
CBC

COIN-OR Branch-and-Cut

Short Guide to the Command Line Interface

Prof. Haroldo Gambini Santos

June 28, 2011

Contents

1 Before we start 2

2 Quick start 3

3 Terminal Output 5

4 Tunning 8

4.1 Pre-processing . 8
4.2 Cut Generation . 9
4.3 Heuristics . 10
4.4 Limits . 12

1

Chapter 1

Before we start

This guide is intend to show the basic usage and tuning of CBC: the COIN-OR
Branch-and-cut standalone executable which is called by the command line.
If you do not have it installed in your computer you can grab it accessing
the project page1 or, more easily, from the CoinAll2 binary distribution which
includes ready to use executables for the major operating systems.

Although a basic knowledge of Integer Programming is assumed, concepts
are brie�y explained whenever it is possible.

Credits: a large part of the content of this guide was obtained from the
cbc advanced command line help which you can access by typing �verbose 15�
followed by �?� in the cbc interactive mode. Thanks also to the nice folks at
cbc@list.coin-or.org.

1https://projects.coin-or.org/Cbc/
2http://www.coin-or.org/download/binary/CoinAll/

2

Chapter 2

Quick start

Once you have installed CBC, you can open the command line interface1 of your
favorite operating system and type:

cbc air03.lp solve solu sol.txt1

to load problem air03.lp, solve it and save the best solution in a �le named
sol.txt.

An example of a customized cbc execution is given bellow. In this case, the
parameter cuts receives value Off and the parameter passF receives value 100
before the beginning of the solution process:

cbc air04.lp cuts off passF 100 solve solu sol.txt1

By calling only cbc without parameters you will enter in interactive mode.

Cbc version 2.6, build Dec 4 20101

CoinSolver takes input from arguments (- switches to stdin)2

Enter ? for list of commands or help3

Coin:4

To solve air04.lp as we did before but using interactive mode you can enter
the following commands:

1Terminal in linux and Command Prompt in Windows

3

Coin: import air04.lp1

Coin: cuts off2

Coin: passF 1003

Coin: solve4

Coin: solu sol.txt5

4

Chapter 3

Terminal Output

To solve your problem cbc uses a bag of tricks. It has to dynamically decide
how much processing power will be used in di�erent algorithms/search strate-
gies. To keep you informed of the successes (or failures) of these attempts it
continually prints messages containing details about the current search status.
Understanding these messages is a key step to pinpoint which are the main dif-
�culties in solving your problem. Once you have this information in your hands
you can start to tune CBC so that it will perform better considering the type of
problem you are working on.

Cbc version 2.6, build Nov 30 20101

command line - cbc air03.lp solve solu sol.txt (default strategy 1)2

Continuous objective value is 338864 - 0.15 seconds3

Cgl0003I 0 fixed, 0 tightened bounds, 0 strengthened rows, 44

substitutions

Cgl0004I processed model has 120 rows, 8456 columns (8456 integer)5

and 71651 elements

Objective coefficients multiple of 26

Cutoff increment increased from 1e-05 to 1.9987

Cbc0038I Pass 1: suminf. 8.84615 (35) obj. 346406 iterations 1168

Cbc0038I Pass 2: suminf. 6.50000 (13) obj. 368168 iterations 859

...10

Cbc0038I Pass 12: suminf. 0.00000 (0) obj. 349282 iterations 12911

Cbc0038I Solution found of 34928212

...13

Output at line 5 indicates that cbc successfully solved the linear program-
ming relaxation of your problem. The objective value of this solution provides
a dual bound (338864), which is an optimistic estimate for the optimal solution
value.

5

After solving the linear relaxation, cbc starts the pre-processing phase. On
line 5 we can see the outcome of pre-processing. Ideally our pre-processed model
is a simpler and smaller problem.

Message on line 5 and all messages starting with Cbc0038I, indicate that cbc
is searching for an initial integer feasible solution using the Feasibility Pump
[CITE] method. After twelve passes, it found a solution with value 349282. We
now have a valid solution for the problem and valid bounds for the optimal solu-
tion value: [338864, 349282]. The performance of cbc will depend on how close
are these bounds. A special attention should be given to messages indicating
the progresses in tightening these bounds, which will be discussed in the next
paragraphs.

...14

Cbc0038I Full problem 120 rows 8456 columns, reduced to 0 rows 015

columns

Cbc0012I Integer solution of 340160 found by DiveCoefficient after16

11 iterations and 0 nodes (4.07 seconds)

...17

Cbc0031I 3 added rows had average density of 64818

Cbc0013I At root node, 3 cuts changed objective from 338864 to19

340160 in 2 passes

Cbc0014I Cut generator 0 (Probing) - 0 row cuts average 0.020

elements, 160 column cuts (160 active) in 0.840 seconds - new

frequency is 1

Cbc0014I Cut generator 1 (Gomory) - 4 row cuts average 1257.221

elements, 0 column cuts (3 active) in 0.020 seconds - new frequency

is -100

Cbc0014I Cut generator 2 (Knapsack) - 0 row cuts average 0.022

elements, 0 column cuts (0 active) in 0.020 seconds - new frequency

is -100

Cbc0014I Cut generator 3 (Clique) - 10 row cuts average 3.723

elements, 0 column cuts (0 active) in 0.000 seconds - new frequency

is 1

Cbc0014I Cut generator 6 (TwoMirCuts) - 0 row cuts average 0.024

elements, 0 column cuts (0 active) in 0.030 seconds - new frequency

is -100

...25

Result - Finished objective 340160 after 0 nodes and 11 iterations -26

took 4.75 seconds (total time 5.06)

Total time 5.1427

Message at line 6 indicates the success of the DiveCoe�cient heuristic in �nd-
ing a better feasible solution. We now have tighter bounds: [338864 , 340160].

To improve the dual bound, cbc adds a series of cuts to improve the for-

6

mulation. Messages starting at 6 contain details of the progress achieved in
generating series of cuts to remove fractional solutions. In this case 3 cuts suf-
�ce to close the gap and produce the best possible dual bound: 340160. We are
now sure that the previously found solution is the optimal one. Last messages
of this log inform how each one of the active cbc cut generators performed. By
these messages we can observe that only Clique and Gomory cuts where useful.
Gomory cuts, as usual, produced cuts which are much denser. Finally message
at line 6 announces the end of the search, which took only 5 seconds. In this
problem, cbc performed noticeably well: a good feasible solution and a good
dual bound were obtained at root node, so that no further exploration in the
branch-and-bound tree was needed. The following output refers to a harder
problem, air04.lp.

...28

Cbc0010I After 200 nodes, 46 on tree, 56212 best solution, best29

possible 55800.3 (148.79 seconds)

Cbc0016I Integer solution of 56174 found by strong branching after30

116654 iterations and 263 nodes (152.34 seconds)

Cbc0038I Full problem 615 rows 7673 columns, reduced to 109 rows 11031

columns

Cbc0012I Integer solution of 56138 found by RINS after 12417632

iterations and 300 nodes (156.76 seconds)

Cbc0038I Full problem 615 rows 7673 columns, reduced to 1 rows 233

columns

Cbc0010I After 300 nodes, 43 on tree, 56138 best solution, best34

possible 55805.8 (156.94 seconds)

Cbc0038I Full problem 615 rows 7673 columns, reduced to 142 rows 14335

columns

Cbc0010I After 400 nodes, 55 on tree, 56138 best solution, best36

possible 55863.5 (166.19 seconds)

...37

At line 7 cbc informs that the search has advanced 200 nodes in the tree.
Frequent messages indicate how many nodes were explored and how many nodes
still open and need to be explored. Whenever a new integer solution is found
(line 7), information about its value and which method found it is printed.

7

Chapter 4

Tunning

To modify cbc default settings, we can specify options before �nally call the
solve command. A command line can include as many options as you want, in
the format:

cbc air04.lp ... option1 parameter 1 option2 ... solve solu1

sol.txt

Next subsection will brie�y present some of the most important cbc options
and parameters which can impact the search process. Options are presented in
the following format:

ShortName : DataType : DefaultValue : LongName

ShortName indicates the abbreviation necessary to specify the option; DataType
indicates the domain of possible values for the parameter and default value
indicates the value which is automatically selected on cbc startup. Finally,
LongName indicates the option parameter name.

4.1 Pre-processing

Prep : PrepChoice : sos : Preprocess

Preprocessing tries to reduce the problem size and strengthen the formulation.
Although it may slow down the start of the search, the resulting model may be
much easier to solve.

Decides which preprocessing will be used. Values for PrepChoice are:

off : turns of pre-processing

equal : turns ≤ clique constraints into equality clique constraints

sos : creates Special Ordered Sets [CITE] to improve branching

8

PassP : Integer : 5 : PassPresolve

Maximum number of passes for presolve.

4.2 Cut Generation

CBC cut generator can be con�gured to be applied only at root node or in the
entire search tree. More �exible ways are also allowed.

Cuts : Logical : On : CutsOnOff

Cuts on (Cuts O�) activates (deactivates) all cuts at once.

Clique : CutAppChoice : IfMove : CliqueCuts

Determines the application of Clique cuts. Possible values for CutAppChoice

are:

Off : never try this cut;

Root : cuts applied only at root node;

IfMove : cuts will be used of they succeed on improving the dual bound;

ForceOn : forces the use of the cut generator at every node.

Lift : CutAppChoice : Off : liftAndProjectCuts

Determines the application of Lift-and-Project cuts.

Mixed : CutAppChoice : IfMove : MixedIntegerRounding-

Cuts

Determines the application of MIR - Mixed Integer Rounding cuts.

Two : CutAppChoice : Root : TwoMirCuts

Determines the application Two phase Mixed Integer Rounding cuts.

Knapsack : CutAppChoice : IfMove : KnapsackCuts

Determines the application of Knapsack cover cuts.

Flow : CutAppChoice : IfMove : FlowCoverCuts

Determines the application of Knapsack cover cuts.

9

Rrobing : CutAppChoice : forceOnStrong : ProbingCuts

Activates Probing Cuts. For this cut generator other more aggressive options
are available: forceOn, forceOnGlobal, forceOnStrong, forceOnButStrong
and strongRoot.

Residual : CutAppChoice : Off : ResidualCapacityCuts

Residual : CutAppChoice : Off : ResidualCapacityCuts

CutD : Integer : -1 : CutDepth

Allows to activate cuts whenever the depth in the three is a multiple of CutD.
When CutD=-1, cbc decides if cuts will be applied or not.

CutL : Integer : -1 : CutLength

Gomory cuts can produce very dense rows which can slowdown the search.
This option allows one to limit the maximum number of acceptable columns in
gomory cuts. By default, cbc decides it (-1). Values greater than 0 indicate:

0 ≤ CutL < 10, 000, 000 : maximum length of CutL for cuts generated at root
node and in the tree;

CutL ≥ 10, 000, 000 : allows cuts with unlimited length at root node, with a
limit inside the tree. for example: CutL=10,000,130 indicate that in the
tree only cuts with at most 130 variables will be accepted.

PassC : Integer : -1 : PassCuts

Maximum number of cut passes in the root note. If -1, the following strategy is
used, according to the number of columns n:

n ≤ 500 : 100 passes;

500 < n ≤ 5000 : 100 passes, stopping when bound improvements are small;

n ≥ 5000 : 20 passes for larger problems.

4.3 Heuristics

Heuristics are an important feature of cbc. In many cases heuristics can sig-
ni�cantly speedup the appearance of high quality feasible solutions or, most
importantly, avoid the embarrassing result of obtaining no feasible solution in a
long cbc run. This section presents heuristics available in cbc. Most heuristics
accept a parameter of type HeurAppChoice for controlling its activation. Valid
values for this parameter are:

Off : never apply;

10

On : applies heuristic after preprocessing;

Before : applies heuristic before preprocessing;

Both : applies heuristic before and after preprocessing.

Heur : Logical : On : HeuristicsOnOff

Heuristics On (Heuristics Off) activates (deactivates) all heuristics at once.

Round : HeurAppChoice : On : RoundingHeuristic

This switches on a simple (but e�ective) rounding heuristic at each node of tree.

Feas : HeurAppChoice : On : FeasibilityPump

This switches on feasibility pump heuristic at root. This is due to Fischetti,
Lodi and Glover [CITE] and uses a sequence of LPs to try and get an integer
feasible solution.

PassF : Integer : 30 : PassFeasibilityPump

Indicates the maximum number of passes for the Feasibility Pump heuristic.
Try higher values if no feasible solution was obtained.

Local : HeurAppChoice : Off : LocalTreeSearch

This switches on a local search algorithm when a solution is found. This is from
Fischetti and Lodi and is not really a heuristic although it can be used as one.

PivotAndC : HeurAppChoice : Off : PivotAndComplement

Switches Pivot and Complement heuristic.

PivotAndF : HeurAppChoice : Off : PivotAndFix

Switches Pivot and Fix heuristic.

Combine : HeurAppChoice : On : CombineSolutions

This switches on a heuristic which does branch and cut on the problem given by
just using variables which have appeared in one or more solutions. It obviously
only tries after two or more solutions.

Combine2 : HeurAppChoice : Off : CombineSolutions

Same as before, but considers only variables which have the same value in two
or more solutions.

11

Rins : HeurAppChoice : On : Rins

Controls the activation of Relaxation Induced Neighborhood Search heuristic.

Rens : HeurAppChoice : Off : Rens

Controls the activation of Relaxation Enforced Neighborhood Search heuristic.

Vnd : HeurAppChoice : Off : VndVariableNeighborhood-

Search

Controls the activation of Variable Neighborhood Search heuristic.

DivingG : HeurAppChoice : Off : DivingGuided

Switches Guided Dives heuristic.

DivingP : HeurAppChoice : Off : DivingPseudoCost

Switches Diving heuristic usign pseudocosts.

DivingF : HeurAppChoice : Off : DivingFractional

Switches Diving Fractional heuristic.

DivingS : HeurAppChoice : Off : DivingSome

Switches on a random diving heuristic at various times.

4.4 Limits

Sec : Integer : Infinity : Seconds

Time limit for execution in seconds.

MaxN : Integer : Infinity : MaxNodes

Maximum number of nodes in the search tree. Can be used to avoid very large
memory requirements.

MaxS : Integer : Infinity : MaxSolutions

Maximum number of integer solutions. If you are interested in any feasible
solution, not necessarily the optimal one, set it to 1.

12

	Before we start
	Quick start
	Terminal Output
	Tunning
	Pre-processing
	Cut Generation
	Heuristics
	Limits

