minimal SYSstem) provides an easy way to use the COIN-OS build system with compil-
ers/linkers of your own choice, such as the Microsoft command line C++ cl compiler. MSYS is
an application that gives the user a Bourne shell that can run configure scripts and Makefiles.
No compilers come with MSYS. In the Cygwin, MinGW, and MSYS hierarchy, it is at the bottom
in terms of tools provided. However, it is very easy to use and build the OS project with MSYS.
In this discussion we assume that the user has downloaded the OS source code (most likely with
Tortise) and that the cl compiler is present. The project is built using the following steps.

Note:

• If you wish to use the third-party software with MSYS it is best to get wget. See 4.2.

• Do not put any imbedded blanks in the path to the OS project.

Execute the following steps to use the Microsoft C++ cl compiler with MSYS.

Step 1. Download MSYS at

http://sourceforge.net/project/showfiles.php?group_id=2435&package_id=24963

and install. Double clicking on the MSYS icon will open a Bourne shell window.

Step 2. Download Visual Studio Express C++ at

http://msdn2.microsoft.com/en-us/express/future/bb421473.aspx

and install.

Step 3. The part of the OS library responsible for communication with a remote server depends on
some underlying Windows socket header files and libraries. Therefore it is necessary to also
download and install the Windows Platform SDK. Download the necessary files at

http://msdn2.microsoft.com/en-us/express/aa700755.aspx

and install.

Step 4. Set the Visual Studio environment variables so that paths to the necessary libraries and
header files are recognized. Assuming that a standard installation was done for the Visual
Studio Express and the Windows Platform SDK set the variables as follows:

PATH=C:\Program Files\Microsoft Visual Studio 8\Common7\IDE;
C:\Program Files\Microsoft Visual Studio 8\VC\BIN;
C:\Program Files\Microsoft Visual Studio 8\Common7\Tools;
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\bin;
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;
C:\Program Files\Microsoft Visual Studio 8\VC\VCPackages

INCLUDE=C:\Program Files\Microsoft Visual Studio 8\VC\INCLUDE;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Include

15

LIB = C:\Program Files\Microsoft Visual Studio 8\VC\LIB;
C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\lib;
C:\Program Files\Microsoft Platform SDK for Windows Server 2003 R2\Lib

The environment variables can be set using the System Properties in the Windows Control
Panel.

Step 5. In the MSYS command window connect to the root of the OS project and run configure
script and then make as described in Section 4.1.

Run an Example! If make test works, proceed to Section 10 to run the key executable,
OSSolverService.

4.3 VPATH Installations

It is possible to build the OS project in a directory that is different from the directory where the
source code is present. This is called a VPATH compiliation. A VPATH compilation is very useful
if you wish to build several versions (e.g. debug and non-debug version, or versions with various
combinations of third-party software available) of the OS project from a single copy the source
code.

For example, assume you wish to build a debug version of the OS project in the directory
vpath-debug and that the environment variable OS is the path to the root of the OS project
distribution COIN-OS. Connect to the vpath-debug directory run configure as follows (assuming we
do want a debug version)

../COIN-OS/configure --enable-debug

After you run configure, the OS project directory structure will be present in the vpath-debug
directory along with all of the necessary Makefiles. Next inside the vpath-degug execute

make

and all of the libraries created will be in their respective directories inside vpath-debug and
not COIN-OS.

Note: If you have run the configure script inside the COIN-OS directory, you cannot do a VPATH
build. Before doing a VPATH build you need to run

make distclean

in the COIN-OS directory.

4.4 Using Ipopt

Ipopt is a COIN-OR project (projects.coin-or.org/Ipopt) and is included in the download with
the OS project. However, unlike the other COIN-OR projects that download with OS, the Ipopt
project requires third-party software that is based on FORTRAN and care must be taken if you
wish to build OS with the Ipopt solver. You can exclude Ipopt from the OS build by adding the
option

COIN_SKIP_PROJECTS=Ipopt

16

to the configure script.
If you do choose to build Ipopt, first get the necessary third-party software. First connect into

the ThirdParty directory. Then execute the following commands:

$ cd /Blas
$./get.Blas
$ cd ../Lapack
$./get.Lapack
$ cd ../Mumps
$./get.Mumps

Alternatively, you can connect into the project root COIN-OS and execute the script get.AllThirdParty.
This will also get the AMPL ASL libraries.

What you do next depends upon whether or not a FORTRAN compiler is present, and if so,
which version of FORTRAN. There are three options.

Option 1. If you are building in Unix-like environment and have a FORTRAN 95 compiler available,
you can simply run the configure script and the FORTRAN compiler will be detected and
the Ipopt project will be built.

Option 2. If you have a FORTRAN 77 compiler, you must first obtain one of the Harwell Subrou-
tine Library (HSL) routines ma27ad.f or MA57ad.f. See http://www.cse.scitech.ac.uk/
nag/hsl/. Put the Harwell code in the directory _./data/ThirdParty/HSL. Now run the
configure script as described in 3.1. See

http://www.coin-or.org/Ipopt/documentation/node15.html

Option 3. If you do not have a FORTRAN compiler and do not wish to obtain one, you can use the f2c
compiler from Netlib. The installation instructions for this are in the INSTALL file in

../data/BuildTools/compile_f2c

Two important points:

• Option 3 also requires that one of the Harwell Subroutine Library (HSL) routines ma27ad.f
or MA57ad.f be present in the HSL directory.

• If you run configure with the --enable-debug option on Windows, then when building the
vcf2c.lib, use the command line

CFLAGS = -MTd -DUSE_CLOCK -DMSDOS -DNO_ONEXIT

4.5 Third-Party Software

By third-party software we mean software not available for download at www.coin-or.org. The de-
fault OS project is configured out-of-the-box with the COIN-OR projects Cbc, Clp, Cgl, CoinUtils,
CppAD, DyLP, SYMPHONY, and Vol. However, the project is also designed to work with other COIN-
OR projects and several other open source and commercial software projects.

In many of the header files there are #include statements inside #ifdef statements. For
example,

17

#ifdef COIN_HAS_LINDO
#include "LindoSolver.h"
#endif
#ifdef COIN_HAS_IPOPT
#include "IpoptSolver.h"
#endif

In the inc subdirectory of the OS directory, there is a header file, config_os.h that defines the
values of the

COIN_HAS_XXXXX

variables. If the project is configured with the simple ./configure command given in Step 3 with
no arguments, then in the config_os.h these variables associated with the third-party software
will be undefined. For example.

/* Define to 1 if the Cplex package is used */
/* #undef COIN_HAS_CPX */

unlike the configured COIN-OR projects that appear as

/* Define to 1 if the Clp package is used */
#define COIN_HAS_CLP 1

In the following subsections we describe how to incorporate various third-party packages into the
OS project and see to it that the

COIN_HAS_XXXXX

variable is defined in config_os.h.

4.5.1 AMPL

The OS library contains a class, OSnl2osil (see Section (7.3.2)) and amplClient (see Section
(12.1)) that require the use of the AMPL ASL library. See http://netlib.sandia.gov/ampl/
and http://www.ampl.com. Users with a Unix system should locate the ASL folder that is part of
the distribution. The ASL folder is in the ThirdParty folder which is in the project root folder.
Locate and execute the get.ASL script. Do this prior to running the configure script. The
configure script will build the correct ASL library.

Microsoft Visual Studio users will have to build the ASL library separately and then link it
with the OS lib in the OS project file. The necessary source files are at

http://netlib.sandia.gov/cgi-bin/netlib/netlibfiles.tar?filename=netlib/ampl/solvers

After unpacking the distribution build the source code with the utility nmake which should be part
of the Visual Studio distribution. The appropriate command is

nmake -f makefile.vc

If the OS project is properly configured with the ASL library, config_os.h will contain the lines

/* If defined, the Ampl Solver Library is available. */
#define COIN_HAS_ASL 1

At this point the reader may wish to view

https://projects.coin-or.org/BuildTools/wiki/user-configure#CommandLineArgumentsforconfigure

for more information on command line arguments that are illustrated in the subsections below.

18

4.5.2 Cplex

Cplex is a linear, integer, and quadratic solver. See http://www.ilog.com/products/cplex/.
Cplex does not provide source code and you can only download the platform dependent binaries.
After installing the binaries and include files in an appropriate directory, run configure to point to
the include and library directory. An example is given below:

configure --with-cplex-lib="-L$(CPLEXDIR)/lib/$(SYSTEM)/$(LIBFORMAT)
$(CPLEX_LIBS)" --with-cplex-incdir= $(CPLEXDIR)/include

You may also need the following environment variables (if they are not already set). The
following are values we used in a working implementation.

SYSTEM =i86_linux2_glibc2.3_gcc3.2
LIBFORMAT =static_pic_mt
CPLEXDIR =/usr/local/ilog/cplex81/include/ilcplex
CPLEXLIBPATH= -L$(CPLEXDIR)/lib/$(SYSTEM)/$(LIBFORMAT)
CPLEXINCDIR = $(CPLEXDIR)/include
CPLEX_LIBS=-lcplex -lilocplex -lm -lpthread
ILOG_HOME=/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2
ILOG_LICENSE_FILE=/usr/local/ilog/ilm/access.ilm
PATH=***:/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2:***
CLASSPATH=:/usr/local/ilog/cplex81/bin/i86_linux2_glibc2.3_gcc3.2:

4.5.3 GLPK

GLPK is a an open-source linear and integer-programming solver from the GNU organization. See
http://www.gnu.org/software/glpk/. In order to use GLPK with OS, either execute get.AllThirdParty
or connect to ThirdParty/Glpk and execute get.ThirdParty.

4.5.4 Knitro

Knitro is a nonlinear solver. See http://www.ziena.com/. Ziena does not provide source code
for Knitro. You must download platform dependent binaries. In order to use Knitro with the OS
project, perform the following steps.

Step 1: Download knitro to the desired directory.

Step 2: Copy the file nlpProblemDef.h from the examples/C++ directory to the include directory.

Step 3: Edit the file nlpProblemDef.h and delete the following lines:

NlpProblemDef::~NlpProblemDef (void)
{

//---- DO NOTHING.
return;

}

Step 4 Run configure with appropriate values for --with-knitro-lib and –with-knitro-incdir. For
example:

./configure --with-knitro-lib="-L/home/kmartin/files/code/knitro/linux/lib -lknitro "
--with-knitro-incdir=/home/kmartin/files/code/knitro/linux/include

19

4.5.5 LINDO

LINDO is a commercial linear, integer, and nonlinear solver. See www.lindo.com. LINDO does not
provide source code and you can only download the platform dependent binaries. After installing
the binaries and include files in an appropriate directory, run configure to point to the include and
library directory. An example is given below:

--with-lindo-lib="-L/home/kmartin/files/code/lindo/linux/lib -llindo -lmosek"
--with-lindo-incdir=/home/kmartin/files/code/lindo/linux/include

4.5.6 MATLAB

Install MATLAB on the client machine and follow the instruction in Section 7.3.3.

4.5.7 Library Paths

After running configure as described above, on Unix systems, it will be necessary to set the
environment variables LD_LIBRARY_PATH or DYLD_LIBRARY_PATH (on Mac OS X) to point to the
location of the installed third party libraries in the case that the libraries are dynamic and not
static libraries.

4.6 Bug Reporting

Bug reporting is done through the project Trac page. This is at

http://projects.coin-or.org/OS

To report a bug, you must be a registered user. For instructions on how to register, go to

http://www.coin-or.org/usingTrac.html

After registering, log in and then file a trouble ticket by going to

http://projects.coin-or.org/OS/newticket

4.7 Documentation

If you have Doxygen (www.doxygen.org) available (the executable doxygen should be in the path
command) then executing

make doxydoc

in the project root directory will result in the Doxygen documentation being generated and stored
in the doxydoc folder in the project root.

In order to view the documentation, open a browser and open the file

projectroot/doxydoc/html/index.html

Running Doxygen will generate documentation for only the OS project. Documentation will
not be generated for the other COIN-OR projects in the project root. In the doxydoc folder is a
configuration file doxygen.conf. This configuration file contains the EXCLUDE parameter

20

Table 1: Tested Platforms for Solvers

Mac Linux Cyg-gcc Msys-cl MinGW-gcc MSVS
AMPL-Client x x x
MATLAB x
Cbc x x x x x x
Clp x x x x x x
Cplex x
DyLP x x x x x x
Ipopt x x x x
Knitro x x
Lindo x x x x
SYMPHONY x x x x x x
Vol x x x x x x

Table 2: Platform Description

Operating System Compiler Hardware
Mac Mac OS X 10.4.9 gcc 4.0.1 Power PC
Mac Mac OS X 10.4.10 gcc 4.0.1 Intel
Linux Red Hat 3.4.6-8 gcc 3.4.6 Dell Intel 32 bit chip
Cyg-gcc Windows 2003 Server gcc 3.4.4 Dell Intel 32 bit chip
Msys-cl Windows XP Visual Studio 2003 Dell Intel 32 bit chip
MinGW-gcc Windows XP gcc 3.4.2 Dell Intel 32 bit chip
MSVS Windows XP Visual Studio 2003 Dell Intel 32 bit chip

EXCLUDE = Cbc \
Cgl \
Clp \
CoinUtils \
cppad \
SYMPHONY \
Vol \
DyLP \
ThirdParty \
Osi \
include

This file can be edited, and any project for which documentation is desired, can be deleted from
the EXCLUDE list.

4.8 Platforms

The build process described in Section 3.1 has been tested on Linux, Mac OS X, and on Windows
using MINGW/MSYS and CYGWIN. The gcc/g++ and Microsoft cl compiler have been tested.
A number of solvers have also been tested with the OS library. For a list of tested solvers and
platforms see Table 1. More detail on the platforms listed in Table 1 is given in Table 2.

21

5 The OS Project Components

The directories in the project root are outlined in Figure 1.
If you download the OS package, you get these additional COIN-OR projects. The links to the

project home pages are provided below and give more information on these projects.

• BuildTools - projects.coin-or.org\BuildTools

• Cbc - projects.coin-or.org\Cbc

• Cgl - projects.coin-or.org\Cgl

• Clp - projects.coin-or.org\Clp

• CoinUtils - projects.coin-or.org\CoinUtils

• CppAD - projects.coin-or.org\CppAD

• Dylp - projects.coin-or.org\Dylp

• Ipopt - projects.coin-or.org\Ipopt

• Osi - projects.coin-or.org\Osi

• SYMPHONY - projects.coin-or.org\SYMPHONY

• Vol - projects.coin-or.org\Vol

The following directories are also in the project root.

• bin - after executing make install the bin directory will contain OSSolverService, clp,
cbc, cbc-generic and symphony.

• Data - this directory contains numerous test problems that are used by some of the COIN-OR
project’s unitTest.

• doxydoc - is a folder for documentation.

• include - is a directory for header files. If the user wishes to write code to link against any
of the libraries in the lib directory, it may be necessary to include these header files.

• lib - is a directory of libraries. After running make install the OS library along with all
other COIN-OR libraries are installed in lib.

• ThirdParty - is a directory for third party software. For example, if AMPL related software
is used such as amplClient is used, then certain AMPL libraries need to be present. This
should go into the ASL directory in ThirdParty.

The directories in the OS directory are outlined in Figure 3.
The OS directories include the following:

• data - is a directory that holds test problems. These test problems are used by the unitTest.
Many of these files are also used to illustrate how the OSSovlerService works. See Section
10.

22

Figure 3: The OS directory.

23

• doc - is the directory with documentation, include this OS User’s Manual.

• examples - is a directory with code examples that illustrate various aspects of the OS project.
These are described in Section 12.

• inc - is the directory with the config˙os.h file which has information about which projects are
included in the distribution.

• m4 - is a directory that contains macro scripts written in the m4 language for auto configura-
tion.

• MSVisualStudio - is a directory that contains solution files for the Microsoft Visual Studio
IDE. The subdirectories are organized by the version of Visual Studio. We currently provide
a solution file for Version 7 and 8.

• schemas - is the directory that contains the W3C XSD (see www.w3c.org) schemas that are
behind the OS standards. These are described in more detail in Section 6.

• src - is the directory with all of the source code for the OS Library and for the executable
OSSolverService. The OS Library components are described in Section 7.

• stylesheets - this directory contains the XSLT stylesheet that is used to transform the
solution instance in OSrL format into HTML so that it can be displayed in a browser.

• test - this directory contains the unitTest.

• wsdl - is a directory of WSDL (Web Services Discovery Language) files. These are used to
specify the inputs and outputs for the methods and other invocation details provided by a Web
service. The most relevant file for the current version of the OS project is OShL.wsdl. This
describes the set of inputs and outputs for the methods implemented in the OSSolverService.
See Section 10.

6 OS Protocols

The objective of (OS) is to provide a set of standards for representing optimization instances, results,
solver options, and communication between clients and solvers in a distributed environment using
Web Services. These standards are specified by W3C XSD schemas. The schemas for the OS
project are contained in the schemas folder under the OS root. There are numerous schemas in this
directory that are part of the OS standard. For a full description of all the schemas see Ma [?]. We
briefly discuss the standards most relevant to the current version of the OS project.

OSiL (Optimization Services instance Language): an XML-based language for rep-
resenting instances of large-scale optimization problems including linear programs, mixed-
integer programs, quadratic programs, and very general nonlinear programs.

OSiL, stores optimization problem instances as XML files. Consider the following problem
instance that is a modification of an example of Rosenbrock [?]:

Minimize (1− x0)2 + 100(x1 − x2
0)2 + 9x1 (1)

s.t. x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25 (2)
ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

24

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of 0.
Figure 4 shows how we represent this information in an XML-based OSiL file. Like all XML
files, this is a text file that contains both markup and data. In this case there are two types
of markup, elements (or tags) and attributes that describe the elements. Specifically, there
are a <variables> element and two <var> elements. Each <var> element has attributes lb,
name, and type that describe properties of a decision variable: its lower bound, “name”, and
domain type.

To be useful for communication between solvers and modeling languages, OSiL instance files
must conform to a standard. An XML-based representation standard is imposed through
the use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.
org), promotes standards for the evolution of the web and for interoperability between web
products. XML Schema (www.w3.org/XML/Schema) is one such standard. A schema specifies
the elements and attributes that define a specific XML vocabulary. The W3C XML Schema
is thus a schema for schemas; it specifies the elements and attributes for a schema that in
turn specifies elements and attributes for an XML vocabulary such as OSiL. An XML file
that conforms to a schema is called valid for that schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that
defines the members and methods in a class. Just as a class in C++ very explicitly de-
scribes member and method names and properties, a schema explicitly describes element and
attribute names and properties.

Figure 5 is a piece of our schema for OSiL. In W3C XML Schema jargon, it defines a
complexType, whose purpose is to specify elements and attributes that are allowed to appear
in a valid XML instance file such as the one excerpted in Figure 4. In particular, Figure 5
defines the complexType named Variables, which comprises an element named <var> and
an attribute named numberOfVariables. The numberOfVariables attribute is of a standard
type positiveInteger, whereas the <var> element is a user-defined complexType named
Variable. Thus the complexType Variables contains a sequence of <var> elements that are

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 4: The <variables> element for the example (1)–(4).

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 5: The Variables complexType in the OSiL schema.

25

of complexType Variable. OSiL’s schema must also provide a specification for the Variable
complexType, which is shown in Figure 6.

In OSiL the linear part of the problem is stored in the <linearConstraintCoefficients>
element, which stores the coefficient matrix using three arrays as proposed in the earlier
LPFML schema [?]. There is a child element of <linearConstraintCoefficients> to rep-
resent each array: <value> for an array of nonzero coefficients, <rowIdx> or <colIdx> for a
corresponding array of row indices or column indices, and <start> for an array that indicates
where each row or column begins in the previous two arrays.

The quadratic part of the problem is represented as follows.

The nonlinear part of the problem is given in Figure 9.

The complete OSiL representation is given in the Appendix.

OSrL (Optimization Services result Language): an XML-based language for represent-
ing the solution of large-scale optimization problems including linear programs, mixed-integer
programs, quadratic programs, and very general nonlinear programs. As example solution
(for the problem given in (1)–(4)) in OSrL format is given below.

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type = "text/xsl"

href = "/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/OS/stylesheets/OSrL.xslt"?>
<osrl xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSrL.xsd">

<resultHeader>
<generalStatus type="success"/>
<serviceName>Solved using a LINDO service</serviceName>
<instanceName>Modified Rosenbrock</instanceName>

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 6: The Variable complexType in the OSiL schema.

26

<linearConstraintCoefficients numberOfValues="3">
<start>

<el>0</el><el>2</el><el>3</el>
</start>
<rowIdx>

<el>0</el><el>1</el><el>1</el>
</rowIdx>
<value>

<el>1.</el><el>7.5</el><el>5.25</el>
</value>

</linearConstraintCoefficients>

Figure 7: The <linearConstraintCoefficients> element for constraints (2) and (3).

<quadraticCoefficients numberOfQuadraticTerms="3">
<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>
<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Figure 8: The <quadraticCoefficients> element for constraint (2).

</resultHeader>
<resultData>

<optimization numberOfSolutions="1" numberOfVariables="2" numberOfConstraints="2"
numberOfObjectives="1">
<solution objectiveIdx="-1">

<status type="optimal"/>
<variables>

<values>
<var idx="0">0.87243</var>
<var idx="1">0.741417</var>

</values>
<other name="reduced costs" description="the variable reduced costs">

<var idx="0">-4.06909e-08</var>
<var idx="1">0</var>

</other>
</variables>
<objectives>

<values>
<obj idx="-1">6.7279</obj>

</values>
</objectives>
<constraints>

<dualValues>
<con idx="0">0</con>

27

<nl idx="-1">
<plus>

<power>
<minus>

<number value="1.0"/>
<variable coef="1.0" idx="0"/>

</minus>
<number value="2.0"/>

</power>
<times>

<power>
<minus>

<variable coef="1.0" idx="0"/>
<power>

<variable coef="1.0" idx="1"/>
<number value="2.0"/>

</power>
</minus>
<number value="2.0"/>

</power>
<number value="100"/>

</times>
</plus>

</nl>

Figure 9: The <nl> element for the nonlinear part of the objective (1).

<con idx="1">0.766294</con>
</dualValues>

</constraints>
</solution>

</optimization>

OSoL (Optimization Services option Language): an XML-based language for repre-
senting options that get passed to an optimization solver or a hosted optimization solver Web
service. It contains both standard options for generic services and extendable option tags for
solver-specific directives.

OSnL (Optimization Services nonlinear Language): The OSnL schema is imported
by the OSiL schema and is used to represent the nonlinear part of an optimization instane.
This is explained in greater detail in Section 7.2.4. Also refer to Figue 9 for an illustration of
elements from the OSnL standard.

OSpL (Optimization Services process Language): is a standard for dynamic process
information that is kept by the Optimization Services registry. It is the result of a knock
operation. See the example given in Section 10.3.5.

28

7 The OS Library Components

7.1 OSAgent

The OSAgent part of the library is used to facilitate communication with remote solvers. It is not
used if the solver is invoked locally (i.e. on the same machine). There are two key classes in the
OSAgent component of the OS library. The two classes are OSSolverAgent and WSUtil.

The OSSolverAgent class is used contact a remote solver service. For example, assume that
sOSiL is a string with a problem instance and sOSoL is a string with solver options. Then the
following code will call a solver service and invoke the the solve method.

OSSolverAgent *osagent;
string serviceLocation = http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
osagent = new OSSolverAgent(serviceLocation);
string sOSrL = osagent->solve(sOSiL, sOSoL);

Other methods in the OSSolverAgent class are send, retrieve, getJobID, knock, and kill. The
use of these methods is described in Section 10.3.

The methods in the OSSolverAgent class call methods in the WSUtil class that perform such
tasks and creating and parsing SOAP messages and making low level socket calls to the server
running the solver service. The average user will not use methods in the WSUtil class, but they are
available to anyone wanting to make socket calls or create SOAP messages.

There is also a method, fileUpload in the OSAgentClass that is used to upload files from the
hard drive of a client to the server. It is very fast and does not involve SOAP or Web Services. The
fileUpload method is illustrated and described in the example code fileUpload.cpp described
in Section 12.3.

7.2 OSCommonInterfaces

The classes in the OSCommonInterfaces component of the OS library are used to read and write
files and strings in the OSiL and OSrL protocols. See Section 6 for more detail on OSiL, OSrL,
and other OS protocols. For a complete listing of all of the files in OSCommonInterfaces see the
Doxygen documentation in the doxydoc folder (see Section 6). Below we highlight some key classes.

7.2.1 The OSInstance Class

The OSInstance class is the in-memory representation of an optimization instance and is a key
class for users of the OS project. This class has an API defined by a collection of get() methods
for extracting various components (such as bounds and coefficients) from a problem instance, a
collection of set() methods for modifying or generating an optimization instance, and a collection
of calculate() methods for function, gradient, and Hessian evaluations. See Section 8. We now
describe how to create an OSInstance object and the close relationship between the OSiL schema
and the OSInstance class.

7.2.2 Creating an OSInstance Object

The OSCommonInterfaces component contains an OSiLReader class for reading an instance in an
OSiL string and creating an in-memory OSInstance object. Assume that sOSiL is a string with
an instance in OSiL format. Creating an OSInstance object is illustrated in Figure 10.

29

OSiLReader *osilreader = NULL;
OSInstance *osinstance = NULL;
osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(sOSiL);

Figure 10: Creating an OSInstance Object

7.2.3 Mapping Rules

The OSInstance class has two member classes, InstanceHeader and InstanceData. These corre-
spond to the OSiL schema’s complexTypes instanceHeader and instanceData, and to the XML
elements <instanceHeader> and <instanceData>.

Moving down one level, Figure 12 shows that the InstanceData class has in turn the member
classes Variables, Objectives, Constraints, LinearConstraintCoefficients, QuadraticCoefficients,
and NonlinearExpressions, corresponding to the respective elements in the OSiL schema with
the same name.

class OSInstance{
public:

OSInstance();
InstanceHeader *instanceHeader;
InstanceData *instanceData;

}; //class OSInstance

Figure 11: The OSInstance class

class InstanceData{
public:

InstanceData();
Variables *variables;
Objectives *objectives;
Constraints *constraints;
LinearConstraintCoefficients *linearConstraintCoefficients;
QuadraticCoefficients *quadraticCoefficients;
NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Figure 12: The InstanceData class

Figure 13 uses the Variables class to provide a closer look at the correspondence between
schema and class. On the right, the Variables class contains a number data member and a
sequence of var objects of class Variable. The Variable class has lb (double), ub (double),
name (string), init (double), and type (char) data members. On the left the corresponding XML

30

complexTypes are shown, with arrows indicating the correspondences. The following rules describe
the mapping between the OSiL schema and the OSInstance class.

. Each complexType in an OSiL schema corresponds to a class in OSInstance. Thus the OSiL
schema’s complexType Variable corresponds to OSInstance’s class Variable. Elements in
an actual XML file then correspond to objects in OSInstance; for example, the <var> element
that is of type Variable in an OSiL file corresponds to a var object in class Variable of
OSInstance.

. An attribute or element used in the definition of a complexType is a member of the corre-
sponding OSInstance class, and the type of the attribute or element matches the type of
the member. In Figure 13, for example, lb is an attribute of the OSiL complexType named
Variable, and lb is a member of the OSInstance class Variable; both have type double.
Similarly, var is an element in the definition of the OSiL complexType named Variables,

Schema complexType In-memory class

<xs:complexType name="Variables"> <--> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-------------> Variable *var;

</xs:sequence>

<xs:attribute name="number" type="xs:positiveInteger" use="required"/> <------> int number;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <---> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <------------------> string name;

<xs:attribute name="init" type="xs:double" use="optional"/> <------------------> double init;

<xs:attribute name="initString" type="xs:string" use="optional"/> <------------> string initString;

<xs:attribute name="type" use="optional" default="C"> <------------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <--------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <------> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables number="2"> OSInstance osinstance;

<var lb="0" name="x0" type="C"/> osinstance.instanceData.variables.number=2;

<var lb="0" name="x1" type="C"/> osinstance.instanceData.variables.var=new Var[2];

</variables> osinstance.instanceData.variables.var[0].lb=0;

osinstance.instanceData.variables.var[0].name=x0;

osinstance.instanceData.variables.var[0].type=C;

osinstance.instanceData.variables.var[1].lb=0;

osinstance.instanceData.variables.var[1].name=x1;

osinstance.instanceData.variables.var[1].type=C;

Figure 13: The <variables> element as an OSInstance object

31

and var is a member of the OSInstance class Variables; the var element has type Variable
and the var member is a Variable object.

. A schema sequence corresponds to an array. For example, in Figure 13 the complexType
Variables has a sequence of <var> elements that are of type Variable, and the corresponding
Variables class has a member that is an array of type Variable.

General nonlinear terms are stored in the data structure as OSExpressionTree objects, which are
the subject of the next section.

The OSInstance class has a set of get() , set(), and calculate() methods that act as an
API for the optimization instance and described in Section 8.

7.2.4 The OSExpressionTree OSnLNode Classes

The OSExpressionTree class provides the in-memory representation of the nonlinear terms. Our
design goal is to allow for efficient parsing of OSiL instances, while providing an API that meets
the needs of diverse solvers. Conceptually, any nonlinear expression in the objective or constraints
is represented by a tree. The expression tree for the nonlinear part of the objective function (1), for
example, has the form illustrated in Figure 14. The choice of a data structure to store such a tree
— along with the associated methods of an API — is a key aspect in the design of the OSInstance
class.

Figure 14: Conceptual expression tree for the nonlinear part of the objective (1).

A base abstract class OSnLNode is defined and all of an OSiL file’s operator and operand elements
used in defining a nonlinear expression are extensions of the base element type OSnLNode. There
is an element type OSnLNodePlus, for example, that extends OSnLNode; then in an OSiL instance
file, there are <plus> elements that are of type OSnLNodePlus. Each OSExpressionTree object
contains a pointer to an OSnLNode object that is the root of the corresponding expression tree. To
every element that extends the OSnLNode type in an OSiL instance file, there corresponds a class
that derives from the OSnLNode class in an OSInstance data structure. Thus we can construct an
expression tree of homogenous nodes, and methods that operate on the expression tree to calculate
function values, derivatives, postfix notation, and the like do not require switches or complicated
logic.

32

double OSnLNodePlus::calculateFunction(double *x){
m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +
m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;
} //calculateFunction

Figure 15: The function calculation method for the “plus” node class with polymorphism

The OSInstance class has a variety of calculate() methods, based on two pure virtual func-
tions in the OSInstance class. The first of these, calculateFunction(), takes an array of double
values corresponding to decision variables, and evaluates the expression tree for those values. Every
class that extends OSnLNode must implement this method. As an example, the calculateFunction
method for the OSnLNodePlus class is shown in Figure 15. Because the OSiL instance file must be
validated against its schema, and in the schema each <OSnLNodePlus> element is specified to have
exactly two child elements, this calculateFunction method can assume that there are exactly
two children of the node that it is operating on. The use of polymorphism and recursion makes
adding new operator elements easy; it is simply a matter of adding a new class and implementing
the calculateFunction() method for it.

Although in the OSnL schema, there are 200+ nonlinear operators, only the following OSnLNode
classes are currently supported in our implementation.

• OSnLNodeVariable

• OSnLNodeTimes

• OSnLNodePlus

• OSnLNodeSum

• OSnLNodeMinus

• OSnLNodeNegate

• OSnLNodeDivide

• OSnLNodePower

• OSnLNodeProduct

• OSnLNodeLn

• OSnLNodeSqrt

• OSnLNodeSquare

• OSnLNodeSin

• OSnLNodeCos

• OSnLNodeExp

• OSnLNodeif

33

• OSnLNodeAbs

• OSnLNodeMax

• OSnLNodeMin

• OSnLNodeE

• OSnLNodePI

• OSnLNodeAllDiff

7.3 OSModelInterfaces

This part of the OS library is designed to help integrate the OS standards with other standards
and modeling systems.

7.3.1 Converting MPS Files

The MPS standard is still a popular format for representing linear and integer programming prob-
lems. In OSModelInterfaces, there is a class OSmps2osil that can be used to convert files in MPS
format into the OSiL standard. It is used as follows.

OSmps2osil *mps2osil = NULL;
DefaultSolver *solver = NULL;
solver = new CoinSolver();
solver->sSolverName = "cbc";
mps2osil = new OSmps2osil(mpsFileName);
mps2osil->createOSInstance() ;
solver->osinstance = mps2osil->osinstance;
solver->solve();

The OSmps2osil class constructor takes a string which should be the file name of the instance
in MPS format. The constructor then uses the CoinUtils library to read and parse the MPS file.
The class method createOSInstance then builds an in-memory osintance object that can be used
by a solver.

7.3.2 Converting AMPL nl Files

AMPL is a popular modeling language that saves model instances in the AMPL nl format. The
OSModelInterfaces library provides a class, OSnl2osil for reading in an nl file and creating a
corresponding in-memory osinstance object. It is used as follows.

OSnl2osil *nl2osil = NULL;
DefaultSolver *solver = NULL;
solver = new LindoSolver();
nl2osil = new OSnl2osil(nlFileName);
nl2osil->createOSInstance() ;
solver->osinstance = nl2osil->osinstance;
solver->solve();

34

The OSnl2osil class works much like the OSmps2osil class. The OSnl2osil class constructor
takes a string which should be the file name of the instance in nl format. The constructor then uses
the AMPL ASL library routines to read and parse the nl file. The class method createOSInstance
then builds an in-memory osintance object that can be used by a solver.

In Section 12.1 we describe the amplClient executable that acts a “solver” for AMPL. The
amplClient uses the OSnl2osil class to convert the instance in nl format to OSiL format before
calling a solver either locally or remotely.

7.3.3 Using MATLAB

Linear, integer, and quadratic problems can be formulated in MATLAB and then optimized either
locally or over the network using the OS Library. The OSMatlab class functions much like OSnl2osil
and OSmps2osil and takes MATLAB arrays and creates and OSiL instance. This class is part of
the OS library. In order to use the OS library with MATLAB the user should do the following.
In order to use the OSMatlab class it is necessary to compile matlabSolver.cpp into a MATLAB
Executable file. The matlabSolver.cpp file is in the OSModelInterfaces directory even though
it is not part of the OS library. The following steps should be followed.

Step 1: In the project root run make install.

Step 2: Either leave matlabSolver.cpp in the the OSModelInterfaces or copy it to another desired
directory.

Step 3: Edit the MATLAB mexopts.sh (UNIX) or mexopts.bat so that the CXXFLAGS option in-
cludes the header files in the cppad directory and the include directory in the project root.
For example, it should look like:

CXXFLAGS=’-fno-common -no-cpp-precomp -fexceptions
-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/
-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/include’

Next edit the CXXLIBS flag so that the OS and supporting libraries are included. For example,
it should look like:

CXXLIBS="$MLIBS -lstdc++
-L/Users/kmartin/Documents/files/code/ipopt/macosx/Ipopt-3.2.2/lib
-L/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/lib
-lOS -lIpopt -lOsiCbc -lOsiClp -lCbc -lCgl -lOsi -lClp -lCoinUtils -lm"

For a UNIX system the mexopts.sh file will usually be found in a directory with the release
name in ∼/.matlab. For example, ∼/.matlab/R14SP3.

On a Windows system, the mexopts.bat file will usually be in a directory with the release
name in C:\Documents and Settings\Username\Application Data\Mathworks\MATLAB

Step 4: Build the MATLAB executable file. Start MATLAB and in the MATLAB command window
connect to the directory containing the file matlabSolver.cpp. Execute the command:

mex -v matlabSolver.cpp

35

On a MAC OS X the resulting executable will be named matlabSolver.mexmac. On the
Windows system the file we named matlabSolver.mexw32.

Step 5: Set the MATLAB path to include the directory with the matlabSolver executable. Also,
put the m − file callMatlabSolver.m in a directory which is on a MATLAB path. The
callMatlabSolver.m m-file is in the OSModelInterfaces directory.

To use the matlabSolver it is necessary to put the coefficients from a linear, integer, or quadratic
problem into MATLAB arrays.

Minimize 10x1 + 9x2 (5)
Subject to .7x1 + x2 ≤ 630 (6)

.5x1 + (5/6)x2 ≤ 600 (7)
x1 + (2/3)x2 ≤ 708 (8)
.1x1 + .25x2 ≤ 135 (9)

x1, x2 ≥ 0 (10)

The MATLAB representation of this problem in MATLAB arrays is

% the number of constraints
numCon = 4;
% the number of variables
numVar = 2;
% variable types
VarType=’CC’;
% constraint types
A = [.7 1; .5 5/6; 1 2/3 ; .1 .25];
BU = [630 600 708 135];
BL = [];
OBJ = [10 9];
VL = [-inf -inf];
VU = [];
ObjType = 1;
% leave Q empty if there are no quadratic terms
Q = [];
prob_name = ’ParInc Example’
password = ’chicagoesmuyFRIO’;
%
%
%the solver
solverName = ’lindo’;
%the remote service service address
%if left empty we solve locally
serviceAddress=’http://gsbkip.chicagogsb.edu/os/OSSolverService.jws’;
% now solve
callMatlabSolver(numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, ...

VarType, Q, prob_name, password, solverName, serviceAddress)

36

This example m-file is in the data directory and is file parincLinear.m. Note that in addition to
the problem formulation we can specify which solver to use through the solverName variable. If
solution with a remote solver is desired this can be specified with the serviceAddress variable. If
the serviceAddress is left empty, i.e.

serviceAddress=’’;

then a local solver is used. In this case it is crucial that the appropriate solver is linked in with the
matlabSolver executable using the CXXLIBS option.

The data directory also contains the m-file template.m which contains extensive comments
about how to formulate the problems in MATLAB. A second example which is a quadratic problem
is given in the Appendix. The appropriate m-file is markowitz.m.

7.4 OSParsers

The OSParsers component of the OS library contains reentrant parsers that read OSiL and OSrL
strings and build, respectively, in-memory OSInstance and OSResult objects.

The OSiL parser is invoked through an OSiLReader object as illustrated below. Assume osil
is a string with the problem instance.

OSiLReader *osilreader = NULL;
OSInstance *osinstance = NULL;
osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(&osil);

The readOSiL method has a single argument which is a pointer to a string. The readOSiL method
then calls an underlying method yygetOSInstance that parses the OSiL string. The major com-
ponents of the OSiL schema are recognized by the parser.

<instanceHeader>
<variables>
<objectives>
<constraints>
<linearConstraintCoefficients>
<quadraticCoefficients>
<nonlinearExpressions>

There are other components in the OSiL schema, but they are not yet implemented. In most
large-scale applications the <variables>, <objectives>, <constraints>, and will comprise
the bulk of the instance memory. Because of this, we have “hard-coded” the OSiL parser to
read these specific elements very efficiently. The parsing of the <quadraticCoefficients> and
<nonlinearExpressions> is done using code generated by flex and bison. In the OSParsers
the file paresosil.l is used by flex to generate parseosil.cpp and the file parseosil.y is used
by bison to generate parseosil.tab.cpp. In parseosil.l we use the reentrant option and in
parseosil.y we use the pure-parser option to generate reentrant parsers. The parseosil.y file
contains both our “hard-coded” parser and the grammar rules for the <quadraticCoefficients>
and <nonlinearExpressions> sections. We are currently using GNU Bison version 3.2 and flex
2.5.33.

The typical OS user will have no need to edit either parseosil.l or parseosil.y and therefore
will not have to worry about running either flex or bison to generate the parsers. The generated
parser code from flex and bison is distributed with the project and works on all of the platforms

37

listed in Table 1. If the user does edit either parseosil.l or parseosil.y then parseosil.cpp
and parseosil.tab.cpp need to be regenerated with flex and bison. If these programs are
present, in the OS directory execute

make run_parsers

The files parseosrl.l and parseosrl.y are used by flex and bison to generate the code
parseosrl.cpp and parseosrl.tab.cpp for parsing strings in OSrL format. The comments made
above about the OSiL parser apply to the OSrL parser. The OSrL parser, like the OSiL parser, is
invoked using an OSrL reading object. This is illustrated below (osrl is a string in OSrL format).

OSrLReader *osrlreader = NULL;
osrlreader = new OSrLReader();
OSResult *osresult = NULL;
osresult = osrlreader->readOSrL(osrl);

There is also a lexer parseosss.l for tokenizing the command line for the OSSolverService
executable described in Section 10.

We hope to have a parser for OSoL in a future version of the project.

7.5 OSSolverInterfaces

The OSSolverInterfaces library is designed to facilitate linking the OS library with various solver
APIs. We first describe how to take a problem instance in OSiL format and connect to a solver that
has a COIN-OR OSI interface. See the OSI project www.projects.coin-or.org/Osi. We then
describe hooking to the COIN-OR nonlinear code Ipopt. See www.projects.coin-or.org/Ipopt.
Finally we describe hooking to two commercial solvers KNITRO and LINDO.

The OS library has been tested with the following solvers using the Osi Interface.

• Cbc

• Clp

• Cplex

• DyLP

• Glpk

• SYMPHONY

• Vol

In the OSSolverInterfaces library there is an abstract class DefaultSolver that has the
following key members:

std::string osil;
std::string osol;
std::string osrl;
OSInstance *osinstance;
OSResult *osresult;

and the pure virtual function

38

virtual void solve() = 0 ;

In order to use a solver through the COIN-OR Osi interface it is necessary to an object in the
CoinSolver class which inherits from the DefaultSolver class and implements the appropriate
solve() function. We illustrate with the Clp solver.

DefaultSolver *solver = NULL;
solver = new CoinSolver();
solver->m_sSolverName = "clp";

Assume that the data file containing the problem has been read into the string osil and the
solver options are in the string osol. Then the Clp solver is invoked as follows.

solver->osil = osil;
solver->osol = osol;
solver->solve();

Finally, get the solution in OSrL format as follows

cout << solver->osrl << endl;

Even though LINDO and KNITRO are commercial solvers and do not have a COIN-OR Osi
interface these solvers are used in exactly the same manner as a COIN-OR solver. For example, to
invoke the LINDO solver we do the following.

solver = new LindoSolver();

Similarly for KNITRO and Ipopt. In the case of the KNITRO, the KnitroSolver class
inherits from both DefaultSolver class and the KNITRO NlpProblemDef class. See http:
//www.ziena.com/docs/knitroman.pdf for more information on the KNITRO solver C++ imple-
mentation and the NlpProblemDef class. Similarly, for Ipopt the IpoptSolver class inherits from
both the DefaultSolver class and the Ipopt TNLP class. See https://projects.coin-or.org/
Ipopt/browser/stable/3.2/Ipopt/doc/documentation.pdf?format=raw for more information
on the Ipopt solver C++ implementation and the TNLP calss.

In the examples above the problem instance was assumed to be read from a file into the string
osil and then into the class member solver->osil. However, everything can be done entirely
in memory. For example, it is possible to use the OSInstance class to create an in-memory
problem representation and give this representation directly to a solver class that inherits from
DefaultSolver. The class member to use is osinstance. This is illustrated in the example given
in Section 12.5.

7.6 OSUtils

The OSUtils component of the OS library contains utility codes. For example, the FileUtil class
contains useful methods for reading files into string or char* and writing files from string and
char*. The OSDataStructures class holds other classes for things such as sparse vectors, sparse
Jacobians, and sparse Hessians. The MathUtil class contains a method for converting between
sparse matrices in row and column major form.

39

8 The OSInstance API

The OSInstance API can be used to:

• get information about model parameters, or convert the OSExrpressionTree into a prefix or
postfix representation through a set of get methods,

• modify, or even create an instance from scratch, using a set of set methods,

• provide information to solvers that require function evaluations, Jacobian and Hessian sparsity
patters, function gradient evaluations, and Hessian evaluations.

8.1 Get Methods

The get() methods are used by other classes to access data in an existing OSInstance object or get
an expression tree representation of an instance in postfix or prefix format. Assume osinstance is
an object in the OSInstance class created as illustrated in Figure 10. Then, for example,

osinstance->getVariableNumber();

will return an integer which is the number of variables in the problem,

osintance->getVariableTypes();

will return a char pointer to the variable types (C for continuous, B for binary, and I for general
integer),

getVariableLowerBounds();

will return a double pointer to the lower bound on each variable. There are similar get methods for
the constraints. There are numerous get methods for the data in the <linearConstraintCoefficients>
element, the <quadraticCoefficients> element, and the <nonlinearExpressions> element.

When an osinstance object is created, it is stored as in expression tree in an OSExpressionTree
object. However, some solver APIs (e.g. LINDO) may take the data in a different format such as
postfix and prefix. There are methods to return the data in either postfix or prefix format.

First define a vector of pointers to OSnLNode objects.

std::vector<OSnLNode*> postfixVec;

then get the expression tree for the objective function (index = -1) as a postfix vector of nodes.

postfixVec = osinstance->getNonlinearExpressionTreeInPostfix(-1);

If, for example, the osinstance object was the in-memory representation of the instance illustrated
in Section 13.2 then the code

for (i = 0 ; i < n; i++){
cout << postfixVec[i]->snodeName << endl;
}

will produce

40

number
variable
minus
number
power
number
variable
variable
number
power
minus
number
power
times
plus

The method, processNonlinearExpressions() in the LindoSolver class in the OSSolverInterfaces
library component illustrates using a postfix vector of OSnLNode objects to build a Lindo model
instance.

8.2 Set Methods

The set methods can be used to build an in-memory OSInstance object. A code example of how
to do this is in Section 12.5.

8.3 Calculate Methods

The calculate methods are described in Section 9.

9 The OS Algorithmic Differentiation Implementation

The OS library provides a set of calculate methods for calculating function values, gradients, and
Hessians. The calculate methods are part of the OSInstance class and are designed to work with
solver APIs.

9.1 Algorithmic Differentiation: Brief Review

First and second derivative calculations are made using algorithmic differentiation. Here we provide
a brief review of algorithmic differentiation. For an excellent reference on algorithmic differentiation
see Griewank [?]. The OS package uses the COIN-OR package CppAD which is also an excellent
resource with extensive documentation and information about algorithmic differentiation. See the
documentation written by Brad Bell [?]. The development here is from the CppAD documentation.
Consider the function f : X → Y from Rn to Rm.

Express the input vector as scalar function of t by

X(t) = x(0) + x(1)t+ x(2)t2 (11)

41

where x(0), x(1), and x(2) are vectors in Rn. Then

X(0) = x(0)

X ′(0) = x(1)

X ′′(0) = 2x(2)

In general the x(k) corresponds to the k′th order Taylor coefficient, i.e.

x(k) =
1
k!
X(k)(0), k = 0, 1, 2 (12)

Then Y (t) = f(X(t)) is a function from R1 to Rm and it is expressed in terms of its Taylor series
expansion as

Y (t) = y(0) + y(1)t+ y(2)t2 + o(t3) (13)

where

y(k) =
1
k!
Y (k)(0), k = 0, 1, 2 (14)

It is shown by Bell (http://www.coin-or.org/CppAD/) that:

y(0) = f(x(0)) (15)

Let e(i) denote the i′th unit vector. If x(1) = e(i) then y(1) is equal to the i′th column of the Jacobian
matrix of f(x) evaluated at x(0). That is

y(1) =
∂f

∂xi
(x(0)). (16)

If x(1) = e(i) and x(2) = 0 then for function fk(x),

y
(2)
k =

1
2
∂2fk(x(0))
∂xi∂xi

(17)

If x(1) = e(i) + e(j) and x(2) = 0 then for function fk(x),

y
(2)
k =

1
2

(
∂2fk(x(0))
∂xi∂xi

+
∂2fk(x(0))
∂xi∂xj

+
∂2fk(x(0))
∂xj∂xi

+
∂2fk(x(0))
∂xj∂xj

)
(18)

or, expressed in terms of the mixed partials,

∂2fk(x(0))
∂xi∂xj

= y
(2)
k −

1
2

(
∂2fk(x(0))
∂xi∂xi

+
∂2fk(x(0))
∂xj∂xj

)
(19)

9.2 Using OSInstance Methods: Low Level Calls

The code snippets used in this section are from the example code algorithmicDiffTest.cpp in the
algorithmicDiffTest folder in the examples folder. The code is based on the following example.

42

Minimize x2
0 + 9x1 (20)

s.t. 33− 105 + 1.37x1 + 2x3 + 5x1 ≤ 10 (21)
ln(x0x3) + 7x2 ≥ 10 (22)
x0, x1, x2, x3 ≥ 0 (23)

The OSiL representation of the instance (20)-(23) is given in Appendix 13.3. This exam-
ple is designed to illustrate several features of OSiL. Note that in equation (21) the constant
33 appears in the <con> element corresponding to this constraint and the constant 105 appears
as a <number> OSnL node in the <nonlinearExpressions> section. There are no nonlinear
terms in the instance that involve variable x1. The 5x1 term in equation (21) is expressed in
the <linearConstraintCoefficients> section. However, the 1.37x1 term in equation (21) is ex-
pressed in the <nonlinearExpressions> section. Hence, in the OSInstance API, variable x1 is
treated as a nonlinear variable for purposes of algorithmic differentiation. Variable x2 never ap-
pears in the <nonlinearExpressions> section and is therefore treated as a linear variable and not
used in any algorithmic differentiation calculations.

Ignoring the nonnegativity constraints, instance (20)-(23) defines the following function f :
X → Y from R4 to R3.

f(x) =

 f1(x)
f2(x)
f3(x)

 =

 x2
0 + 9x1

33− 105 + 1.37x1 + 2x3 + 5x1

ln(x0x3) + 7x2

 (24)

The OSiL representation for the instance in (20)-(23) is read into an in-memory OSInstance
object as follows (we assume that osil is a string with the OSiL instance)

osilreader = new OSiLReader();
osinstance = osilreader->readOSiL(&osil);

There is a method in the OSInstance class, initForAlgDiff() that is used to initialize the non-
linear data structures. A call to this method

osinstance->initForAlgDiff();

will generate a map of the indices of the nonlinear variables. This is critical because the algorithmic
differentiation only operates on variables that appear in the <nonlinearExpressions> section. An
example of this map follows.

std::map<int, int> varIndexMap;
std::map<int, int>::iterator posVarIndexMap;
varIndexMap = osinstance->getAllNonlinearVariablesIndexMap();
for(posVarIndexMap = varIndexMap.begin(); posVarIndexMap
!= varIndexMap.end(); ++posVarIndexMap){
std::cout << "Variable Index = " << posVarIndexMap->first << std::endl ;
}

The variable indices listed are 0, 1, and 3. Variable 2 does not appear in the <nonlinearExpressions>
section and is not included in varIndexMap.

Once the nonlinear structures are initialized it is possible to take derivatives using algorithmic
differentiation. Algorithmic differentiation is done using either a forward or reverse sweep through

43

an expression tree (or operation sequence) representation of f . The two key algorithmic differenti-
ation public methods in the OSInstance class are forwardAD and reverseAD. These are actually
generic “wrappers” around the corresponding CppAD methods with the same signature. This keeps
the OS API public methods independent of any underlying algorithmic differentiation package.

The forwardAD signature is

std::vector<double> forwardAD(int k, std::vector<double> vdX);

where k is the highest order Taylor coefficient of f to be returned, vdX is vector of doubles in Rn,
and the function return is a vector of doubles in Rm. Thus, k corresponds to the k in Equations
(12) and (14), where vdX corresponds to the x(k) in Equation (12) and the y(k) in Equation (14)
is the vector in range space returned by the call to forwardAD. For example, by Equation (15) the
following call will evaluate each component function defined in (24).

funVals = osinstance->forwardAD(0, x0);

Since there are three components in the vector defined by (24), the return value funVals will have
three components. For an input vector,

x0[0] = 1; // the value for variable x0
x0[1] = 5; // the value for variable x1
x0[2] = 5; // the value for variable x3

the values returned by osinstance->forwardAD(0, x0) are 1, -63.15, and 1.6094, respectively.
The Jacobian of the example in (24) is

J =

 2x0 9.00 0.00 0.00
0.00 6.37 0.00 2.00
1/x0 0.00 7.00 1/x3

 (25)

when x0 = 1, x1 = 5, x2 = 10, and x3 = 5 the Jacobian is

J =

 2.00 9.00 0.00 0.00
0.00 6.37 0.00 2.00
1.00 0.00 7.00 0.20

 (26)

A forward sweep with k = 1 will calculate the Jacobian column-wise. See (16). The following code
will return column 4 of the Jacobian (26) which corresponds to nonlinear variable x3.

x1[0] = 0;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);

Now calculate second derivatives. To illustrate we use the results in (17)-(19) and calculate

∂2fk(x(0))
∂x0∂x3

k = 1, 2, 3.

Variables x0 and x3 are the first and third nonlinear variables so by (18) the x(1) should be the
sum of the e(1) and e3 unit vectors and used in first-order forward sweep calculation.

44

x1[0] = 1;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);

Next set x(2) = 0 and do a second-order forward sweep.

std::vector<double> x2(n);
x2[0] = 0;
x2[1] = 0;
x2[2] = 0;
osinstance->forwardAD(2, x2);

This call returns the vector of values

y
(2)
1 = 1, y

(2)
2 = 0, y

(2)
3 = −.52

By inspection,

∂2f1(x(0))
∂x0∂x0

= 2

∂2f2(x(0))
∂x0∂x0

= 0

∂2f3(x(0))
∂x0∂x0

= −1

∂2f1(x(0))
∂x3∂x3

= 0

∂2f2(x(0))
∂x3∂x3

= 0

∂2f3(x(0))
∂x3∂x3

= −.04

Then by (19),

∂2f1(x(0))
∂x0∂x3

= y
(2)
1 −

1
2

(
∂2f1(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= 1− 1

2
(2 + 0) = 0

∂2f2(x(0))
∂x0∂x3

= y
(2)
2 −

1
2

(
∂2f2(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= 0− 1

2
(0 + 0) = 0

∂2f3(x(0))
∂x0∂x3

= y
(2)
3 −

1
2

(
∂2f3(x(0))
∂x0∂x0

+
∂2fk(x(0))
∂x3∂x3

)
= −52− 1

2
(−1− .04) = 0

Making all of the first and second derivative calculations using forward sweeps is most effective
when the number of rows exceeds the number of variables.

The reverseAD signature is

std::vector<double> reverseAD(int k, std::vector<double> vdlambda);

where vdlambda is a vector of Lagrange multipliers. This method returns a vector in the range
space. If a reverse sweep of order k is called, a forward sweep of order at k − 1 must have been
made prior to the call.

45

9.2.1 First Derivative Reverse Sweep Calculations

In order to calculate first derivatives execute the following sequence of calls.

x0[0] = 1;
x0[1] = 5;
x0[2] = 5;
std::vector<double> vlambda(3);
vlambda[0] = 0;
vlambda[1] = 0;
vlambda[2] = 1;
osinstance->forwardAD(0, x0);
osinstance->reverseAD(1, vlambda);

Since the vlambda only includes the third function f1(x) the sequence of calls will produce the third
row of the Jacobian, i.e.

∂f3(x(0))
∂x0

= 1,
∂f3(x(0))
∂x1

= 0,
∂f3(x(0))
∂x3

= .2

9.2.2 Second Derivative Reverse Sweep Calculations

In order to calculate second derivatives using reverseAD forward sweeps of order 0 and 1 must be
finished. The call to reverseAD(2, vlambda) will return a vector of dimension 2n where n is the
number of variables. If the zero-order forward sweep is forward(0,x0) and the first-order forward
sweep is forwardAD(1, x1) where x1 = e(i), then the return vector z = reverseAD(2, vlambda)
is

z[2j − 2] =
∂L(x(0), λ(0))

∂xj
, j = 1, . . . , n (27)

z[2j − 1] =
∂2L(x(0), λ(0))

∂xi∂xj
, j = 1, . . . , n (28)

where

L(x, λ) =
m∑

k=1

λkfk(x) (29)

For example, the following calls will calculate the third row (column) of the Hessian of the
Lagrangian.

x0[0] = 1;
x0[1] = 5;
x0[2] = 5;
osinstance->forwardAD(0, x0);
x1[0] = 0;
x1[1] = 0;
x1[2] = 1;
osinstance->forwardAD(1, x1);
vlambda[0] = 1;

46

vlambda[1] = 2;
vlambda[2] = 1;
osinstance->reverseAD(2, vlambda);

This returns

∂L(x(0), λ(0))
∂x1

= 3,
∂L(x(0), λ(0))

∂x2
= 12.74,

∂L(x(0), λ(0))
∂x3

= 4.2

∂2L(x(0), λ(0))
∂x3∂x0

= 0,
∂2L(x(0), λ(0))

∂x3∂x1
= 0,

∂2L(x(0), λ(0))
∂x3∂x3

= −.04

The reason that
∂L(x(0), λ(0))

∂x2
= 2× 6.37 = 12.74

and not
∂L(x(0), λ(0))

∂x2
= 1× 9 + 2× 6.37 = 12.74 = 21.74

is that the 9x1 term in the objective is captured in the <coef> element in the <objectives> section
and therefore does not appear as a nonlinear term in <nonlinearExpressions>. Again, forwardAD
and reverseAD only operate on variables and terms in either the <quadraticCoefficients> or
<nonlinearExpressions> sections.

9.3 Using OSInstance Methods: High Level Calls

The methods forwardAD and reverseAD are low level calls and are not designed to work directly
with solver APIs. The OSInstance API has other methods that most users will want to invoke
when linking with solver APIs. We describe these now.

9.3.1 Sparsity Methods

Many solvers such as Ipopt (projects.coin-or.org/Ipopt) or Knitro (www.ziena.com) require
the sparsity pattern of the Jacobian of the constraint matrix and the Hessian of the Lagrangian
function. The following code illustrates how to get the sparsity pattern of the constraint Jacobian
matrix

SparseJacobianMatrix *sparseJac;
sparseJac = osinstance->getJacobianSparsityPattern();
for(idx = 0; idx < sparseJac->startSize; idx++){

std::cout << "number constant terms in constraint " << idx << " is "
<< *(sparseJac->conVals + idx) << std::endl;
for(k = *(sparseJac->starts + idx); k < *(sparseJac->starts + idx + 1); k++){

std::cout << "row idx = " << idx << "
col idx = "<< *(sparseJac->indexes + k) << std::endl;

}
}

For the example problem this will produce

47

JACOBIAN SPARSITY PATTERN
number constant terms in constraint 0 is 0
row idx = 0 col idx = 1
row idx = 0 col idx = 3
number constant terms in constraint 1 is 1
row idx = 1 col idx = 2
row idx = 1 col idx = 0
row idx = 1 col idx = 3

The SparseJacobianMatrix object has a data member starts which is the index of the start of
each constraint row. The int data member indexes is the variable index of a potential nonzero
derivative. There is also a double data member values that will the value of the partial deriva-
tive of the corresponding index at each iteration. Finally, there is an int data member conVals
that is the number of constant terms in each gradient. A constant term is a partial deriva-
tive that cannot change at an iteration. A variable is considered a constant variable if it ap-
pears in the <linearConstraintCoefficients> section but not in the nonlinearExpressions.
For a row indexed by idx the variable indices are in the indexes array between the elements
sparseJac->starts + idx and sparseJac->starts + idx + 1. The first sparseJac->conVals
+ idx variables listed are indices of constant variables. In this example, when idx is 1, there is one
constant variable and it is variable x2. The constant variables never appear in the AD evaluation.

The following code illustrates how to get the sparsity pattern of the Hessian of the Lagrangian.

SparseHessianMatrix *sparseHessian;
sparseHessian = osinstance->getLagrangianHessianSparsityPattern();
for(idx = 0; idx < sparseHessian->hessDimension; idx++){
std::cout << "Row Index = " << *(sparseHessian->hessRowIdx + idx) ;
std::cout << " Column Index = " << *(sparseHessian->hessColIdx + idx);
}

The SparseHessianMatrix class has the int data members hessRowIdx and hessColIdx for in-
dexing potential nonzero elements in the Hessian matrix. The double data member hessValues
holds the value of the respective second derivative at each iteration. If numVars is the number of
nonlinear variables, each array in sparseHessian is of size

numV ars ∗ (numV ars+ 1)/2;

All mixed partials of nonlinear terms are considered to be potential nonzeros. Hopefully, a future
implementation of the OS library will be more robust in preserving sparsity.

9.3.2 Function Evaluation Methods

There are several overloaded methods for calculating objective and constraint values. The method

double *calculateAllConstraintFunctionValues(double* x, bool new_x)

will return a double pointer to an array of constraint function values evaluated at x. If the value
of x has not changed since the last function call, then new_x should be set to false and the most
recent function values are returned. When using this method, with this signature, all function
values are calculated in double using an OSExpressionTree object.

A second signature for the calculateAllConstraintFunctionValues is

48

double *calculateAllConstraintFunctionValues(double* x, double *objLambda,
double *conLambda, bool new_x, int highestOrder)

In this signature, x is a pointer to the current primal values, objLambda is a vector of dual multipli-
ers, conLambda is a vector of dual multipliers on the constraints, new_x is true if any components
of x have changed since the last evaluation, and highestOrder is the highest order of derivative
to be calculated at this iteration. The following code snippet illustrates defining a set of variable
values for the example we are using and then the function call.

double* x = new double[4]; //primal variables
double* z = new double[2]; //Lagrange multipliers on constraints
double* w = new double[1]; //Lagrange multiplier on objective
x[0] = 1; // primal variable 0
x[1] = 5; // primal variable 1
x[2] = 10; // primal variable 2
x[3] = 5; // primal variable 3
z[0] = 2; // Lagrange multiplier on constraint 0
z[1] = 1; // Lagrange multiplier on constraint 1
w[0] = 1; // Lagrange multiplier on the objective function
calculateAllConstraintFunctionValues(x, w, z, true, 0);

When making all high level calls for function, gradient, and Hessian evaluations we pass all the
primal variables in the x argument, not just the nonlinear variables. Underneath the call, the
nonlinear variables are identified and used in AD function calls.

The use of the parameters new_x and highestOrder is important and requires further expla-
nation. The parameter highestOrder is an integer variable that will take on the value 0, 1, or 2
(actually higher values if we want third derivatives etc.). The value of this variable is the highest
order derivative that is required of the current iterate. For example, if a callback requires a func-
tion evaluation and highestOrder = 0 then only the function is evaluated at the current iterate.
However, if highsetOrder = 2 then the function call

calculateAllConstraintFunctionValues(x, w, z, true, 2)

will trigger first and second derivative evaluations in addition to the function evaluations.
In the OSInstance class code, every time a forward (forwardAD) or reverse sweep (reverseAD)

is executed a private member, m_iHighestOrderEvaluated is set to the order of the sweep. For
example, forwardAD(1, x) will result in m_iHighestOrderEvaluated = 1. Just knowing the value
of new_x alone is not sufficient. It is also necessary to know highestOrder and compare it with
m_iHighestOrderEvaluated. For example, if new_x is false, but m_iHighestOrderEvaluated =
0, and the callback requires a Hessian calculation, then it is necessary to calculate the first and
second derivatives at the current iterate.

There are exactly two conditions that require a new function or derivative evaluation. A new
evaluation is required if and only if

1. The value of new_x is true

–OR–

2. For the callback function the value of the input parameter highestOrder is strictly greater
than the current value of m_iHhighestOrderEvaluated.

49

For an efficient implementation of AD it is important to be able to get the Lagrange multipliers
and highest order derivative that is required from inside any callback – not just the Hessian evalu-
ation callback. For example, in Ipopt, if eval_g or eval_f are called, and for the current iterate,
eval_jac and eval_hess are also going to be called, then a more efficient AD implementation is
possible if the Lagrange multipliers are available for eval_g and eval_f.

Currently, whenever new_x = true in the underlying AD implementation we do not retape the
function. This is because we currently throw an exception if there are any logical operators involved
in the AD calculations. This may change in a future implementation.

There are also similar methods for objective function evaluations. There is also a method

double calculateFunctionValue(int idx, double* x, bool new_x);

that will return the value of any constraint or objective function indexed by idx. This method
works strictly with double data using an OSExpressionTree object.

There is also a public variable, bUseExpTreeForFunEval that, if set to true, will cause the
method

calculateAllConstraintFunctionValues(x, objLambda, conLambda, true, highestOrder)

to also use the OS expression tree for function evaluations when highestOrder = 0 rather than
use the operator overloading in the CppAD tape.

9.3.3 Gradient Evaluation Methods

One OSInstance method for gradient calculations is

SparseJacobianMatrix *calculateAllConstraintFunctionGradients(double* x, double *objLambda,
double *conLambda, bool new_x, int highestOrder)

If a call has been placed to calculateAllConstraintFunctionValues with highestOrder = 0,
then the appropriate call to get gradient evaluations is

calculateAllConstraintFunctionGradients(x, NULL, NULL, false, 1);

Note that in this function call new_x = false. This prevents a call to forwardAD() with order 0
to get the function values.

If, at the current iterate, the Hessian of the Lagrangian function is also desired then an appro-
priate call is

calculateAllConstraintFunctionGradients(objLambda, conLambda, false, 2);

In this case, if there was a prior call

calculateAllConstraintFunctionValues(x, w, z, true, 0);

then only first and second derivatives are calculated, not function values.
When calculating the gradients, if the number of nonlinear variables exceeds or is equal to the

number of rows, a forwardAD(0, x) sweep is used to get the function values, and a reverseAD(1,
ek) sweep for each unit vector ek in the row space is used to get the vector of first order partials for
each row in the constraint Jacobian. If the number of nonlinear variables is less then the number
of rows then a forwardAD(0, x) sweep is used to get the function values and a forwardAD(1, ei)
sweep for each unit vector ei in the column space is used to get the vector of first order partials for
each column in the constraint Jacobian.

Two other gradient methods are

50

SparseVector *calculateConstraintFunctionGradient(double* x,
double *objLambda, double *conLambda, int idx, bool new_x, int highestOrder);

and

SparseVector *calculateConstraintFunctionGradient(double* x, int idx,
bool new_x);

Similar methods are available for the objective function, however the objective function gradient
methods treat the gradient of each objective function as a dense vector.

9.3.4 Hessian Evaluation Methods

There are two methods for Hessian calculations. The first method has the signature

SparseHessianMatrix *calculateLagrangianHessian(double* x,
double *objLambda, double *conLambda, bool new_x, int highestOrder);

so if either function or first derivatives have been calculated an appropriate call is

calculateLagrangianHessian(x, w, z, false, 2);

If the Hessian of a single row or objective function is desired the following method is available

SparseHessianMatrix *calculateHessian(double* x, int idx, bool new_x);

10 The OSSolverService

The OSSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The OSSovlerService can be used to invoke a
solver locally or on a remote server. It can work either synchronously or asynchronously.

10.1 OSSolverService Input Parameters

At present, the OSSolverService takes the following parameters. The order of the parameters is
irrelevant. Not all the parameters are required. However, if the solve or send service methods are
invoked a problem instance location must be specified.

-osil xxx.osil this is the name of the file that contains the optimization instance in OSiL
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. If this option is not specified then the instance location must be specified
in the OSoL solver options file.

-osol xxx.osol this is the name of the file that contains the solver options. It is assumed
that this file is available in a directory on the machine that is running OSSolverService. It
is not necessary to specify this option.

-osrl xxx.osrl this is the name of the file that contains the solver solution. A valid file path
must be given on the machine that is running OSSolverService. It is not necessary to specify
this option.

51

-serviceLocation url is the URL of the solver service. This is not required, and if not
specified it is assumed that the problem is solved locally.

-serviceMethod methodName this is the method on the solver service to be invoked. The
options are solve, send, kill, knock, getJobID, and retrieve. The use of these options
is illustrated in the examples below. This option is not required, and the default value is
solve.

-mps xxx.mps this is the name of the mps file if the problem instance is in mps for-
mat. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

-nl xxx.nl this is the name of the AMPL nl file if the problem instance is in AMPL nl
format. It is assumed that this file is available in a directory on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

-solver solverName Possible values for default OS installation are clp (COIN-OR Clp), cbc
(COIN-OR Cbc), dylp (COIN-OR DyLP), and symphony (COIN-OR SYMPHONY). Other
solvers supported (if the necessary libraries are present) are cplex (Cplex through COIN-OR
Osi), glpk (glpk through COIN-OR Osi), ipopt (COIN-OR Ipopt), knitro (Knitro), and
lindo LINDO. If no value is specified for this parameter, then cbc is the default value of this
parameter if the the solve or send service methods are used.

-browser browserName this paramater is a path to the browser on the local machine. If
this optional parameter is specified then the solver result in OSrL format is transformed using
XSLT into HTML and displayed in the browser.

-config pathToConfigureFile this parameter specifies a path on the local machine to a text
file containing values for the input parameters. This is convenient for the user not wishing to
constantly retype parameter values.

The input parameters to the OSSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line. The
following command will invoke the Clp solver on the local machine to solve the problem instance
parincLinear.osil. When invoking the commands below involving OSSolverservice we assume
that 1) the user is connected to the directory where the OSSolverService executable is located,
and 2) that ../data/osilFiles is a valid path to COIN-OS/data/osilFiles. If the OS project
was built successfully, then there is a copy of OSSolverService in COIN-OS/OS/src. The user may
wish to execute OSSolverService from this src directory so that all that follows is correct in terms
of path definitions.

./OSSolverService -solver clp -osil ../data/osilFiles/parincLinear.osil

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

-osil ../data/osilFiles/parincLinear.osil
-solver clp

Then the command line is

./OSSolverService -config ../data/configFiles/testlocalclp.config

52

Some Rules:

1. When using the send() or solve() methods a problem instance file location must be specified
either at the command line, in the configuration file, or in the <instanceLocation> element
in the OSoL options file file.

2. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

3. If the solver option is not specified, the COIN-OR solver Cbc is the default solver used. In
this case an error is thrown if the problem instance has quadratic or other nonlinear terms.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation
must be specified.

Parameters specified in the configure file are overridden by parameters specified at the command
line. This is convenient if a user has a base configure file and wishes to override only a few options.
For example,

./OSSolverService -config ../data/configFiles/testlocalclp.config -solver lindo

or

./OSSolverService -solver lindo -config ../data/configFiles/testlocalclp.config

will result in the LINDO solver being used even though Clp is specified in the testlocalclp
configure file.

10.2 Solving Problems Locally

Generally, when solving a problem locally the user will use the solve service method. The solve
method is invoked synchronously and waits for the solver to return the result. This is illustrated in
Figure 17. As illustrated, the OSSolverService reads a file on the hard drive with the optimization
instance, usually in OSiL format. The optimization instance is parsed into a string which is passed
to the OSLibrary which is linked with various solvers. The result of the optimization is passed
back to the OSSolverService as a string in OSrL format.

Here is an example of using a configure file, testlocal.config, to invoke Ipopt locally using
the solve command.

-osil ../data/osilFiles/parincQuadratic.osil
-solver ipopt
-serviceMethod solve
-browser /Applications/Firefox.app/Contents/MacOS/firefox
-osrl /Users/kmartin/temp/test.osrl

The first line of testlocal.config gives the local location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, -solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter -serviceMethod solve is not re-
ally needed, but included only for illustration. The default solver service is solve. The fourth
parameter is the location of the browser on the local machine. It will read the OSrL file on
the local machine using the path specified by the value of the osrl parameter, in this case
/Users/kmartin/temp/test.osrl.

Parameters may also be contained in an XML-file in OSoL format. In the configuration file
testlocalosol.config we illustrate specifying the instance location in an OSoL file.

53

Figure 16: A local call to solve.

-osol ../data/osolFiles/demo.osol
-solver clp

The file demo.osol is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="local">

../data/osilFiles/parincLinear.osil
</instanceLocation>

</general>
</osol>

10.3 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the OSSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. The OS implementation of the
solver service uses Apache Tomcat. See tomcat.apache.org. The Web Service running on the
server is a Java program based on Apache Axis. See ws.apache.org/axis. This is described in
greater detail in Section 11. This Web Service is called OSSolverService.jws. It is not necessary
to use the Tomcat/Axis combination.

See Figure 17 for an illustration of this process. The client machine uses OSSolverService
executable to call one of the six service methods, e.g. solve. The information such as the problem
instance in OSiL format and solver options in OSoL format are packaged into a SOAP envelope and
sent to the server. The server is running the Java Web Service OSSolverService.jws. This Java
program running in the Tomcat Java Servlet container implements the six service methods. If a

54

Figure 17: A remote call to solve.

solve or send request is sent to the server from the client, an optimization problem must be solved.
The Java solver service solves the optimization instance by calling the OSSolverService on the server.
So there is an OSSolverService on the client that calls the Web Service OSSolverService.jws that
in turn calls the executable OSSovlerService on the server. The Java solver service passes options
to the local OSSolverService such as where the OSiL file is located and where to write the solution
result.

In the following sections we illustrate each of the six service methods.

10.3.1 The solve Service Method

First we illustrate a simple call to the OSSolverService.jws. The call on the client machine is

./OSSolverService -config ../data/configFiles/testremote.config

where the testremote.config file is

-osil ../data/osilFiles/parincLinear.osil
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

No solver is specified and by default the Cbc solver is used by the OSSolverService. If, for
example, the user wished to solve the problem with the Clp solver then this is accomplished either
by using the -solver option on the command line

./OSSolverService -config ../data/configFiles/testremote.config -solver clp

or by adding the line

-solver clp

to the testremote.config file.
Next we illustrate a call to the remote SolverService and specify an OSiL instance that is

actually residing on the remote machine that is hosting the OSSolverService and not on the client
machine.

55

./OSSolverService -osol ../data/osolFiles/remoteSolve1.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws

where the remoteSolve1.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="local">c:\parincLinear.osil</instanceLocation>
<contact transportType="smtp">kipp.martin@chicagogsb.edu</contact>

</general>
<optimization>

<other name="os_solver">ipopt</other>
</optimization>

</osol>

If we were to change to the locationType attribute in the <instanceLocation> element to http
then we could specify the intance location to on yet another machine. This is illustrated below for
remoteSovle2.osol. The scenario is depicted in Figure 18. The OSiL string passed from the client
to the solver service is empty. However, the OSoL element <instanceLocation> has an attribute
locationType equal to http. In this case, the text of the <instanceLoction> element contains the
URL of a third machine which has the problem intance parincLinear.osil. The solver service will
contact the machine with URL http://www.coin-or.org/OS/parincLinear.osil and download
this test problem. So the OSSolverService is running on the server gsbkip.chicagogsb.edu
which contacts the server www.coin-or.org for the model instance.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<instanceLocation locationType="http">

http://www.coin-or.org/OS/parincLinear.osil
</instanceLocation>
</general>
<optimization>

<other name="os_solver">ipopt</other>
</optimization>

</osol>

10.3.2 The send Service Method

When the solve service method is used, the OSSolverService does not finish execution until the
solution is returned from the remote solver service. The solve method communicates synchronously
with the remote solver service. This may not be desirable for large problems when the user does
not want to wait for a response. The send service method should be used when asynchronous
communication is desired. When the send method is used the instance is communicated to the
remote service and the OSSolverService terminates after submission. An example of this is

./OSSolverService -config ../data/configFiles/testremoteSend.config

where the testremoteSend.config file is

56

Figure 18: Downloading the instance from a remote source.

-nl ../data/amplFiles/hs71.nl
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod send

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl is in AMPL format.
Before sending this to the remote solver service the OSSolverService executable converts the nl
format into the OSiL XML format and packages this into the SOAP envelope used by Web Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send methd requires a JobID. In the above example no JobID was specified.
When no JobID is specified the OSSolverService method first invokes the getJobID service method
to get a JobID and then puts this information into a created OSoL file and send the information to
the server. More information on the getJobID service method is provided in Section 10.3.4. The
OSSolverService prints the OSoL file to standard output before termination. This is illustrated
below,

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>
gsbrkm4__127.0.0.1__2007-06-16T15.46.46.075-05.00149771253
</jobID>

</general>
<optimization>

<other name="os_solver">ipopt</other>
</optimization>

</osol>

57

The JobID is one that is randomly generated by the server and passed back to the OSSolverService.
The user can also provide a JobID in their OSoL file. For example, below is a user-provided OSoL
file that could be specified in a configuration file or on the command line.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
<optimization>

<other name="os_solver">ipopt</other>
</optimization>

</osol>

The same JobID cannot be used twice, so if 123456abcd was used earlier, the result of send
will be false.

In order to be of any use, it is necesary to get the result of the optimization. This is described
in Section 10.3.3. Before proceeding to this section, we describe two ways for knowing when the
optimization is complete. One feature of the standard OS remote SolverService is the ability to
send an email when the job is complete. Below is an example of the OSoL that uses the email
feature.

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>
<contact transportType="smtp">

kipp.martin@chicagogsb.edu
</contact>

</general>
<optimization>

<other name="os_solver">lindo</other>
</optimization>

</osol>

The remote Solver Service will send an email to the above address when the job is complete. A
second option for knowing when a job is complete is to use the knock method.

Note that in all of these examples we provided a value for the name attribute in the <other>
element. The remote solver service will use Cbc if another solver is not specified.

10.3.3 The retrieve Service Method

The retrieve has a single string argument which is an OSoL instance. Here is an example of using
the retrieve method with OSSolverService.

./OSSolverService -config ../data/configFiles/testremoteRetrieve.config

The testremoteRetrieve.config file is

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-osol ../data/osolFiles/retrieve.osol
-serviceMethod retrieve
-osrl /home/kmartin/temp/test.osrl

58

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote service.
The remove service locates the result returns it as a string. The string that is returned is an OSrL
instance. The user must modify the line

-osrl /home/kmartin/temp/test.osrl

to reflect a valid path for their own machine. Also, the <jobID> should reflect a <jobID> that was
previously submitted. The send() and retrieve() <jobID> must match up.

10.3.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The OSSolverService can get
a JobID with the following options.

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod getJobID

Note that no OSoL input file is specified. In this case, the OSSolverService sends an empty string.
A string is returned with the JobID. This JobID is then put into a <jobID> element in an OSoL
string that would be used by the send method.

10.3.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 10.3.1. A second way to check on the status of a job is to use the knock service method.
For example, assume a user wants to know if the job with JobID 123456abcd is complete. A user
would make the request

./OSSolverService -config ../data/configFiles/testRemoteKnock.config

where the testRemoteKnock.config file is

-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-osplInput ../data/osolFiles/demo.ospl
-osol ../data/osolFiles/retrieve.osol
-serviceMethod knock

the demo.ospl file is

59

<?xml version="1.0" encoding="UTF-8"?>
<ospl xmlns="os.optimizationservices.org">
<processHeader>
<request action="getAll"/>
</processHeader>
<processData/>
</ospl>

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">
<general>
<jobID>123456abcd</jobID>

</general>
</osol>

The result of this request is again a string in OSpL format, with the data contained in its
processData section. Part of the return format is illustrated below.

<?xml version="1.0" encoding="UTF-8"?>
<ospl xmlns="os.optimizationservices.org">
<processHeader>

<serviceURI>http://localhost:8080/os/ossolver/CGSolverService.jws</serviceURI>
<serviceName>CGSolverService</serviceName>
<time>2006-05-10T15:49:26.7509413-05:00</time>

<processHeader>
<processData>

<statistics>
<currentState>idle</currentState>
<availableDiskSpace>23440343040</availableDiskSpace>
<availableMemory>70128</availableMemory>
<currentJobCount>0</currentJobCount>
<totalJobsSoFar>1</totalJobsSoFar>
<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>
<serviceUtilization>0.1</serviceUtilization>
<jobs>
<job jobID="123456abcd">
<state>finished</state>
<serviceURI>http://gsbkip.chicagogsb.edu/ipopt/IPOPTSolverService.jws</serviceURI>
<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>
<startTime>2007-06-16T14:57:36.678-05:00</startTime>
<endTime>2007-06-16T14:57:39.404-05:00</endTime>
<duration>2.726</duration>

</job>
</jobs>

</statistics>
</processData>

</ospl>

60

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.
When making a knock request, the OSoL string can be empty. In this example, if the OSoL

string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file OSParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e. get all process information related to the jobs) for the OSpL action
attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema.

10.3.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on the
remote server using the kill service method. For example to kill job 123456abcd, at the command
line type

./OSSolverService -config ../data/configFiles/kill.config

where the configure file kill.config is

-osol ../data/osolFiles/kill.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod kill

and the kill.osol file is

<?xml version="1.0" encoding="UTF-8"?>
<osol xmlns="os.optimizationservices.org">

<general>
<jobID>123456abcd</jobID>

</general>
</osol>

10.3.7 Summary

Below is a summary of the inputs and outputs of the six service methods. See also Figure 19.

• solve(osil, osol):

– Inputs: a string with the instance in OSiL format and an optional string with the solver
options in OSoL format

– Returns: a string with the solver solution in OSrL format

– Synchronous call, blocking request/response

• send(osil, osol)

– Inputs: a string with the instance in OSiL format and a string with the solver options
in OSoL format (same as in solve)

– Returns: a boolean, true if the problem was successfully submitted, false otherwise

61

– Has the same signature as solve

– Asynchronous (server side), non-blocking call

– The osol string should have a JobID in the <jobID> element

• getJobID(osol)

– Inputs: a string with the solver options in OSoL format (in this case, the string may be
empty because no options are required to get the JobID)

– Returns: a string which is the unique job id generated by the solver service

– Used to maintain session and state on a distributed system

• knock(ospl, osol)

– Inputs: a string in OSpL format and an optional string with the solver options in OSoL
format

– Returns: process and job status information from the remote server in OSpL format

• retrieve(osol)

– Inputs: a string with the solver options in OSoL format

– Returns: a string with the solver solution in OSrL format

– The osol string should have a JobID in the <jobID> element

• kill(osol)

– Inputs: a string with the solver options in OSoL format

– Returns: process and job status information from the remote server in OSpL format

– Critical in long running optimization jobs

11 Setting up a Solver Service with Tomcat

Download the java binary distribution at

os-distribution-release_number.zip

The server side of the Java distribution is based on the Tomcat 5.5 implementation. After un-
packing os-distribution-release_number.zip there is a directory os-server-1.0 and a single
file os.war. For users that have not installed the Tomcat server, os-server-1.0 contains all of
the necessary files for a OS Solver Service. If you do not have a Tomcat server running do the
following to setup a Tomcat server with the OS Solver Service on a Unix system:

Step 1. Put the folder os-server-1.0 in the desired location for the OS Solver Service on the server
machine.

Step 2. Connect to the Tomcat bin directory in the os-server-1.0 root and execute ./startup.sh.

Step 3. Test to see if the server is running the OSSolverService. Open a browser on the server and
enter the URL

62

Figure 19: The OS Communication Methods

http://localhost:8080/os/OSSolverService.jws

or

http://127.0.0.1:8080/os/OSSolverService.jws

You should see a message Click to see the WSDL. Click on the link and you should see an
XML description of the various methods available from the OSSolverService.

Step 4. On a client machine, create the file testremote.config with the following lines of text

-serviceLocation http://***.***.***.***:8080/os/OSSolverService.jws
-osil /parincLinear.osil

where ***.***.***.*** is the IP address of the Tomcat server machine. Then, assuming the
files testremote.config and parincLinear.osil are in the same directory on the client
machine as the OSSolverService execute:

./OSSolverService -config testremote.config

You should get back an OSrL message saying the problem was optimized.

In a Windows environment you may want to start the Tomcat server as a service so you can log
off (not shutdown) the machine and have the server continue to run. On a Windows machine do
the following:

63

Step 1. Put the folder os-server-1.0 in the desired location for the OS Solver Service on the server
machine.

Step 2. Connect to the Tomcat bin directory in the os-server-1.0 root and execute

service.bat install

This will install Tomcat as a Windows service. To remove the service execute

service.bat remove

Step 3. Connect to the Tomcat bin directory and and double click on the tomcat5w.exe application.
This will open a Window for controlling the Tomcat server.

Step 4. Select the Startup tab and set the Working Directory to the path to os-server-1.0.

Step 5. Select the General tab and then click the Start button.

Step 6. Same as Step 3 for Unix.

Step 7: Same as Step 4 for Unix.

Note: There are many ways to start the Tomcat server and the exact way you choose may be
different. See http://tomcat.apache.org/ and check out Tomcat version 5.5 for more detail. But
do remember to properly set the Tomcat Working Directory to the path to os-server-1.0. By
default, if you start Tomcat on Windows, the Working Directory is set to the Windows system
folder, which will yield unpredictable results.

If you already have a Tomcat server with Axis installed do the following:

1. copy the file os.war into the Tomcat WEB-INF directory in the ROOT folder under webapps.

2. Follow Steps 2-5 outlined above.

In the directory,

os-server-1.0/webapps/os/WEB-INF/code/OSConfig

there is a configuration file OSParameter.xml that can be modified to fit individual user needs.
You can configure such parameters as service name, service URL/URI. Refer to the xml file for
more detail. Descriptions for all the parameters are within the file itself.

Below is a summary of the common and important directories and files you may want to know.

• os-server-1.0/webapps/os/

contains the OS Web application. All directories and files outside of this folder are Tomcat
server related.

• os-server-1.0/webapps/os/WEB-INF

contains private and important os configuration, library, class and executable files to run the
Optimization Service. All files and directories outside of this folder but within the /os Web
application folder are publicly viewable (e.g. Web pages).

64

• os-server-1.0/webapps/os/WEB-INF/code/OSConfig

contains configuration files for Optimization Services, such as the OSParameter.xml file.

• os-server-1.0/webapps/os/WEB-INF/code/temp

contains temporarily saved files such as submitted OSiL/OSoL input files, and OSrL output
files. This folder can get bigger as the service starts to run more jobs. For maintenance
purpose, you may want to keep an eye on it.

• os-server-1.0/webapps/os/WEB-INF/code/log

contains log files from the running services in the current Web application.

• os-server-1.0/webapps/os/WEB-INF/code/solver

contains solver binaries that actually carry out the optimization process.

• os-server-1.0/webapps/os/WEB-INF/code/backup

contains backup files from some of the above directories. This folder can get bigger as the
service starts to run more jobs. For maintenance purpose, you may want to keep an eye on
it.

• os-server-1.0/webapps/os/WEB-INF/classes

contains class files to run the Optimization Services.

• os-server-1.0/webapps/os/WEB-INF/lib

contains library files needed by the Optimization Services.

• os-server-1.0/conf

contains configuration files for the Tomcat server, such as http server port.

• os-server-1.0/bin

contains executables and scripts to start and shutdown the Tomcat server.

12 Examples

12.1 AMPL Client: Hooking AMPL to Solvers

The amplClient executable (in COIN-OS/OS/examples/amplClient) is designed to work with
the AMPL program. See www.ampl.com. The amplClient acts like an AMPL “solver.” The
amplClient is linked with the OS library and can be used to solve problems either locally or re-
motely. In both cases the amplClient uses the OSnl2osil class to convert the AMPL generated nl
file (which represents the problem instance) into the corresponding instance representation in the
OSiL format.

In the following discussion we assume that the AMPL executable ampl obtained from www.ampl.com,
the OS amplClient, and the test problem hs71.mod are all in the same directory. At first, the user
may wish to run everything in the directory

COIN-OS/OS/examples/amplClient

which is where amplClient is located when the OS project is built. The user must obtain ampl
and put it in this directory. The test problem hs71.mod can be copied from

65

COIN-OS/OS/data/amplFiles

It is also assumed that . (the current directory) is in the search path.
Assume that the problem instance, hs71.mod is in AMPL model format. To solve this problem

locally by calling the amplClient from AMPL first start AMPL and then execute the following
commands. In this case we testing Ipopt as the local server and therefore it is necessary that Ipopt
be part of the local OS build. If it is not then another solver must be selected and a test problem
used that is a linear or integer program.

take in problem 71 in Hock and Schittkowski
assume the problem is in the AMPL directory
model hs71.mod;
tell AMPL that the solver is amplClient
option solver amplClient;
now tell amplClient to use Ipopt
option amplClient_options "solver ipopt";
the name of the nl file (this is optional)
write gtestfile;
now solve the problem
solve;

This will invoke Ipopt locally and the result in OSrL format will be displayed on the screen.
In order to call a remote solver service, after the command

option amplClient_options "solver ipopt";

Next set the solver service option to the address of the remote solver service.

option ipopt_options "service http://gsbkip.chicagogsb.edu/os/OSSolverService.jws";

In this case it is necessary that the Ipopt solver be part of the OS build on the server.

12.2 Algorithmic Differentiation: Using the OS Algorithmic Differentiation
Methods

In the OS/examples/algorithmicDiff folder is test code algorithmicDiffTest.cpp. This code
illustrates the key methods in the OSInstance API that are used for algorithmic differentiation.
These methods were described in Section 9.

12.3 File Upload: Using a File Upload Package

When the OSAgent class methods solve and send are used, the problem instance in OSiL format is
packaged into a SOAP envelope and communication with the server is done using Web Services (for
example Tomcat Axis). However, packing an XML file into a SOAP envelope may add considerably
to the size of the file (each < is replaced with < and each > is replaced with >). Also,
communicating with a Web Services servlet can also slow down the communication process. This
could be a problem for large instances. An alternative approach is to use the fileUpload executable
on the client end and the Java servlet OSFileUpload on the server end. The fileUpload client
executable is contained in the fileUpload directory inside the examples directory.

This servlet is based upon the Apache Commons FileUpload. See http://jakarta.apache.
org/commons/fileupload/. The OSFileUpload Java class , OSFileUpload.class is in the direc-
tory

66

webapps\os\WEB-INF\classes\org\optimizationservices\oscommon\util

relative to the Web server root. The source code OSFileUpload.class is in the directory

COIN-OS/OS/examples/fileUpload

The fileUpload client executable ((see OS/examples/fileUpload)) takes one argument on the
command line which is the location of the file on the local directory to upload to the server. For
example,

fileUpload ../../data/osilFiles/parincQuadratic.osil

The fileUpload executable first creates an OSAgent object.

OSSolverAgent* osagent = NULL;
osagent = new OSSolverAgent("http://gsbkip.chicagogsb.edu/fileupload/servlet/OSFileUpload");

The OSAgent has a method fileUpload with the signature

std::string fileUpload(std::string osilFileName, std::string osil);

where osilFileName is the name of the OSiL problem instance to be written on the server and
osil is the string with the actual instance. Then

osagent->fileUpload(osilFileName, osil);

will place a call to the server, upload the problem instance in the osil string, and cause the
server to write a file on its hard drive named osilFileName. In our implementation, the uploaded
file (parincQuadratic.osil) is saved to the /home/kmartin/temp/parincQuadratic.osil on the
server hard drive. This location is used in the osol file as shown below.

Once the file is on the server, invoke the local OSSolverService by

./OSSolverService -config ../data/configFiles/testremote.config

where the config file is as follows. Notice there is no -osil option as the osil file has already been
uploaded and its instance location (”local” to the server) is specified in the osol file.

-osol ../data/osolFiles/remoteSolve2.osol
-serviceLocation http://gsbkip.chicagogsb.edu/os/OSSolverService.jws
-serviceMethod solve

and the osol file is

<osol>
<general>

<instanceLocation locationType="local">
/home/kmartin/temp/parincQuadratic.osil
</instanceLocation>

</general>
<optimization>
<other name="os_solver">ipopt</other>
</optimization>

</osol>

67

As an alternative to using the command line executable fileUpload, there is also an html form
fileupload.html that can be used to upload files. For example, the URL

http://gsbkip.chicagogsb.edu/os/fileupload.html

will bring up the necessary form that allows the user to browse a directory and select the file to
upload. This URL is based on the assumption that the OSJava classes were deployed as described
in Section 11. The file fileupload.html is in the directory WebApps/os. In our html form imple-
mentation, after you upload the OSiL file, it shows you the path of the uploaded file that is saved
on the server, so that you can put it in the corresponding osol file.

12.4 Instance Generator: Using the OSInstance API to Generate Instances

This example is found in the instanceGenerator folder in the examples folder. This example
illustrates how to build a complete in-memory model instance using the OSInstance API. See
the code instanceGenerator.cpp for the complete example. Here we provide a few highlights to
illustrate the power of the API.

The first step is to create an OSInstance object.

tt
OSInstance *osinstance;
osinstance = new OSInstance();

Assume that the instance has two variables, x0 and x1. Variable x0 is a continuous variable
with lower bound of -100 and upper bound of 100. Variable x1 is a binary variable. First declare
the instance to have two variables.

osinstance->setVariableNumber(2);

Next, add each variable. There is an addVariable method with the signature

addVariable(int index, string name, double lowerBound, double upperBound,
char type, double init, string initString);

Then the calls for these two variables are

osinstance->addVariable(0, "x0", -100, 100, ’C’, OSNAN, "");
osinstance->addVariable(1, "x1", 0, 1, ’B’, OSNAN, "");

There is also a method setVariables for adding more than one variable simultaneously. The
objective function(s) and constraints are added through similar calls.

Nonlinear terms are also easily added. The following code illustrates how to add a nonlinear
term x0 ∗ x1 in the <nonlinearExpressions> section of OSiL.

osinstance->instanceData->nonlinearExpressions->nl[1] = new Nl();
osinstance->instanceData->nonlinearExpressions->nl[1]->idx = 1;
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree =
new OSExpressionTree();
// create a variable nl node for x0
nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=0;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for x1

68

nlNodeVariablePoint = new OSnLNodeVariable();
nlNodeVariablePoint->idx=1;
nlNodeVec.push_back(nlNodeVariablePoint);
// create the nl node for *
nlNodePoint = new OSnLNodeTimes();
nlNodeVec.push_back(nlNodePoint);
// the vectors are in postfix format
// now the expression tree
osinstance->instanceData->nonlinearExpressions->nl[1]->osExpressionTree->m_treeRoot =
nlNodeVec[0]->createExpressionTreeFromPostfix(nlNodeVec);

12.5 osTestCode

The osTestCode example directory holds the file osTestCode.cpp. This is not designed to do
anything specific and is simply a holder for testing out code and features of the OS library.

13 Appendix

13.1 Building a Model in MATLAB

We illustrate how to build a simple Markowitz portfolio optimization problem (a quadratic pro-
gramming problem) from template.m. First copy template.m to markowitz.m.

Assume that there are three stocks (variables) and two constraints (do not count the upper
limit investment of .75 on the variables.).

% the number of constraints
numCon = 2;
% the number of variables
numVar = 3;

All the variables are continuous

VarType=’CCC’;

Next define the constraint upper and lower bounds. There are two constraints. A unity con-
straint (an =) and a lower bound on portfolio return of .15 (a ≥). These two constraints are
expressed as

BU = [1 inf];
BL = [1 .15];

The variables are nonnegative and have upper limits of .75 (no stock can comprise more than
75% of the portfolio). This is written as

VL = [];
VU = [.75 .75 .75];

There are no nonzero linear coefficients in the objective function, but the objective function
vector must always be defined and the number of components of this vector is the number of
variables.

69

OBJ = [0 0 0]

Now the linear constraints. In the model the two linear constraints are

0.3221x1 + 0.0963x2 + 0.1187x3 ≥ .15
x1 + x2 + x3 = 1

These are expressed as

A = [1 1 1 ;
0.3221 0.0963 0.1187];

Now for the quadratic terms. The only quadratic terms are in the objective function. The
objective function is

min 0.4253x2
1 + 0.4458x2

2 + 0.2314x2
3 + 2× 0.1852x1x2

+2× 0.1393x1x3 + 2× 0.1388x2x3

The quadratic matrix Q has 4 rows and a column for each quadratic term. In this example
there are six quadratic terms. The first row of Q is the row index where the terms appear. By
convention, the objective function has index -1 and we count constraints starting at 0. The first
row of Q is

-1 -1 -1 -1 -1 -1

The second row of Q is the index of the first variable in the quadratic term. We use zero based
counting. Variable x1 has index, variable x2 has index 1, and variable x3 has index 2. Therefore,
the second row of Q is

0 1 2 0 0 1

The third row of Q is the index of the second variable in the quadratic term. Therefore, the
third row of Q is

0 1 2 1 2 2

The last (fourth) row is the coefficient. Therefore, the fourth row is

.425349654 .445784443 0.231430983

.370437388 .27862509 .27763384

The quadratic matrix is

Q = [-1 -1 -1 -1 -1 -1;
0 1 2 0 0 1 ;
0 1 2 1 2 2;
.425349654 .445784443 0.231430983 ...
.370437388 .27862509 .27763384];

70

Finally, name the problem, specify the solver (in this case ipopt), the service address (and
password if required by the service), and call the solver.

prob_name = ’Markowitz Example from Anderson, Sweeney, Williams, and Martin’
password = ’chicagoesmuyFRIO’;
%
%the solver
solverName = ’ipopt’;
%the remote service service address
%if left empty we solve locally
serviceAddress=’http://gsbkip.chicagogsb.edu/os/OSSolverService.jws’;
% now solve
callMatlabSolver(numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, VarType, ...

Q, prob_name, password, solverName, serviceAddress)

13.2 OSiL representation for problem given in (1)–(4)

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org">

<instanceHeader>

<name>Modified Rosenbrock</name>

<source>Computing Journal 3:175-184, 1960</source>

<description>Rosenbrock problem with constraints</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con ub="25.0"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

71

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

72

<nonlinearExpressions numberOfNonlinearExpressions="2">

<nl idx="-1">

<plus>

<power>

<minus>

<number type="real" value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number type="real" value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number type="real" value="2.0"/>

</power>

</minus>

<number type="real" value="2.0"/>

</power>

<number type="real" value="100"/>

</times>

</plus>

</nl>

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>

<variable coef="1.0" idx="1"/>

</times>

</ln>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>

13.3 OSiL representation for problem given in (20)–(23)

<?xml version="1.0" encoding="UTF-8"?>
<osil xmlns="os.optimizationservices.org"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

73

xsi:schemaLocation="os.optimizationservices.org
http://www.optimizationservices.org/schemas/OSiL.xsd">

<instanceHeader>
<description>A test problem for Algorithmic Differentiation</description>

</instanceHeader>
<instanceData>

<variables numberOfVariables="4">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>
<var lb="0" name="x2" type="C"/>
<var lb="0" name="x3" type="C"/>

</variables>
<objectives numberOfObjectives=" 1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">
<coef idx="1">9.0</coef>

</obj>
</objectives>
<constraints numberOfConstraints="2">

<con ub="10.0" constant="33"/>
<con lb="10.0"/>

</constraints>
<linearConstraintCoefficients numberOfValues="2">

<start>
<el>0</el>
<el>0</el>
<el>1</el>
<el>1</el>
<el>2</el>

</start>
<rowIdx>

<el>0</el>
<el>1</el>

</rowIdx>
<value>

<el>5</el>
<el>7</el>

</value>
</linearConstraintCoefficients>
<nonlinearExpressions numberOfNonlinearExpressions="3">

<nl idx="1">
<ln>

<times>
<variable coef="1.0" idx="0"/>
<variable coef="1.0" idx="2"/>

</times>
</ln>

</nl>
<nl idx="0">

74

<sum>
<number type="real" value="-105"/>
<variable coef="1.37" idx="1"/>
<variable coef="2" idx="2"/>

</sum>
</nl>
<nl idx="-1">

<power>
<variable coef="1.0" idx="0"/>
<number type="real" value="2.0"/>

</power>
</nl>

</nonlinearExpressions>
</instanceData>

</osil>

References

75

