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(2) Optimisation Concepts

Linear Programing

The simplest type of mathematical programme is a linear programme. For your mathematical
programme to be a linear programme you need the following conditions to be true:

1. The decision variables must be real variables;
2. The objective constraint must be a linear expression;
3. The constraints must be linear expressions.

Linear expressions are any expression of the form
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where 21:82::2= gnd b are known quantities and 1.2+ %= are variables. The process of solving a
linear programme is called linear programming. Linear programming is done via the Revised
Simplex Method (also known as the Primal Simplex Method), the Dual Simplex Method or an
Interior Point Method. CPLEX allows you to specify which method you use, but we won’t go into
further detail here.

Integer Programing

Integer programmes are almost identical to linear programmes with one very important exception.
Some of the decision variables in integer programmes may need to have only integer values. The
variables are known as integer variables. Since most integer programmes contain a mix of real
variables and integer variables they are often known as mixed integer programmes. While the
change from linear programming is a minor one, the effect on the solution process is enormous.
Integer programmes can be very difficult problems to solve and there is a lot of current research
finding “good” ways to solve integer programmes. Integer programming (the process of solving a
(mixed) integer programme) was originally done using the branch-and-bound process. The branch
part of the process eliminated non-integer values for integer variables in the following way:

n Initially, all variables are left as real variables. The problem is solved using linear
programming;

m If one of the integer variables in the linear programming solution has a fractional value, e.g.,
z; =45 then the linear programme is split in two and the fractional region eliminated. This
is done by branching on the variable value, e.g., adding the constraint #: = 4 to form one
linear programme and z: = % to form the other.

= By finding the optimal solution in each of these new linear programmes and comparing we
can find the optimal solution for the original problem.

» If either of the new linear programmes has a fractional value for an integer variable then a
new branch is needed.

This branching process results in the formation of a branch-and-bound tree (we will discuss the

bounding next). Each node in this tree represents a linear programme consisting of the original
linear programme and the extra branches added. Eventually all the leaf nodes in the tree will
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contain solutions where all the integer variables have integer values and no further branching is
needed. All these values can be compared and the best one is the solution to the original integer
programme.

Note For MIPs of any reasonable size this tree could be huge, in fact it grows exponentially as the
number of integer variables increases. The bounding process allows sections of the branch-and-
bound tree to be removed from consideration before all the leaf nodes have integer solutions. It
relies on the following optimization principle:

Adding constraints to a mathematical programming will result in a deterioration of the optimal
objective value.

This means that adding the branching constraints to the linear programmes at the branch-and-
bound tree nodes will mean the resulting nodes will have an optimal objective function value that is
equal to or worse than the optimal objective function value of the original linear programme. Thus
the objective function values get worse the deeper into the tree you look. Since we are finding the
integer solution in the branch-and-bound tree with the best objective value, we can use any integer
solutions to bound the tree. The current best integer solution is called the incumbent. After solving
a linear programme at a leaf node of the branch-and-bound tree one of the following conditions
holds:

= The linear programme is infeasible (no more branching is possible);

m The linear programme solution is an integer solution with a better objective value than the
incumbent. The incumbent is replaced with this new solution;

= The linear programme solution has a worse objective than the incumbent. Any nodes
created from this node will also have a worse objective than the incumbent. This node is
bounded by the incumbent objective;

= The linear programme solution is fractional and has a better objective value than the
incumbent. Further branching from this node is necessary to ensure an optimal solution is
found.

Only the last condition requires more branching, all the other conditions result in the node
becoming fathomed and no more branching is required from that node.

Example

http://130.216.209.237/engsci392/pulp/OptimisationConcepts 30/01/2008



Optimisation Concepts — Pulp Portal Page 3 of 6

In lett branch
¥y 18 fractional

X, fractional

Y LPD = 1235
\ - o &
\ = 6.3
fai6 H2e 7
TF2 z= 122 )
= 1l Infeasible
= 3
4127 k128
LP4 g= 2.52[ [LP3 g= 1Z
1= 2 = 8
¥ 48 w6
Integer Solution Right branch 1
Ty 12 bl e
inteasible: fathomed
Left branch from T
1Y 10 Fractie ”
LP2 1s fractional Right branch from LP2 vields an mteger

but bounded by

. solution — meumbent zg; 15 12
Zy,: Tathomed

The LP Relaxation

The Linear Programming (LP) relaxation is the same as the integer programme, except we "relax"
the integer variables to allow them to take fractional values. The integer programme's feasible
region lies within the feasible region of the LP relaxation (at points where the integer variables have
integer values). Therefore the integer restrictions cause the optimal objective function value to be
worse in the integer programme as compared to the LP relaxation. However, if a solution z of the
LP relaxation has integer values for the integer variables, then = also solves the integer programme.
In some cases, if the solution values for the integer variables are large, then rounding the LP
relaxation solution may give a good solution to the integer programme. However, you need to make
sure that the rounded solution is not infeasible! For some classes of problem the LP relaxation
gives naturally integer solutions:

m An m = m matrix M is unimodular if and only if its determinant Mjs equal to 1 or —1;

m Anm = nmatrix M is totally unimodular if and only if every m = m non-singular submatrix
of &f is unimodular;

m If the constraint matrix A and the right-hand side vector & of a mixed-integer programme
are totally unimodular and integer respectively, then the mixed-integer programme is
naturally integer and the LP relaxation solution is the optimal solution

= The transportation problem is an example of one such problem;
= Most network flow problems are also naturally integer;
= Some scheduling problems are naturally integer.

When using PuLP, naturally integer variables are defined when the variables are created with the
LpVariable function. A parameter for this function is either LpContinuous or Lplnteger.

Master-Slave Constraints

Using zero/one variables, we can control the range of values that other variables take. Suppose that
z 48 (the amolunt shipped from A to E) is either O (we don't ship from A to E) or between 20 and
100 (we ship from A to E with limits specified by the transportation company). We introduce a hew
0/1-variable =a= that is 1 if there is a shipment from A to E and O otherwise. Then we can use a
master-slave constraints to let =4 & control za=s
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Sensitivity Analysis

In STATS/ENGSCI 255 you will have seen the following sensitivity analysis output from Excel
and/or Storm.

Exeel Output

After solving 2 problem, Excel can panerale a sansibivity tabla as cns of its cutput repert
sheats.

Solver Results

Sobver o & solution, ARl constrants and aptmalty

ConGitions are satisfemd, Beparks
 Koeo Sobver Soltten e
 Remors Dranal Vaues e |

%] cwal | swesowo. | we |

The sansitivity report for Cass Chemicals is shown below. Note that to get afl the items
shown below, you must tell Excel to "Azssume Linear Model® under Solver Options. Unlike
Storm, which gives ranges for values (ag 250 to 1000 for C5-01), Excel gives this
information in terme of allowabls incroasea (e.g. 700 on CE-01, Lo up to 3004 700=10007
and decreases (50 an CS01, 10, down ko 300-50=250).

Changing Cells
Final Radwced Objective Allowabl Allewable
Cell Puamme Yalue Cast Coefficlent Increase Decrease
3352 G301 N [+ 00 0 0
3052 CES02 ad i) =0 jLes] 350
Constrairts
Flaasl Shasidow Comiraknl Allowabl  Allowable
Cell Mame Valoe Price R.H Side Iocrease Decrease
3038 BLEMDHRS VALUE 230 33033333531 250 in a0
3037 FURIHRE ¥ALUE 230 233, 3333333 230 an 133
3D3I8 CEOXIIM VALUE 9 0 120 1E+30 30

Case Chemleals - Excel Sensitivity Analysls Table

http://130.216.209.237/engsci392/pulp/OptimisationConcepts 30/01/2008



Optimisation Concepts — Pulp Portal Page 5 of 6

SENSITIVITY ANALYSIS COMPUTER OUTFUT
| ﬂ Gaonowsto Roporia

Storm Output I™ Data in Equation Stle
Onee we have found the cotimal selutionto the Case I" Summay Report
Chemdcal problem in Storm, we can chocse the Detalled  Detailed Hepodl
Report and Sensitivity Analysls reports. This gives the | [™ T ableas Report
autput shown below. (Crelevant sactions of the detailad ¥ S ensitivity Analpzis
report are not shown. ) We explain how to use theee tables in | I” Parametiic Analysis
the next saction, Storm Report Opilons
SroRM OOTROT

CASE CHEMICALS
CPTIMAL SOLUTION - DETAILED RERORET

Constraint Typs R4S Slack Shadow price
1 ELENDMFS <= 2300000 0.00C0 33.33
Z PURIHRS <= £50 . 0000 0.0o00 233,33
3 CEZLIM <= 120.0000 30.0000 0. 0020

Chjective Finction Valwe = 656000
Cuse Cherdeals - Stormn Detalled Reporl (shadow price Infonnatlon)

Srony OoroOT
CASE CHEMICALS

SENSITIVITY AMALYSIS OF COST COEFFICIENTS

CUEXEnT Al ldWan] e AlloRamlE

Varishls= CoefEE | M Armam Mss S pram

i C¥FOL 00, 00 250 .00 1090 .00
2 £E02 500.00 1%0.00 600.00

SENSITIVITY ANALYSIS OF RIGHT-HAMD SIDE VALUES

Current Al lowable Al i aile

Canstraint Typs Value Hinimm Max irmam

1 BRLEMDHES im 230. 0000 140. 0000 500, OO0
2 PURIHRE L 250, 0000 115.0000 295, 0000
3 S ZLIN Lm 120, 0000 30. 0000 Infinity

Case Chemlcals - Slorm Sﬂﬁlﬂﬁt," R'Epul‘!

What do these numbers mean? First, let's look at the Excel sensitivity analysis. For the variables,
the Allowable Increase and Allowable Decrease show how much the objective coefficient of that
variable can change without changing the optimal solution (although the objective function will
change!). For the constraints the Allowable Increase and Allowable Decrease show how much the
right-hand side of the constraint (i.e., the part of the constraint that does not involve variables) can
increase or decrease without changing which variables are non-zero (although the variable values
will change!). The shadow price gives the amount the objective function changes for each unit
change in the right-hand side. If the constraint gets tighter then the objective function will
deteriorate. The following table gives the various combinations for constraints and objective
functions:

Constraint Changein Objective Changein
Relation ConstraintRHS Type  Objective Function
< — (harder) min + (worse)
= + (easier) min — (better)
= — (harder) mAx — (worse)
= + (easier) max + (better)
2 _ (easier) min _ (better)
= + (harder) min + (worse)
2 — (easier) mMAX + (better)
= + (harder) max — (worse)

The Storm sensitivity analysis provides the same information, but gives the Allowable Minimum
and the Allowable Maximum instead. Note that the Allowable Minimum = Current Value -
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Allowable Decrease and the Allowable Maximum = Current Value + Allowable Increase.

Parametric Analysis

In STATS/ENGSCI 255 you will have seen the following parametric analysis:

ase Chemicals
PARAMETRIC ANALYSIS OF RIGHT-HANE SIDE WALUE - BLENILHRS

CO0EF = E30.000 LWR LINIT = -L.000E+37 UPR LINIT = 1.000E+37
~~~~~~~ Range -—--—--- Thadow  ==== Wariable ----
From To Price Leave Ent.er

RHE £30. oog 500.000 33. 333 £i-02 SLACK L

0bj keOOO. DOO 75000.000

RHE 500. 000 1.000E+37 0.000 ---- MHNo change —---—
0bj ?5000. Oo00 75000.000

RHI c30. 000 140.000 33. 333 ILACK 3 ILACK C
obj kL0O00. 000 L3000-000

RHE L4d. 00O 120-000 L50- 00O C3-0F 3ZLACK 3
obj L3000. D00 LOOOD. 000

RHE LZ20.- 000 D.00o0 500. OO0 ci-02
0bj LOOOO. ooa D.000

RH3 o.0ooo -Infinity ---- Infeasible in this range ----

This analysis shows how the objective and shadow price change as a right-hand side value increases
(from 230 to 500, then 500 upwards. It also shows how the objective and shadow price change as
the right-hand side value decreases (from 230 to 140, 140 to 120, 120 to 0, then O downwards).
Similar tables are also available in STORM for changes in the cost coefficients. These tables assume
that only one quantity (right-hand side, cost) is changing.
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