
The NLP solver filterSD

1. Introduction

The file filterSD.f contains a Fortran 77 subroutine that aims to find a solution
of the NLP (Nonlinear Programming Problem)

minimize f(x)

subject to l ≤
[

x
c(x)

]
≤ u

in double length arithmetic. Here f(x) is a given objective function of n variables
x, and c(x) is a vector of m constraint functions. It is required that these functions
are continuously differentiable at points that satisfy the bounds on x, and that
the user is able to compute the gradient vector g(x) = ∇f(x) and the Jacobian
matrix A(x) = ∇cT . Lower and upper bound constraints on the variables x and the
constraint functions c(x) may be supplied.

There main design aims of the code have been to avoid the use of second derivatives,
and to avoid storing an approximate reduced Hessian matrix by using a new limited
memory spectral gradient approach based on Ritz values.

The basic approach is that of Robinson’s method, globalised by using a filter and
trust region. The code calls the Linear Constraint Problem (LCP) solver glcpd.f

which has been developed using the Ritz values approach. A generalisation of this
idea is used to obtain feasibility in the NLP problem. However it is possible that
the code might terminate at a locally infeasible point, which is a local minimizer of
the L1 sum of general constraint infeasibilities h(x), subject to the bounds on the
variables.

2. Calling Sequence and Parameter List

The calling sequence for the subroutine is

call filterSD(n, m, x, al, f, fmin, cstype, bl, bu, ws, lws, v, nv, maxa, maxla,

maxu, maxiu, kmax, maxg, rho, htol, rgtol, maxit, iprint, nout, ifail)

Note that Fortran 77 implicit declarations are used, and real variables are imple-
mented in double precision.

The description of the parameters is as follows

n number of variables
m number of general constraints

1



2

x(n+m) The vector of variables is stored in x(1:n). Initially an estimate of the
solution must be set, replaced by the solution (if it exists) on exit. The rest
of x is workspace

al(n+m) stores Lagrange multipliers of simple bounds and general constraints at the
solution on exit. A positive multiplier indicates that the lower bound is active,
and a negative multiplier indicates that the upper bound is active. Inactive
constraints have a zero multiplier.

f returns the value of f(x) when x is a feasible solution
fmin set a strict lower bound on f(x) for feasible x (used to identify an unbounded

NLP)
cstype(m) character workspace: if ifail = 3, cstype indicates constraints that are

infeasible in the L1 solution. cstype(i) = A if the lower bound on constraint
i is infeasible, Z if the upper bound is infeasible, else N if feasible.

bl(n+m) lower bounds on x and c(x) (use numbers no less than -ainfty (see below),
and where possible supply realistic bounds on x)

bu(n+m) upper bounds on x and c(x) (use numbers no greater than ainfty)
ws(*) double precision workspace

lws(*) integer workspace
v(maxg) stores nv Ritz values (estimates of eigenvalues of the reduced Hessian): supply

the setting from a previous run of filterSD, or set nv = 1 and v(1) = 1.D0
in absence of other information

nv number of values set in v

maxa maximum number of entries in the Jacobian a(*) set by ‘gradients’
maxla number of locations required for sparse matrix indices and pointers la(0:*)

to be set up in lws(*) (maxla ≥ maxa+m+ 3). Set maxla = 1 if using dense
matrix format

maxu length of workspace user(*) passed through to user subroutines ‘functions’
and ‘gradients’

maxiu length of workspace iuser(*) passed through to user subroutines
kmax maximum dimension of null space allowed for (kmax ≤ n)
maxg maximum number of reduced gradient vectors stored by the limited memory

method (typically 6 or 7)
rho initial trust region radius (typically 1.D1)

htol tolerance allowed in the sum h(x) of constraint infeasibilities (e.g. 1.D-6)
rgtol tolerance allowed in reduced gradient L2 norm (typically 1.D-4)
maxit maximum number of major iterations allowed

iprint verbosity of printing (0=none, 1=one line per iteration, 2=additional text
information given)

nout output channel for printing
ifail returns failure indication as follows



3

0 = successful run
1 = unbounded NLP (f(x) ≤ fmin at an htol-feasible point x)
2 = bounds on x are inconsistent
3 = local minimum of feasibility problem and h(x) > htol (nonlinear con-

straints are locally inconsistent)
4 = initial point x has h(x) > ubd (reset ubd or x and re-enter)
5 = maxit major iterations have been carried out
6 = termination with rho ≤ htol

7 = not enough workspace in ws or lws (see message)
8 = insufficient space for filter (increase mxf and re-enter)

> 9 = unexpected fail in LCP solver (10 has been added to the LCP ifail)

3. User Subroutines

The user must provide two subroutines to calculate f(x), c(x) and their first
derivatives as follows

subroutine functions(n, m, x, f, c, user, iuser)
implicit double precision (a− h, o− z)
dimension x(∗), c(∗), user(∗), iuser(∗)
...
Statements to compute f (x) and the m−vector c(x) in f and c from x. The arrays
user and iuser enable the user to pass information from the driver to the subroutine.
The user is responsible for ensuring that any failures such as IEEE errors (overflow,
NaN′s etc.) are trapped and not returned to filterSD The same holds for gradients.
...
return

end

subroutine gradients(n, m, x, a, user, iuser)
implicit double precision (a− h, o− z)
dimension x(∗), a(∗), user(∗), iuser(∗)
...
Statements to calculate gradients of f (x) and c(x). The column vector ∇f (x) must be
followed by the column vectors ∇ci(x), i = 1 , 2 , . . . , m in the one dimensional array a(∗).
Either a dense or sparse data structure may be used. If using the sparse data structure,
only structurally nonzero entries are set. Pointers etc. for the data structure are set elsewhere
in lws. Any call of gradients immediately follows one of functions with the same x.
...
return

end



4

The user must also supply a driver routine which calls filterSD. This must set pa-
rameters and common blocks of filterSD as appropriate. Space for x,al,bl,bu,ws,
lws,v and cstype must be assigned. If using the sparse data structure for setting
gradients, indices and pointers la(0:maxla-1) must be set by the driver in lws, im-
mediately following any user workspace in lws(1:maxiu). No changes in this data
structure are allowed during the operation of filterSD. For dense format just set
maxla = 1 and set lws(maxiu+1) to the ‘stride’ (≥ n) used in setting the columns of
∇f and ∇ci. For efficiency, constant entries in the gradient parameter a(*) above
may be set once and for all in the driver. These must be set in the workspace
array ws(*). However two copies of a(*) are kept by filterSD. These reside in
ws(maxu+1:maxu+maxa) and ws(maxu+maxa+1:maxu+2*maxa). Any constant entries
must be set in both copies.

Precise details of the format of a(*) and la(*) are described in Section 6 of the
document glcpd.pdf.

4. Common blocks

common/wsc/kk,ll,kkk,lll,mxws,mxlws

The user must specify the length of the workspace arrays ws(*) and lws(*) in
mxws and mxlws respectively. It may not be easy to specify a-priori how large these
arrays should be. Set a suitable estimate, and filterSD will prompt if larger val-
ues are required. As a guide, ws(*) contains first user workspace, then workspace
for filterSD, then workspace for glcpd, and finally workspace for denseL.f or
schurQR.f. lws(*) contains user workspace, then maxla+n+m+mlp locations for
filterSD and additional locations for denseL.f or schurQR.f.
common/defaultc/ainfty,ubd,mlp,mxf

Default values of some control parameters are set here. ainfty is used to represent
infinity. ubd provides an upper bound on the allowed constraint violation. mlp is the
maximum length of arrays used in degeneracy control. mxf is the maximum length
of filter arrays. Default values are 1.D20, 1.D4, 50, 50.
common/ngrc/mxgr

The user can limit the time spent in each call of the LCP solver by setting an upper
limit (e.g. 100) on the number of gradient calls in mxgr (default=1000000).
common/mxm1c/mxm1

When using denseL.f, mxm1 must be set to the maximum number of general
constraints allowed in the active set. mxm1 = min(m + 1, n) is always sufficient.
mxm1c can be omitted when using sparseL.f.
common/epsc/eps,tol,emin

common/repc/sgnf,nrep,npiv,nres

common/refactorc/mc,mxmc



5

These common blocks provide default parameters that control glcpd. The default
value of mxmc=500 is not suitable for use when using schurQR.f or sparseL.f and
should be reset to a smaller value (typically 25).
common/statsc/dnorm,h,hJt,hJ,ipeq,k,itn,nft,ngt

This common block returns information about the outcome of filterSD. dnorm=final
step length, h=final constraint violation, hJt=ditto for ‘N’ constraints, hJ=ditto
for ‘A’ and ‘Z’ constraints, ipeq=number of active equations, k=number of free
variables, itn=number of iterations, nft=total number of function calls, ngt=total
number of gradient calls.

5. Checking Derivatives

It is very easy to make errors when deriving formulae for the first derivatives∇f(x)
and ∇ci(x), i = 1, 2, . . . , m. Such errors will almost certainly cause filterSD

to malfunction, probably in an unpredictable way. Therefore the user is strongly
advised to use the derivative checking subroutine checkd which is located in the file
checkd.f. This is done by including a call to checkd in the driver, immediately
before the call to filterSD. The parameters of checkd are a subset of those for
filterSD so this is easily done. The only extra information to provide is some non-
zero finite difference intervals hi, i = 1, 2, . . . , n. This is done in the parameter
al(1:n). Typical values would be say 10−2 or 10−3 times the typical magnitudes of
the variables xi. The program checks that the difference quotient in each coordinate
direction lies between the derivatives at the ends of the interval. If an inconsistency
is found then the code reports the constraint and variable and exits (constraint 0
refers to the objective function). A successful check is recognised by the messages
‘entering checkd’ followed by ‘exiting checkd’, whereupon the call to checkd can
be commented out. The code is suitable for use with both sparse or dense matrix
formats without change. Further details are given in the file checkd.f. Illustrations
are provided in the example programs.

6. An Illustrative Example

Driver programs are provided to solve the Hock-Schittkowski NLP problem HS106,
using either sparse or dense matrix formats. They illustrate various aspects such as
provision of subroutines, setting indices, pointers and constant values relating to the
gradient and Jacobian matrix, passing information through to the subroutines, and
checking derivatives. The drivers are located in the files hs106.f and hs106d.f.

7. Output

If iprint = 0, no output from the code is made. If iprint = 1, one line of output
is given for each iteration or failed iteration. Presence of the symbols ‘<<’ indicates



6

that iterations are in phase 2, and columns 2 and 3 of the output refer to the values
of h(x) and f(x) respectively. Otherwise the symbol ‘<’ appears, iterations are in
feasibility restoration mode (phase 1), and columns 2 and 3 refer to the values hJt

and hJ respectively (see the end of Section 4 above). If the text ’feasible LP’
appears then the previous iteration is not acceptable (e.g. to the filter) and rho is
reduced and an LP subproblem is solved, giving a new multiplier estimates. If the
text ‘project’ appears then the previous step is not acceptable, but the method is
taking a projection step with the aim of finding an acceptable iterate with smaller
constraint violation. If iprint = 2, then further messages are included in the output
describing the progress of the iterations.

8. Performance and Troubleshooting

Extensive testing of the code indicates that a high percentage of test problems
(mostly from CUTEr) have been solved effectively. However some negative features
have been observed and were indeed expected. When the dimension of the null space
is not small, then the lack of reduced Hessian information necessitates many more
gradient evaluations to solve each LCP problem. Likewise, although Ritz values are
passed from one LCP call to the next, these contain much less information than
would be provided by the reduced Hessian matrix. Thus the number of function
and gradient calls can be much larger than is required by some other codes that
provide approximate or exact reduced Hessian information. To some extent this
can be alleviated by using the parameter mxgr to limit the number of gradient calls
made by the LCP solver. Another possibility is to relax the tolerance rgtol on
the reduced gradient. In practice it is often the case that the cost of a function or
gradient evaluation is much less than other costs involved in solving the LCP and LP
subproblems, and overall run times seem to be very reasonable, as does reliability.

Slow convergence can sometimes be caused by too small a value of ubd, but on
the other hand, too large a value may allow iterates to visit highly infeasible iterates
from which it is difficult to recover. Clearly this is a matter for experimentation.
Choice of the initial trust region rho (whose aim is to restrict the size of step to
regions in which the current algorithm model is valid) can be important, but the
code is usually available to adjust rho to a satisfactory value. It is important to
choose units in which all variables have a similar effect on the values of the objective
and constraint functions.

The code is designed with the aim of converging rapidly in the neighbourhood of
a point of local infeasibility. In fact a post-processor l1sold to glcpd (or qlcpd),
located in the file l1sold.f, has been written to find the best L1 solution of in-
feasibilities when glcpd recognises that an LCP is infeasible, so that the solution
returned by filterSD is a non-zero local minimizer of the L1 sum of infeasibilities.



7

The user might ask what can be done if filterSD returns with a certificate of
local infeasibility (ifail = 3). This is not easy to resolve, since finding feasibility is
a global optimization problem, and hence is usually intractable for other than small
problems. One thing to suggest is to examine the output to see if a feasible or near
feasible point has been visited on an earlier iteration. In this case, re-starting from
such a point with a smaller value of ubd should be tried. Another suggestion is to
check if the subset of all linear constraints is consistent. This can be done by relaxing
the bounds on the nonlinear constraints to (−∞, ∞) and repeating. Otherwise the
only advice I can offer is to re-run with different starting points or parameter values.
One way of doing this (not guaranteed to work, of course) is to relax the bounds
on all the nonlinear constraints by a smallish amount such that filterSD returns a
feasible solution. Then re-run from this solution with the bounds restored.

Other causes of failure may also be difficult to resolve. The importance of checking
gradient formulae has already been referred to. It can also be important to pay
attention to the conditioning of the problem, for example by choosing a formulation
in which the Jacobian matrix is not close to becoming singular or rank-deficient. In
particular, it is advisable to pay attention to the scaling of constraints and variables.
Thus the units in which the variables are expressed should be chosen to be of similar
magnitude, and preferably of an order of magnitude of around unity. The same is
true of the typical values of the constraint functions. It is under these circumstances
that the heuristics used by the code should be most effective. Another piece of advice
is to avoid using bounds of ±∞ on the variables, when tighter and more realistic
bounds are available. This can prevent the code from visiting unproductive regions
of design space, as the code always respects the simple bounds on the variables, even
during feasibility restoration.

Other causes of failure may be caused by malfunction in the LCP solver. The doc-
ument glcpd.pdf describes some possible reasons and how they might be resolved.


