
The LCP solvers qlcpd and glcpd

1. Introduction

The file glcpd.f contains a Fortran 77 subroutine that aims to find a solution of
the General LCP (Linearly Constrained Problem)

minimize f(x)

subject to l ≤
[

x
ATx

]
≤ u

in double length arithmetic. Here f(x) is a given differentiable function of n vari-
ables x, and it is required that the user is able to compute the gradient vector
g(x) = ∇f(x). Lower and upper bound constraints on the variables x and m linear
functions ATx may be supplied, where A is an n ×m matrix. A recursive form of
an active set method is used, using Wolfe’s method to resolve degeneracy. A limited
memory reduced gradient sweep method is used for minimization in the null space.
Matrix information is made available and processed by calls to external subroutines.
Details of these are given in auxiliary files named either denseA.f and denseL.f

or sparseA.f and schurQR.f. The latter replaces an earlier file sparseL.f. The
utilities file util.f is also required.

The code can also be used to solve LP, QP, and unconstrained optimization prob-
lems (possibly with simple bounds on the variables), for which it should be reason-
ably effective. However the file qlcpd.f contains a version of glcpd.f specifically
designed to solve QP and LP problems.

2. Calling Sequence and Parameter List

The calling sequence for the glcpd subroutine is

call glcpd(n, m, k, kmax, maxg, a, la, x, bl, bu, f, fmin, g, r, w, e, ls,
∗ alp, lp, mlp, peq, ws, lws, cws, v, nv, rgtol, m0de, ifail, mxgr, iprint, nout)

Note that Fortran 77 implicit declarations are used, and initial letters p and q declare
integer variables rather than the more usual double precision. Details for qlcpd
are similar and are described in the file qlcpd.f.

The description of the parameters is as follows

n number of variables
m number of general constraints (columns of A)
k dimension k of the null space obtained by eliminating the active constraints

(k is only to be set if mode ≥ 2). The number of constraints in the active set
is n− k

kmax maximum value of k (kmax ≤ n)
1
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maxg maximum number of reduced gradient vectors stored in sweep method: (1 <
maxg ≤ kmax + 1 when kmax > 0), typically maxg = min(6, kmax + 1)

a(*) storage of double precision reals associated with A. This storage may be
provided in either dense or sparse format. Refer to Section 6 below for infor-
mation on how to set a(*) and la(*).

la(*) storage of integers associated with A
x(n) contains the vector of variables. Initially an estimate of the solution must be

set, replaced by the solution (if it exists) on exit.
bl(n+m) vector of lower bounds for variables and general constraints
bu(n+m) vector of upper bounds (use numbers less than about 1.D20, and where pos-

sible supply realistic bounds on the x variables)
f returns the value of f(x) when x is a feasible solution. If ifail = 3 below,
f stores the sum of constraint infeasibilities

fmin set a strict lower bound on f(x) (used to identify an unbounded LCP)
g(n) returns the gradient vector of f(x) when x is feasible

r(n+m) workspace: stores residual vectors and multipliers. For j = n + 1, . . . , n + m
the value of r(abs(ls(j))) stores the residual of an inactive variable or
constraint i where i=abs(ls(j)) (see ls below). The sign of ls(j) tells
from which bound the residual is measured. For j = 1, . . . , n the value of
r(i) tells the multiplier of the active constraint or free variable i. The sign
convention is such that residuals are nonnegative at a solution (except for
multipliers of free variables (these r(i) are the reduced gradients) or equality
constraints)

w(n+m) workspace: stores denominators for ratio tests
e(n+m) stores steepest-edge normalization coefficients: if mode > 2 then information

in this vector from a previous call should not be changed. (In mode 3 these
values provide approximate coefficients)

ls(n+m) stores indices of the active constraints in locations 1 : n and of the inactive
constraints in locations n + 1 : n + m. The simple bounds on the variables
are indexed by 1 : n and the general constraints by n + 1 : n + m. The sign
of ls(j) indicates whether the lower bound (+) or the upper bound (−) of
constraint ls(j) is currently significant. Within the set of active constraints,
locations 1 : peq store the store indices of active equality constraints and
locations peq+1 : n−k store indices of active inequality constraints. Finally
locations n− k + 1 : n store indices of any free variables (these are variables
not on a bound, which are used to parametrise the null space: ls(j) is always
positive in this range). If mode ≥ 2, the first n − k elements of ls must be
set on entry to glcpd.

alp(mlp) workspace associated with recursion
lp(mlp) list of pointers to recursion information in ls
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mlp maximum number of levels of recursion allowed (mlp > 2: typically mlp = 50
would usually be adequate but mlp = m is an upper bound)

peq pointer to the end of equality constraint indices in ls

ws(*) real workspace for funct, grad, glcpd and denseL.f (or schurQR.f). Set
the total number (or a larger number) in mxws (see Section 4 below).

lws(*) integer workspace for funct, grad, glcpd and denseL.f (or schurQR.f).
Set the total number (or a larger number) in mxlws (see Section 4 below).
The storage maps for ws and lws are set by the subroutine stmap.

cws(*) character workspace (if any) needed by funct

v(maxg) set nv estimates of the eigenvalues of the reduced Hessian of f(x) (for example
from a previous run of glcpd). Set nv = 1 and v(1) = 1.D0 in absence of
other information. New values of v are left on exit.

nv Number of estimates in v

rgtol required accuracy in the reduced gradient L2 norm: it is advisable not to
seek too high accuracy - rgtol may be increased by the code if it is deemed
to be too small, see the definition of sgnf in Section 5.

m0de mode of operation (larger numbers imply extra information):
0 = cold start (no other information available, takes simple bounds for the

initial active set)
1 = as 0 but includes all equality constraints in initial active set
2 = user sets n− k active constraint indices in ls(j), j = 1, . . . , n− k. For

a general constraint the sign of ls(j) indicates which bound to use. For
a simple bound the current value of x is used

3 = takes active set and other information from a previous call. Steepest
edge weights are approximated using previous values.

4 = as 3 but it is also assumed that columns of A are unchanged so that
factors of the basis matrix stored in ws and lws are valid (changes in
f(x) and the vectors l and u are allowed)

A local copy (mode) of m0de is made and may be changed by glcpd

ifail outcome of the process
0 = cold start (no other information available, takes simple
1 = unbounded problem (f(x) < fmin has occurred: note ∇f is not evalu-

ated in this case)
2 = bl(i) > bu(i) for some i

3 = infeasible problem detected in Phase 1
4 = line search cannot improve f (possibly increase rgtol)
5 = mxgr gradient calls exceeded (this test is only carried out at the start of

each iteration)
6 = incorrect setting of m, n, kmax, maxg, mlp, m0de or tol
7 = not enough space in ws or lws
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8 = not enough space in lp (increase mlp)
9 = dimension of reduced space too large (increase kmax)

10 = maximum number of unsuccessful restarts taken
>10 = possible use by later sparse matrix codes

mxgr maximum number of gradient calls
iprint switch for diagnostic printing (0 = off, 1 = summary, 2 = scalar information,

3 = verbose)
nout channel number for output

3. User Subroutines

The user must provide two subroutines as follows

subroutine funct(n, x, f, ws, lws, cws)
implicit double precision (a− h, o− z)
dimension x(∗), ws(∗), lws(∗)
character cws(∗)
...
statements to compute f (x) in f from x
...
return

end

subroutine grad(n, x, g, ws, lws, cws)
implicit double precision (a− h, o− z)
dimension x(∗), g(∗), ws(∗), lws(∗)
character cws(∗)
...
statements to compute ∇f (x) in g from x (the user may assume that
a call of grad follows one of funct with the same vector x)
...
return

end

The parameters ws, lws and cws in the above subroutines enables data to be passed
from the user’s calling program to these subroutines.

4. Storage Allocation

User information about the lengths of ws and lws is supplied to glcpd in

common/wsc/kk, ll, kkk, lll, mxws, mxlws
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kk and ll refer to the lengths of ws and lws needed by the user subroutines. kkk

and lll are the numbers of locations used by glcpd and are set by glcpd. The rest
of ws and lws is used by the files denseL.f or schurQR.f. mxws and mxlws must
be set to the total lengths of ws and lws available: a message will be given if more
storage is needed.

5. Tolerances, Accuracy and Diagnostics

glcpd uses tolerance and accuracy information stored in

common/epsc/eps, tol, emin
common/repc/sgnf, nrep, npiv, nres
common/refactorc/mc, mxmc
common/infoc/rgnorm, vstep, iter, npv, nfn, ngr

eps must be set to the machine precision (unit round-off) and tol is a tolerance
such that numbers whose absolute value is less than tol are truncated to zero. This
tolerance strategy in the code assumes that the problem is well-scaled.

The parameter sgnf is used to measure the maximum allowable relative error in
gradient values. If at any stage the accuracy requirement rgtol < sgnf ∗ rgnorm
then rgtol is increased to sgnf ∗ rgnorm

The code allows one or more refinement steps after the calculation has terminated,
to improve the accuracy of the solution, and a fixed number nrep of such repeats is
allowed. However the code terminates without further repeats if no more than npiv

pivots are taken. In case of any breakdown, the code is restarted in mode 0. The
maximum number of unsuccessful restarts allowed is set in nres.

The basis matrix may be refactorised on occasions, for example to prevent build-
up of round-off in the factors or (when using schurQR.f) to limit the growth in
the Schur complement. The maximum interval between refactorizations (or size of
Schur complement) is set in mxmc. When using schurQR.f, a typical value would be
mxmc=25. When sparseL.f is used in place of schurQR.f, a similar number should
be set (historically 30 has been used).

Default values of all the above parameters are set in block data defaults but
can be reset by the user.
infoc returns information about the progress of the method: rgnorm is the norm

of the reduced gradient on exit and vstep is the length of the vertical step in the
warm start process. iter is the total number of iterations taken, npv is the number of
pivots, nfn is the number of function evaluations, and ngr is the number of gradient
evaluations.
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6. Specifying the Jacobian Matrix A

Two alternative formats are provided for specifying the Jacobian matrix, namely
dense and sparse. The required information must be set in parameters a(*) and
la(*) of glcpd. The code for this is also used in other applications and necessitates
provision for a column 0 to be included in A. The data structure must reflect this
but no values need be assigned to column 0.

6.1. Dense format. In this case A is set in standard Fortran matrix format as
a(la,0:m), where la is the ‘stride’ between columns. la is a single integer which
must be greater or equal to n.

In the straightforward case that la = n, columns of A follow successively in the
space occupied by a(*), starting with column 0.

6.2. Sparse format. In this case a and la have dimension a(1:maxa) and la(0:maxla-1),
where maxa is at least nnza (the number of nonzero elements in A), and maxla is at
least nnza + m + 3. la(0) and the last m + 2 elements in la are pointers.

The vectors a and la must be set as follows:

a(j) and la(j) for j = 1, nnza are set to the values and row indices (resp.) of all the
nonzero elements of A. Entries for each column are grouped together in increasing
column order. Within each column group, it is not necessary to have the row indices
in increasing order. If appropriate, it can be assumed that all elements of column 0
are zero.

la(0) is a pointer which points to the start of the pointer information in la. la(0)
must be set to nnza+1 (or a larger value if it is desired to allow for future increases
to nnza).

The last m + 2 elements of la contain pointers to the first elements in each of
the column groupings. Thus la(la(0)+i)) for i=0,m is set to the location in a

containing the first nonzero element for column group i of A. Also la(la(0)+m+1))

is set to nnza+ 1 (the first unused location in a). Because column 0 of A is zero, the
pointers to the start of column groups 0 and 1 are the same.

7. Feasibility determination

The code requires that the lower and upper bounds are consistent (l ≤ u). The
method requires iterates which are (primal) feasible. To this end the procedure is
divided into three phases. In phase 0, feasibility with respect to the simple bounds
on the variables is established. This is always possible, and is immediate in mode



7

0. In phase 1, a feasible point with respect to all the constraints is sought. This
may not always be possible, and the code will terminate with a certificate of ‘local
infeasibility’ (ifail = 3). The locally infeasible point is characterised by a subset
of general constraints (J say) that are infeasible, and the sum of infeasibilities of
these constraints is minimized, subject to feasibility in the remaining constraints and
simple bounds (the set J⊥). The set J comprises those constraints i (i = abs(ls(j)))
for which r(abs(ls(j))) < 0, for j = n+ 1, . . . , n+m. If phase 1 succeeds in finding
a feasible point, then phase 2 is entered and the function f(x) is minimized, subject
to retaining feasibility.

8. An Illustrative Example

Driver programs are provided to solve the problem with 4 variables and 2 general
constraints described by

minimize x−11 + x−12 + x−13 + x−14

subject to l ≤
[

x
ATx

]
≤ u

where li = (1/((5 − i)105) and ui = 1000 for i = 1, . . . , 4, l5 = l6 = −∞, u5 =
0.0401, u6 = 0.010085 and

AT =

[
4 2.25 1 0.25

0.16 0.36 0.64 0.64

]
.

The problem is derived from the Hock-Schittkowski problem HS72, after making a
transformation that linearises the constraints.

The driver program in sparse format is given in the file hs72.f and that for dense
format in hs72d.f.

9. Failure Indications and Troubleshooting

On exit from glcpd, the parameter ifail indicates the reason for termination.
Most of the cases are self evident from the description in Section 2 above. However
the case ifail = 4 deserves some more detail. In this case the code has failed to
find a better (smaller) value of f(x) in a line search. In theory (in the absence of
round off errors) this can always be done. Possible reasons are

(1) Mistakes in the formulae for the gradients (or use of finite difference gradients)
(2) Objective function is non-smooth
(3) Too small a tolerance on the gradient asked for (rounding errors in calculating

the objective function become dominant).

If 1 and 2 can be ruled out, I find that 3 occasionally happens in problems that I have
solved. The current iterate on termination represents the best that can be achieved
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at the level of precision being used. Unfortunately round-off does limit the accuracy
to which problems can be solved.

Another way in which mistakes in the gradient can show up is in slow convergence,
leading to ifail = 5. This emphasises the importance of getting the gradients
correct. A file checkg.f is provided containing a subroutine that checks gradients
by finite differences. Users are strongly advised to make use of this before going
ahead with glcpd. More details are given in checkg.f and illustrated in hs72.f.
Apropos of this, users are advised not to use finite difference approximations to the
gradients as an alternative to providing exact formulae. The code is not designed to
allow this, and the outcome is unpredictable, as well as being inefficient.

The outcome ifail = 10 also merits some comment. The likely cause of this is a
failure of the tolerance strategy to recognise zero pivots in the LP-like ratio test. The
best advice here is to take every care in scaling the problem. That is, where possible
to avoid very large or very small columns in A, and to balance the magnitudes of
the different general constraint values, preferably around 1. Likewise, scaling the
variables to have values of similar magnitude around 1 can also be beneficial.

Inappropriately large numbers in x can also cause difficulty if they arise during
the iteration. To prevent this the user is advised to provide realistic bounds on
the variables, rather than just using values like 1.D20 when an upper bound is not
present.

The file glcpd.f contains a subroutine check which can carry out checks as the
iteration proceeds. There are two calls to check from glcpd but these are normally
commented out. In case of failure, further information as to the cause may be
obtained by reinstating these calls.

10. Output

No output occurs if iprint = 0. If iprint = 1, then one line per iteration is
given. Abbreviations used are: in phase 0, ninfb is the number of infeasible bounds;
in phase 1, ninf is the number of infeasible general constraints; in phase 2, rg is
the reduced gradient norm and k is the dimension of the null space. For all phases,
level is the level of recursion for degeneracy resolution. If iprint = 2, then extra
scalar information is printed, and if iprint = 3, then full details of the iteration are
given, but this requires some familiarity with the method to interpret.

11. The Basis Matrix

The code establishes and maintains factors of a nonsingular n × n ‘basis matrix’
B. After a column permutation we may write B = [A V ] where columns of A are
gradient vectors of the active constraints, and columns of V are certain unit vectors
(columns of the unit matrix corresponding to the free variables). (Here the usage of
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A is different from that earlier.) The indices of active constraints and free variables
are those contained in ls(j) for j = 1, . . . , n, as described under ls in Section 2 of
this document. If we define matrices Y and Z by

[Y Z] = [A V ]−T

then columns of Z are a basis for the null space of the active constraints {z |ATz =
0}. The advanced user may wish to carry out matrix operations with Y , Z or their
transposes. For example the reduced gradient vector is the vector ZTg. The means
to carry out such operations is provided by the subroutines fbsub and tfbsub in
either denseL.f or schurQR.f as appropriate, and the user is referred to these files
for further information.


