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Abstract

This document describes how to obtain and use the binary distribution of the CoinAll soft-
ware, which consists of several executables and numerous solver libraries. It explains how the
CoinAll binaries can be used in stand-alone mode and also how the solver libraries can be linked
against user-written code.
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1 The CoinEasy Project and CoinAll

(Much of the material in this section is taken from the CoinEasy web page at
http://projects.coin-or.org/CoinEasy.)

As the name implies, the CoinEasy project is designed to make it easy to use COIN-OR projects.
It addresses the needs of two groups of users:

1. Users who want to access COIN-OR solvers to solve optimization problems without having
to compile code.

2. Users who want to write applications that use pre-built COIN-OR libraries.

Users who want to build COIN-OR projects from source code are directed to the home pages
of the respective projects for more information.

This document addresses the need of both groups of users. A slimmed-down version that does
not include material on the CoinAll libraries can be found at
https://projects.coin-or.org/svn/OS/trunk/OS/doc/UsingCoinAllBinary.pdf.

In the information below, we mention the CoinAll and CoinBinary projects. CoinAll is a meta
project that consists of most of the solver and utility projects in COIN-OR. As such it currently does
not have its own web page. CoinBinary is a project that provides compiled executable programs
and libraries for the projects in CoinAll as well as some other COIN-OR projects. Its web page is at
http://projects.coin-or.org/CoinBinary. The binary distribution of the CoinAll executables
and libraries can be found at http://www.coin-or.org/download/binary/CoinAll/.

Like other COIN-OR projects, CoinAll has a versioning system that ensures end users some
degree of stability and a stable upgrade path as project development continues. The current version
of the CoinAll binaries is 1.6.2.

The CoinAll binary distribution includes the following projects

• clp - an open-source linear programming solver written in C++.

• cbc - an open-source mixed integer programming solver written in C++.

• symphony - an open-source solver for mixed-integer linear programs (MILPs) written in C.
It supports parallel computations.

• ipopt - a software package designed to find (local) solutions for large-scale nonlinear opti-
mization problems.

• bonmin - an experimental open-source C++ code for solving general MINLP (Mixed Integer
NonLinear Programming) problems.

• couenne - an exact solver for nonconvex MINLPs.

• blis - a high-performance parallel search implementation for mixed integer linear programs.

• OSSolverService - an integrative framework that allows the other solvers to be called both
locally and remotely.

OSSolverService is a harness around the other programs, calling any one of them as directed
by the user, or as determined by characteristics of the problem. This document is written mostly
from the point of view of explaining and supporting OSSolverService; for information on using the
individual solvers in stand-alone form, consult their respective wiki pages.
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2 Quick Roadmap

If you want to:

• Download the binaries (executables and libraries) – see Section 3.

• Use the OSSolverService to read files in nl, OSiL, or MPS format and call a solver locally or
remotely – see Section 4.

• Use modeling languages to generate model instances in OSiL format – see Section 5.

• Use AMPL to solve problems either locally or remotely with a COIN-OR solver, Cplex,
GLPK, or LINDO – see Section 5.1.

• Use GAMS to solve problems either locally or remotely – see Section 5.2.

• Use MATLAB to generate problem instances in OSiL format and call a solver either remotely
or locally – see Section 5.3.

• Create your own applications by linking against the binaries – see Sections 9 and 10.

• Use the OS library to build model instances or use solver APIs – see Sections 11.3, 11.5 and 8.

• Use the OS library for algorithmic differentiation (in conjunction with COIN-OR CppAD) –
see Section 12.

3 Downloading the CoinAll Binaries

The CoinAll project is actually a meta-project consisting of most of the COIN-OR solvers and
supporting utility projects. We describe how to download this project.

Most users will only be interested in obtaining the binaries, which we describe next. It is also
possible to obtain the source code for the projects, which will be of interest mostly to developers.
If binaries are not provided for a particular operating system, it may be possible to build them
from the source. For details it is best to start reading the wiki page for the individual project or
projects of interest.

The repository of the binaries is at http://www.coin-or.org/download/binary/CoinAll/.
The binary distribution for the CoinAll library and executables follows the following naming

convention:

CoinAll-version_number-platform-compiler-build_options.tgz (zip)

For example, CoinAll Release 1.6.0 compiled with the Intel 11.1 compiler on a 64 bit Windows
system is:

CoinAll-1.6.0-win64-intel11.1.zip

For more detail on the naming convention and examples see:

https://projects.coin-or.org/CoinBinary/wiki/ArchiveNamingConventions

After unpacking the tgz or zip archives, the following folders are available.

bin – this directory contains all the executables.
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examples – this directory contains several examples that illustrate working with the libraries.
Some data files for working with the examples are also included.

include – the header files that are necessary in order to link against the various libraries.

lib – the libraries that are necessary for creating applications that use the libraries.

share – license and author information for all the projects used by the CoinAll project as
well as a number of further data files of linear and integer programming problems.

4 The OSSolverService

The OSSolverService is a command line executable designed to pass problem instances in either
OSiL, AMPL nl, or MPS format to solvers and get the optimization result back to be displayed
either to standard output or a specified browser. The OSSolverService can be used to invoke a
solver locally or on a remote server. It can communicate with a remote solver both synchronously
and asynchronously. At present six service methods are implemented, solve, send, retrieve,
getJobID, knock and kill. These methods are explained in more detail in Section 4.4. Only the
solve method is available locally.

There are two ways to use the OSSolverService executable. The first way is to use the
interactive shell. The interactive shell is invoked by either double clicking on the icon for the
OSSolverService executable, or by opening a command window, connecting to the directory hold-
ing the executable, and then typing in OSSolverService with no arguments. Using the interactive
shell is fairly intuitive and we do not discuss in detail. The second way to use the OSSolverService
executable is to provide arguments at the command line. This is discussed next. The command
line arguments are also valid for the interactive shell.

4.1 OSSolverService Input Parameters

At present, the OSSolverService takes the following parameters. The order of the parameters is
irrelevant, and not all the parameters are required.

osil xxx.osil This is the path information and name of the file that contains the opti-
mization instance in OSiL format. It is assumed that this file is available on the machine
that is running OSSolverService. This parameter can be omitted, as there are other ways
to specify an optimization instance. Although we endorse the convention that OSiL schema
files have the extension .osil, OSoL files have the extension .osol, etc., it is not required.
Any other path and file name could be substituted for xxx.osil.

osol xxx.osol This is the path information and name of the file that contains the solver op-
tions. It is assumed that this file is available on the machine that is running OSSolverService.
It is not necessary to specify this parameter.

osrl xxx.osrl This is the path information and name of the file to which the solver solution
will be written upon return. A valid file path must be given on the machine that is running
OSSolverService. It is not necessary to specify this parameter. If this parameter is not
specified, then the solver solution is displayed to the screen.

osplInput xxx.ospl The name of an input file in the OS Process Language (OSpL); this
is used as input to the knock method. If serviceMethod knock is specified, this parameter
must also be present.
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Table 1: Default solvers

Problem type Default solver

Linear, continuous Clp
Linear, integer Cbc
Nonlinear, continuous Ipopt
Nonlinear, integer Bonmin

osplOutput xxx.ospl The name of an output file in the OS Process Language (OSpL); this
is the output string from the knock and kill method. If not present, the output is displayed
to the terminal screen.

serviceLocation url This is the URL of the solver service. It is not required, and if not
specified it is assumed that the problem is solved locally.

serviceMethod methodName This is the service method to be invoked. The options are
solve, send, kill, knock, getJobID, and retrieve. The use of these options is illustrated
in the examples below. This parameter is not required, and it has no effect for problems
solved locally. The default value is solve.

jobID string In order to use the asynchronous methods send (Section 4.4.2), retrieve
(Section 4.4.3) and kill (Section ??) it is essential to identify the relevant job by a unique
jobID. (See also Section ??.)

mps xxx.mps This is the path information and name of the MPS file if the problem instance
is in MPS format. It is assumed that this file is available on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

nl xxx.nl This is the path information and name of the AMPL nl file if the problem instance
is in AMPL nl format. It is assumed that this file is available on the machine that is running
OSSolverService. The default file format is OSiL so this option is not required.

solver solverName Possible values of this parameter depend on the installation. The OS
executable in the CoinAll binary collection supports the following solvers: Clp, Cbc, DyLP,
SYMPHONY, Ipopt, Bonmin, Couenne. If no value is specified for this parameter, then a default
solver is used for the (local) solve method. The default solver depends on the problem type
and can be read off from table 1. Note that this option only has effect for local calls.
For a remote solve or send, put the solver name into the field <solverToInvoke> in an OSoL
file and specify this file with osol xxx.osol.

printLevel nnn This parameter controls the amount of output generated by the OSSol-
verService. Currently the integer nnn can be any number between 0 and 8 inclusive, with
higher numbers corresponding to more voluminous output. The three highest output levels
are available only if the executable was compiled in debug mode; they are mainly useful as a
debugging tool.

logFile xxx This parameter specifies a secondary output device to which output can be
directed in addition to stdout.

filePrintLevel nnn This parameter controls the amount of output sent to the secondary
output device selected by logFile. In conjunction these three command line parameters are
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extremely useful to manage large jobs. For instance, minimal output can be sent to stdout

(i.e., the terminal screen), mainly to assure the user that the job is still running as intended.
A higher output level can be used to send additional information to a file, to be analyzed
once the job has finished.

browser browserName This parameter is a path to the browser on the local machine. If
this optional parameter is specified then the solver result in OSrL format is transformed
into HTML using a stylesheet in XSLT format and is then displayed in the browser. This
parameter can only be used in conjunction with the osrl parameter. In addition, some
browsers require that the stylesheet OSrL.xslt is found in the same directory as the result file.
If necessary, this stylesheet must be moved or copied prior to starting up the OSSolverService
executable.

config xxx.config This optional parameter specifies a path on the local machine to a text
file containing values for the input parameters. This is convenient for the user not wishing
to constantly retype parameter values. A config file can be used instead of or in conjunction
with command line options. In case of conflicting information, command line options take
precedence over entries in the config file.

--help This parameter prints out the list of available options (in essence, this list). Synonyms
for --help are -h and -?.

--version This parameter prints version and licence information. -v is an acceptable syn-
onym.

The input parameters to the OSSolverService may be given entirely in the command line or
in a configuration file. We first illustrate giving all the parameters in the command line.

Remark. When invoking the commands below involving OSSolverService we assume that the
user is connected to the directory where the OSSolverService executable is located. If the binary
download was successful, the OSSolverService is in the bin directory, and the relative path to
the data directory is ../examples/data. There are several subdirectories corresponding to dif-
ferent file types used and illustrated in the following examples. The user may wish to execute
OSSolverService from the bin directory so that all that follows is correct in terms of path defini-
tions.

The following command will invoke the Clp solver on the local machine to solve the problem
instance parincLinear.osil.

./OSSolverService solver clp osil ../examples/data/osilFiles/parincLinear.osil

Windows users should note that the folder separator is always the forward slash (‘/’) instead
of the customary backslash (‘\’).

Alternatively, these parameters can be put into a configuration file. Assume that the configu-
ration file of interest is testlocalclp.config. It would contain the two lines of information

osil ../examples/data/osilFiles/parincLinear.osil

solver clp

Then the command line is

./OSSolverService config ../examples/data/configFiles/testlocalclp.config
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Parameters specified in the configure file can be overridden by parameters specified at the
command line. This is convenient if a user has a base configure file and wishes to override only a
few options. For example,

./OSSolverService config ../examples/data/configFiles/testlocalclp.config solver dylp

or

./OSSolverService solver dylp config ../examples/data/configFiles/testlocalclp.config

will result in the DyLP solver being used to solve the problem parincLinear.osil even though
Clp is specified in the testlocalclp configure file.

Some things to note:

1. The default serviceMethod is solve if another service method is not specified. The service
method cannot be specified in the OSoL options file.

2. The command line parameters are intended to only influence the behavior of the local
OSSolverService. In particular, only the service method is transmitted to a remote location.
Any communication with a remote solver other than setting the service method must take
place through an OSoL options file.

3. Only the solve() method is available for local calls to OSSolverService.

4. If the options send, kill, knock, getJobID, or retrieve are specified, a serviceLocation

must be specified.

5. When using the send() or solve() methods a problem instance must be specified.

6. The order in which ambiguities in the instance location are specified is as follows: A .osil file
takes precedence if given. If no osil file is specified, an MPS file, AMPL .nl file, or GAMS
.dat file is selected, in the order given.

4.2 The Command Line Parser

The top layer of the local OSSolverService is a command line parser that parses the command line
and the config file (if one is specified) and passes the information to a local solver or a remote
solver service, depending on whether a serviceLocation was specified. If a serviceLocation is
specified a call is made to a remote solver service, otherwise a local solver is called.

If a local solve is indicated, we pass to a solver in the OSLibrary two things: an OSoL file if
one has been specified and a problem instance. The problem instance is the instance in the OSiL
file specified by the osil option. If there is no OSiL file, then it is the instance specified in the nl
file. If there is no nl file, it is the instance in the mps file. If no OSiL, nl or mps file is specified, an
error is thrown.

The OSoL file is simply passed on to the OSLibrary; it is not parsed at this point. The OSoL
file elements <solverToInvoke> and <instanceLocation> cannot be used for local calls. One can
specify which solver to use in the OSLibrary through the solver option. If this option is empty, a
default solver is selected (see Table 1).

If the serviceLocation parameter is used, a call is placed to the remote solver service specified
in the serviceLocation parameter. Two strings are passed to the remote solver service: a string
which is the OSoL file if one has been specified, or the empty string otherwise, and a string
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Figure 1: A local call to solve.

containing an instance if one has been specified. The instance can be specified using the osil, nl,
or mps option. If an OSiL file is specified in the osil option, it is used. If there is no OSiL file,
then the instance specified in the nl file is used. If there is no nl file, the mps file is used. If no file
is given, an empty string is sent.

For remote calls, the solver can only be set in the osol file, using the element <solverToInvoke>;
the command line option solver has no effect.

4.3 Solving Problems Locally

When solving a problem locally, the OSSolverService executable is invoked synchronously and
waits for the solver to return the result. This is illustrated in Figure 1. As illustrated, the
OSSolverService reads a file on the hard drive with the optimization instance, usually in OSiL
format. The optimization instance is parsed into a string which is passed to the OSLibrary (see the
OS User’s Manual), which is linked with various solvers. Similarly an option file in OSoL format is
parsed into a string and passed to the OSLibrary. No interpretation of the options is done at this
stage, so that any <solverToInvoke> or <instanceLocation> directives in the OSoL file will be
ignored for local solves. The result of the optimization is passed back to the OSSolverService as
a string in OSrL format.

Here is an example that uses a configure file, testlocal.config, to invoke Ipopt locally using
the solve command. The example is invoked by specifying

./OSSolverService config ../examples/data/configFiles/testLocal.config

where the content of the file testLocal.config is

osil ../examples/data/osilFiles/parincQuadratic.osil
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solver ipopt

browser /usr/lib/firefox/firefox.sh

osrl /tmp/OS/test.osrl

The first line of testlocal.config gives the location of the OSiL file, parincQuadratic.osil,
that contains the problem instance. The second parameter, solver ipopt, is the solver to be
invoked, in this case COIN-OR Ipopt. The third parameter is the location of the browser on the
local machine. The fourth parameter is osrl. The value of this parameter, /tmp/OS/test.osrl,
specifies the location on the local machine where the OSrL result file will get written.

Due to security concerns when working with stylesheets, some browsers require copying the file
../examples/data/OSrL.xslt into the /tmp/OS directory before invoking OSSolverService.

4.4 Solving Problems Remotely with Web Services

In many cases the client machine may be a “weak client” and using a more powerful machine to
solve a hard optimization instance is required. Indeed, one of the major purposes of Optimization
Services is to facilitate optimization in a distributed environment. We now provide examples that
illustrate using the OSSolverService executable to call a remote solver service. By remote solver
service we mean a solver service that is called using Web Services. One such solver service is
maintained at

http://74.94.100.129:8080/OSServer/services/OSSolverService

The implementation of this solver service uses Apache Tomcat. See tomcat.apache.org. The Web
Service running on the server is a Java program based on Apache Axis. See ws.apache.org/axis.
This is described in greater detail in the OS User’s Manual. Other servers may become available,
and there is no requirement to use the Tomcat/Axis combination.

See Figure 2 for an illustration of this process. The client machine uses the OSSolverService

executable to call one of the six service methods, e.g., solve. The information such as the problem
instance in OSiL format and solver options in OSoL format are packaged into a SOAP envelope
and sent to the server. The server is running the Java Web Service OSSolverService.jws. This
Java program running in the Tomcat Java Servlet container implements the six service meth-
ods. If a solve or send request is sent to the server from the client, an optimization prob-
lem must be solved. The Java solver service solves the optimization instance by calling the
OSSolverService on the server. So there is an OSSolverService on the client that calls the
Web Service OSSolverService.jws that in turn calls the executable OSSolverService on the
server. The Java solver service passes information to the server’s OSSolverService in form of two
strings, an osil string representing the optimization instance and an osol string representing the
options (if any).

For remote calls the instance location can be specified either as a command parameter (on the
command line or in a config file), if the instance resides on the client machine, or through the
<instanceLocation> element in the OSoL options file, if it does not. OSiL files specified in the
<instanceLocation> element must be converted to an osil string by the remote solver service. If
two instance files are specified in this way — one through the local command interface, the other
in an options file — the information on the command line takes precedent.

In the following sections we illustrate each of the six service methods.

4.4.1 The solve Service Method

First we illustrate a simple call to OSSolverService. The call on the client machine is
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Figure 2: A remote call to solve.

./OSSolverService config ../examples/data/configFiles/testRemote1.config

where the testRemote1.config file is

osil ../examples/data/osilFiles/parincLinear.osil

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod solve

The third parameter serviceMethod solve is not really needed, since the default solver service
is solve. It is included only for illustration.

The only way to specify a solver for the remote call is by using an OSoL file that contains the
element <solverToInvoke>. Since no OSol file was given, the remote OSSolverService on the
server side will use the Clp solver by default. (The problem parincLinear.osil is a continuous
linear program.)

If, for example, the user wished to solve the problem with the SYMPHONY solver instead, then
this is accomplished by specifying the OSoL file either on the command line or in the config file
using the parameter

osol ../examples/data/osolFiles/remoteSolve1.osol

The content of remoteSolve1.osol is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org
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http://www.optimizationservices.org/schemas/2.0/OSoL.xsd">

<general>

<solverToInvoke>symphony</solverToInvoke>

</general>

</osol>

By adding the <instanceLocation> element and setting the locationType attribute to http

we could specify the instance location on yet another machine. The scenario is depicted in Figure 3.
The OSiL string passed from the client to the solver service is empty. However, the text of the
<instanceLocation> element contains the URL of a third machine (the COIN-OR web server at
http://www.coin-or.org), which has the problem instance p0033.osil. The solver service will
contact the machine with URL http://www.coin-or.org/OS/p0033.osil and download this test
problem. The command line to accomplish this is

./OSSolverService osol ../examples/data/osolFiles/remoteSolve2.osol \

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

where remoteSolve2.osol contains

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<instanceLocation locationType="http">

http://www.coin-or.org/OS/p0033.osil

</instanceLocation>

<solverToInvoke>symphony</solverToInvoke>

</general>

</osol>

Note: The solve method communicates synchronously with the remote solver service and once
started, these jobs cannot be killed. This may not be desirable for large problems when the user
does not want to wait for a response or when there is a possibility for the solver to enter an infinite
loop. The send service method should be used when asynchronous communication is desired.

4.4.2 The send Service Method

When the solve service method is used, then the OSSolverService does not finish execution
until the solution is returned from the remote solver service. When the send method is used, the
instance is communicated to the remote service, and the local OSSolverService terminates after
submission. An example of this is

./OSSolverService config ../examples/data/configFiles/testRemoteSend.config

where the testremoteSend.config file is

nl ../examples/data/amplFiles/hs71.nl

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod send osol ../examples/osolFiles/sendWithJobID.osol
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Figure 3: Downloading the instance from a remote source.

In this example the COIN-OR Ipopt solver is specified. The input file hs71.nl is in AMPL nl
format. Before sending this to the remote solver service the OSSolverService executable converts
the nl format into the OSiL XML format and packages this into the SOAP envelope used by Web
Services.

Since the send method involves asynchronous communication the remote solver service must
keep track of jobs. The send method requires a JobID. In the above example the <jobID> element
in the osol file provides such a job ID:

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSoL.xsd">

<general>

<jobID>xyz1234-03Jun13-10AM</jobID>

<contact transportType="smtp">

your.name@address.domain

</contact>

<solverToInvoke>ipopt</solverToInvoke>

</general>

</osol>

The <contact> element can be used to trigger an email message once the job has finished.
Another way to determine the status of a job uses the knock method (see Section 4.4.5.)

Any string can be used as a job ID, but in order to be accepted, the job ID must not have been
used before. If xyz1234-03Jun13-10AM was used earlier on the remote system, either by you or
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somebody else, the result of the send will be an error condition. When a user creates their own job
ID, there is therefore a danger that it will be rejected by the remote system. It is probably easiest
to request a job ID that is guaranteed to work, by first invoking the getJobID service method to
get a JobID. More information on the getJobID service method is provided in Section 4.4.4.

When no JobID is specified the OSSolverService method first invokes the getJobID service
method to get a JobID, puts this information into an OSoL file it creates, and sends the information
to the server. The OSSolverService prints the OSoL file to standard output before termination.
The printout includes the generated job ID, which is essential to retrieve the results of the execution
later (see Section 4.4.3).

Note that in this examples we provided a value for the <solverToInvoke> element. A default
solver is used (see Table 1) if no solver is specified.

4.4.3 The retrieve Service Method

The retrieve method is used to get information about the instance solution. This method has
a single string argument which is an OSoL instance. Here is an example of using the retrieve

method with OSSolverService.

./OSSolverService config ../examples/data/configFiles/testRemoteRetrieve.config

The testRemoteRetrieve.config file is

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

osol ../examples/data/osolFiles/retrieve.osol

serviceMethod retrieve

osrl ./test.osrl

and the retrieve.osol file is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<jobID>xyz1234-03Jun13-10AM</jobID>

</general>

</osol>

The OSoL file retrieve.osol contains a tag <jobID> that is communicated to the remote
service. The remote service locates the result and returns it as a string. The <jobID> should reflect
a <jobID> that was previously submitted using a send() command. The result is returned as a
string in OSrL format. The osrl parameter specifies a location where the result file is stored. By
using the browser parameter one could further display the results in a web browser. If no osrl

parameter is given, the result will be displayed on the screen instead.

4.4.4 The getJobID Service Method

Before submitting a job with the send method a JobID is required. The OSSolverService can get
a JobID with the following command line options.
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serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod getJobID

Note that no OSoL input file is specified. In this case, the OSSolverService sends an empty string.
A string is sent to the standard output device with the JobID. This JobID can then be put into a
<jobID> element in an OSoL string that would be used by the send method.

4.4.5 The knock Service Method

The OSSolverService terminates after executing the send method. Therefore, it is necessary to
know when the job is completed on the remote server. One way is to include an email address
in the <contact> element with the attribute transportType set to smtp. This was illustrated in
Section 4.4.1. A second way to check on the status of a job is to use the knock service method. For
example, assume a user wants to know if the job with JobID 123456abcd has completed. A user
would make the request

./OSSolverService config ../examples/data/configFiles/testRemoteKnock.config

where the testRemoteKnock.config file is

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

osplInput ../examples/data/osolFiles/knock.ospl

osol ../examples/data/osolFiles/retrieve.osol

serviceMethod knock

the knock.ospl file is

<?xml version="1.0" encoding="UTF-8"?>

<ospl xmlns="os.optimizationservices.org">

<processHeader>

<request action="getAll"/>

</processHeader>

<processData/>

</ospl>

and the retrieve.osol file is as in Section 4.4.3.
The result of this request is a string in OSpL format, with the data contained in its processData

section. The result is displayed on the screen; if the user desires it to be redirected to a file, a
osplOutput command should be added to the testRemoteKnock.config file with a valid path
name on the local system, e.g.,

osplOutput ./result.ospl

Part of the return format is illustrated below.

<?xml version="1.0" encoding="UTF-8"?>

<ospl xmlns="os.optimizationservices.org">

<processHeader>

<serviceURI>http://localhost:8080/os/ossolver/CGSolverService.jws</serviceURI>

<serviceName>CGSolverService</serviceName>

<time>2006-05-10T15:49:26.7509413-05:00</time>
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<processHeader>

<processData>

<statistics>

<currentState>idle</currentState>

<availableDiskSpace>23440343040</availableDiskSpace>

<availableMemory>70128</availableMemory>

<currentJobCount>0</currentJobCount>

<totalJobsSoFar>1</totalJobsSoFar>

<timeServiceStarted>2006-05-10T10:49:24.9700000-05:00</timeServiceStarted>

<serviceUtilization>0.1</serviceUtilization>

<jobs>

<job jobID="123456abcd">

<state>finished</state>

<serviceURI>http://kipp.chicagobooth.edu/ipopt/IPOPTSolverService.jws</serviceURI>

<submitTime>2007-06-16T14:57:36.678-05:00</submitTime>

<startTime>2007-06-16T14:57:36.678-05:00</startTime>

<endTime>2007-06-16T14:57:39.404-05:00</endTime>

<duration>2.726</duration>

</job>

</jobs>

</statistics>

</processData>

</ospl>

Notice that the <state> element in <job jobID="123456abcd"> indicates that the job is finished.
When making a knock request, the OSoL string can be empty. In this example, if the OSoL

string had been empty the status of all jobs kept in the file ospl.xml is reported. In our de-
fault solver service implementation, there is a configuration file OSParameter that has a parameter
MAX_JOBIDS_TO_KEEP . The current default setting is 100. In a large-scale or commercial imple-
mentation it might be wise to keep problem results and statistics in a database. Also, there are
values other than getAll (i.e., get all process information related to the jobs) for the OSpL action

attribute in the <request> tag. For example, the action can be set to a value of ping if the user
just wants to check if the remote solver service is up and running. For details, check the OSpL
schema in the folder OS/schemas at http://www.coin-or.org/OS/OSpL.html. All schemas can
also be downloaded from http://www.coin-or.org/OS/downloads/OSSchemas-2.0.zip.

4.4.6 The kill Service Method

If the user submits a job that is taking too long or is a mistake, it is possible to kill the job on
the remote server using the kill service method. For example, to kill job 123456abcd, at the
command line type

./OSSolverService config ../examples/data/configFiles/kill.config

where the configure file kill.config is

osol ../examples/data/osolFiles/kill.osol

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod kill

18



and the kill.osol file is

<?xml version="1.0" encoding="UTF-8"?>

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<jobID>123456abcd</jobID>

</general>

</osol>

The result is returned in OSpL format.

4.4.7 Summary and description of the API

The six service methods just described are also available as callable routines. Below is a summary
of the inputs and outputs of the six methods. See also Figure 4. A test program illustrating the
use of the methods is described in Section 9.8.

• solve( osil, osol ):

– Inputs: a string with the instance in OSiL format and a (possibly empty) string with
the solver options in OSoL format

– Returns: a string with the solver solution in OSrL format

– Synchronous call, blocking request/response

• send( osil, osol ):

– Inputs: a string with the instance in OSiL format and a string with the solver options
in OSoL format (same as in solve)

– Returns: a boolean, true if the problem was successfully submitted, false otherwise

– Asynchronous (server side), non-blocking call

– The osol string should have a JobID in the <jobID> element

• getJobID( osol ):

– Inputs: a string with the solver options in OSoL format (in this case, the string may be
empty because no options are required to get the JobID)

– Returns: a string which is the unique job id generated by the solver service

– Used to maintain session and state on a distributed system

• knock( ospl, osol ):

– Inputs: a string in OSpL format and a string with the solver options in OSoL format.
Either or both strings can be empty.

– Returns: process and job status information from the remote server in OSpL format
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• retrieve( osol ):

– Inputs: a string with the solver options in OSoL format

– Returns: a string with the solver solution in OSrL format

– The osol string should have a JobID in the <jobID> element

• kill( osol ):

– Inputs: a string with the solver options in OSoL format

– Returns: process and job status information from the remote server in OSpL format

– Critical in long running optimization jobs

Figure 4: The OS Communication Methods

4.5 Passing Options to Solvers

The OSoL (Optimization Services option Language) protocol is used to pass options to solvers.
When using the OSSolverService executable this will typically be done through an OSoL XML
file by specifying the osol option followed by the location of the file. However, it is also possible
to write a custom application that links to the OS library and to build an OSOption object in
memory and then pass this to a solver. We next describe the features of the OSoL protocol that
will be the most useful to the typical user.
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In the OSoL protocol there is an element <solverOptions> that can have any number of
<solverOption> children. (See the file parsertest.osol in OS/data/osolFiles.) Each <solverOption>

child can have six attributes, all of which except one are optional. These attributes are:

• name: this is the only required attribute and is the option name. It should be unique.

• value: the value of the option.

• solver: the name of the solver associated with the option. At present the values recognized
by this attribute are "ipopt", "bonmin", "couenne", "cbc", and "osi". The last option is
used for all solvers that are accessed through the Osi interface, which are clp, DyLP, SYMPHONY
and Vol, in addition to Glpk and Cplex, if the latter are included in the particular build of
OSSolverService.

• type: this will usually be a data type (such as integer, string, double, etc.) but this is not
necessary.

• category: the same solver option may apply in more than one context (and with different
meaning) so it may be necessary to specify a category to remove ambiguities. For example, in
LINDO an option can apply to a specific model or to every model in an environment. Hence
we might have

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"

solver="lindo" category="model" type="integer" value="0"/>

<solverOption name="LS_IPARAM_LP_PRINTLEVEL"

solver="lindo" category="environment" type="integer" value="1"/>

where we specify the print level for a specific model or the entire environment. The category
attribute should be separated by a colon (‘:’) if there is more than one category or additional
subcategories, as in the following hypothetical example.

<solverOption name="hypothetical"

solver="SOLVER" category="cat1:subcat2:subsubcat3"

type="string" value="illustration"/>

• description: a description of the option; typically this would not get passed to the solver
but could be useful for documentation purposes.

As of trunk version 2164 the reading of an OSoL file is implemented in the OSCoinSolver,
OSBonmin and OSIpopt solver interfaces. The OSBonmin, and OSIpopt solvers have particularly
easy interfaces. They have methods for integer, string, and numeric data types and then take
options in form of (name, value) pairs. Below is an example of options for Ipopt.

<solverOption name="mu_strategy" solver="ipopt"

type="string" value="adaptive"/>

<solverOption name="tol" solver="ipopt"

type="numeric" value="1.e-9"/>

<solverOption name="print_level" solver="ipopt"

type="integer" value="5"/>

<solverOption name="max_iter" solver="ipopt"

type="integer" value="2000"/>

21



We have also implemented the OSOption class for the OSCoinSolver interface. Options for the
Osi solvers (Clp, Cbc, SYMPHONY, DyLP, Vol, GLPK, Cplex) can be set through the Osi solver
interface. We have implemented all of the options listed in OsiSolverParameters.hpp in Osi trunk
version 1316. In the Osi solver interface, in addition to string, double, and integer types there is
a type called HintParam and a type called OsiHintParam. The value of the OsiHintParam is an
OsiHintStrength type, which may be confusing. For example, to have the following Osi method
called

setHintParam(OsiDoReducePrint, true, hintStrength);

the user should set the following <solverOption> tags:

<solverOption name="OsiDoReducePrint" solver="osi"

type="OsiHintParam" value="true" />

<solverOption name="OsiHintIgnore" solver="osi"

type="OsiHintStrength" />

There should be only one <solverOption> with type OsiHintStrength in the OSoL file (string);
if there is more than one, the last one is the one used.

In addition to setting options using the Osi Solver interface, it is possible to pass options directly
to the Cbc solver. By default the following options are sent to the Cbc solver,

-log=0 -solve

The option -log=0 will keep the branch-and-bound output to a minimum. Default options are
overridden by putting into the OSoL file at least one <solverOption> tag with the solver attribute
set to cbc. For example, the following sequence of options will limit the search to 100 nodes, cut
generation turned off.

<solverOption name="maxN" solver="cbc" value="100" />

<solverOption name="cuts" solver="cbc" value="off" />

<solverOption name="solve" solver="cbc" />

Any option that Cbc accepts at the command line can be put into a <solverOption> tag. We
list those below.

Double parameters:

dualB(ound) dualT(olerance) primalT(olerance) primalW(eight)

Branch and Cut double parameters:

allow(ableGap) cuto(ff) inc(rement) inf(easibilityWeight) integerT(olerance)

preT(olerance) ratio(Gap) sec(onds)

Integer parameters:

cpp(Generate) force(Solution) idiot(Crash) maxF(actor) maxIt(erations)

output(Format) slog(Level) sprint(Crash)

Branch and Cut integer parameters:

cutD(epth) log(Level) maxN(odes) maxS(olutions) passC(uts)

passF(easibilityPump) passT(reeCuts) pumpT(une) strat(egy) strong(Branching)

trust(PseudoCosts)

Keyword parameters:

chol(esky) crash cross(over) direction dualP(ivot)

error(sAllowed) keepN(ames) mess(ages) perturb(ation) presolve

primalP(ivot) printi(ngOptions) scal(ing)
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Branch and Cut keyword parameters:

clique(Cuts) combine(Solutions) cost(Strategy) cuts(OnOff) Dins

DivingS(ome) DivingC(oefficient) DivingF(ractional) DivingG(uided) DivingL(ineSearch)

DivingP(seudoCost) DivingV(ectorLength) feas(ibilityPump) flow(CoverCuts) gomory(Cuts)

greedy(Heuristic) heur(isticsOnOff) knapsack(Cuts) lift(AndProjectCuts) local(TreeSearch)

mixed(IntegerRoundingCuts) node(Strategy) pivot(AndFix) preprocess probing(Cuts)

rand(omizedRounding) reduce(AndSplitCuts) residual(CapacityCuts) Rens Rins

round(ingHeuristic) sos(Options) two(MirCuts)

Actions or string parameters:

allS(lack) barr(ier) basisI(n) basisO(ut) directory

dirSample dirNetlib dirMiplib dualS(implex) either(Simplex)

end exit export help import

initialS(olve) max(imize) min(imize) netlib netlibD(ual)

netlibP(rimal) netlibT(une) primalS(implex) printM(ask) quit

restore(Model) saveM(odel) saveS(olution) solu(tion) stat(istics)

stop unitTest userClp

Branch and Cut actions:

branch(AndCut) doH(euristic) miplib prio(rityIn) solv(e)

strengthen userCbc

The user may also wish to specify an initial starting solution. This is particularly useful with
interior point methods. This is accomplished by using the <initialVariableValues> tag. Below
we illustrate how to set the initial values for variables with an index of 0, 1, and 3.

<initialVariableValues numberOfVar="3">

<var idx="0" value="1"/>

<var idx="1" value="4.742999643577776" />

<var idx="3" value="1.379408293215363"/>

</initialVariableValues>

As of trunk version 2164 the initial values for variables can be passed to the Bonmin and Ipopt

solvers.
When implementing solver options in-memory, the typical calling sequence is:

solver->buildSolverInstance();

solver->setSolverOptions();

solver->solve();

5 OS Support for AMPL and GAMS

Algebraic modeling languages can be used to generate model instances as input to an OS compliant
solver. We describe two such hook-ups, OSAmplClient for AMPL, and CoinOS for GAMS (version
23.8 and above).

5.1 AMPL Client: Hooking AMPL to Solvers

It is possible to call all of the COIN-OR solvers that are contained in the CoinAll distribution
directly from the AMPL (see http://www.ampl.com) modeling language. In this discussion we
assume the user has already obtained and installed AMPL. The binary download described in
Section 3 contains an executable, OSAmplClient.exe, that is linked to all of the COIN-OR solvers
the same solvers as OSSolverService described in Section 4. From the perspective of AMPL, the
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OSAmplClient acts like an AMPL “solver”. The OSAmplClient.exe can be used to solve problems
either locally or remotely.

5.1.1 Using OSAmplClient for a Local Solver

In the following discussion we assume that the AMPL executable ampl.exe, the OSAmplClient,
and the test problem eastborne.mod are all in the same directory.

The problem instance eastborne.mod is an AMPL model file included in the OS distribution
in the amplFiles directory. To solve this problem locally by calling OSAmplClient.exe from
AMPL, first start AMPL and then open the eastborne.mod file inside AMPL. The test model
eastborne.mod is a linear integer program.

model eastborne.mod;

The next step is to tell AMPL that the solver it is going to use is OSAmplClient.exe. Do this
by issuing the following command inside AMPL.

option solver OSAmplClient;

It is not necessary to provide the OSAmplclient.exe solver with any options. You can just
issue the solve command in AMPL as illustrated below.

solve;

Of the six methods described in Section 4 only the solve method has been implemented to
date.

If no options are specified, the default solver is used, depending on the problem characteristics
(see Table 1 on p.8). If you wish to specify a specific solver, use the solver option. For example,
since the test problem eastborne.mod is a linear integer program, Cbc is used by default. If instead
you want to use SYMPHONY, then you would pass a solver option to the OSAmplclient.exe solver
as follows.

option OSAmplClient_options "solver symphony";

Valid values for the solver option are installation-dependent. The solver name in the solver

option is case insensitive.

5.1.2 Using OSAmplClient to Invoke an OS Solver Server remotely

Next, assume that you have a large problem you want to solve on a remote solver. It is necessary
to specify the location of the server solver as an option to OSAmplClient. The serviceLocation

option is used to specify the location of a solver server. In this case, the string of options for
OSAmplClient_options is:

serviceLocation http://xxx/OSServer/services/OSSolverService

where xxx is the IP Address for the server. (For instance, Kipp Martin maintains a server that
is reachable at 74.94.100.129:8080 This string is used to replace the string ‘solver symphony’
in the previous example. The serviceLocation option will send the problem to the location
http://xxx and, assuming the remote executable is indeed found in the indicated folder, will start
the executable.

However, each call
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option OSAmplClient_options

is memoryless. That is, the options set in the last call will overwrite any options set in previous
calls and cause them to be discarded. For instance, the sequence of option calls

option OSAmplClient_options "solver symphony";

option OSAmplClient_options "serviceLocation

http://xxx/OSServer/services/OSSolverService";

solve;

will result in the default solver being called. If the intent is to use the SYMPHONY solver at the
remote location, the option must be declared as follows:

option OSAmplClient_options "solver symphony \

serviceLocation http://xxx/OSServer/services/OSSolverService";

solve;

For brevity we will omit the AMPL instruction

option OSAmplClient_options

the double quotes and the trailing semicolon in the remaining examples.

Finally, the user may wish to pass options to the individual solver. This is done by speci-
fying an options file. (A sample options file, solveroptions.osol is provided with this distri-
bution). The name of the options file is the value of the osol option. The string of options to
OSAmplClient_options is now

serviceLocation http://xxx/OSServer/services/OSSolverService \

osol solveroptions.osol

This solveroptions.osol file contains four solver options; two for Cbc, one for Ipopt, and one for
SYMPHONY. You can have any number of options. Note the format for specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver that
the option should be applied to, and the value attribute specifies the value of the option. As a
second example, consider the specification

<solverOption name="max_iter" solver="ipopt" type="integer" value="2000"/>

In this example we are specifying an iteration limit for Ipopt. Note the additional attribute type

that has value integer. The Ipopt solver requires specifying the data type (string, integer, or
numeric) for its options. Different solvers have different options, and we recommend that the user
look at the documentation for the solver of interest in order to see which options are available.
A good summary of options for COIN-OR solvers is http://www.gams.com/dd/docs/solvers/

coin.pdf.
If you examine the file solveroptions.osol you will see that there is an XML tag with the

name <solverToInvoke> and that the solver given is symphony. This has no effect on a local
solve! However, if this option file is paired with

serviceLocation http://xxx/OSServer/services/OSSolverService

osol solveroptions.osol

then in our reference implementation the remote solver service will parse the file solveroptions.osol,
find the <solverToInvoke> tag and then pass the symphony solver option to the OSSolverService
on the remote server.
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5.1.3 AMPL Summary

1. Tell AMPL to use the OSAmplClient as the solver:

option solver OSAmplClient;

2. Specify options to the OSAmplClient solver by using the AMPL command

option OSAmplClient_options "(option string)";

3. There are three possible options to specify:

• the location of the options file using the osol option;

• the location of the remote server using the serviceLocation option;

• the name of the solver using the solver option; valid values for this option are installation-
dependent. For details, see Table ?? on page ?? and the discussion in Section 4.1.

These three options behave exactly like the solver, serviceLocation, and osol options used
by the OSSolverService described in Section 4.2. Note that the solver option only has an
effect with a local solve; if the user wants to invoke a specific solver with a remote solve, then
this must be done in the OSoL file using the <solverToInvoke> element.

4. The options given to OSAmplClient_options can be given in any order.

5. If no solver is specified using OSAmplClient_options, the default solver is used. (For details
see Table 1).

6. A remote solver is called if and only if the serviceLocation option is specified.

5.2 GAMS and Optimization Services

This section pertains to GAMS version 23.8 (and above) that now includes support for OS. Here
we describe the GAMS implementation of Optimization Services. We assume that the user has
installed GAMS.

In GAMS, OS is implemented through the CoinOS solver that is packaged with GAMS. The
GAMS CoinOS solver is really a solver interface that links to the OS library. At present the
GAMS CoinOS solver does not support local calls, but it can be used to make remote calls to an
OSSolverService executable on a remote server. How this is done is the topic of the next section.

5.2.1 Using GAMS to Invoke a Remote OS Solver Service

We now describe how to call a remote OS solver service using the GAMS CoinOS. Before proceeding,
it is important to emphasize that when calling a remote OS solver service, different sets of solvers
may be supported, even for the same version of the OS solver service. For example, the remote
implementation may provide access to solvers such as SYMPHONY, Couenne, Glpk and DyLP. There
are several reason why you might wish to use a remote OS solver service.

• Have access to a faster machine.
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• Be able to submit jobs to run in asynchronous mode – submit your job, turn off your laptop,
and check later to see if the job ran.

• Call several additional solvers (e.g., SYMPHONY, Couenne, Glpk and DyLP). Note, however, that
not all solvers may be available available locally (especially Glpk) may not be available for a
remote call.

We will illustrate several possible calls with the sample GAMS file eastborne.gms which found
in the data/gamsFiles directory. We assume that this file exists in the current directory and that
the GAMS executable is found in the search path. The command to execute at the command line
would then be

gams eastborne.gms MIP=CoinOS optfile=1

The server name (CoinOS) is case-insensitive and could equally well have been written as
“MIP=coinos” or “MIP=COINOS”. Moreover, the file eastborne.gms contains the directive

Option MIP = CoinOS;

and hence the option MIP=CoinOS could have been omitted from the command line.
Since the solver is named CoinOS, the options file pointed to by the last part of the command

(optfile=1) should be named CoinOS.opt. In general multiple option files are possible, and the
GAMS convention is as follows:

optfile=1 corresponds to CoinOS.opt

optfile=2 corresponds to CoinOS.op2

. . .
optfile=99 corresponds to CoinOS.o99

It is important to distinguish between the option files for GAMS just mentioned and the option
file (in OSoL format) passed to the OS solver server (see below). We now explain the valid options
that can go into a GAMS option file when using the CoinOS solver. The options are

service (string): Specifies the URL of the COIN-OR solver service. This option is required in
order to direct the remote call appropriately.

Use the following value for this option.

service http://74.94.100.129:8080/OSServer/services/OSSolverService

writeosil (string): If this option is used, GAMS will write the optimization instance to file
(string) in OSiL format.

writeosrl (string): If this option is used, GAMS will write the result of the optimization to file
(string) in OSrL format.

The options just described are options for the GAMS modeling language. It is also possible to
pass options directly to the COIN-OR solvers by using the OS interface. This is done by passing
the name of an options file that conforms to the OSoL standard. The option

readosol (string) specifies the name of an OS option file in OSoL format that is given to the
solver. Note well: The file CoinOS.opt is an option file for GAMS but the GAMS option readosol

in the GAMS options file is specifying the name of an OS options file.
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The file solveroptions.osol is contained in the OS distribution in the osolFiles directory
in the data directory. This file contains four solver options; two for Cbc, one for Ipopt, and one for
SYMPHONY (which is available for remote server calls, but not locally). You can have any number of
options. Note the format for specifying an option:

<solverOption name="maxN" solver="cbc" value="5" />

The attribute name specifies that the option name is maxN which is the maximum number of nodes
allowed in the branch-and-bound tree, the solver attribute specifies the name of the solver to
which the option should be applied, and the value attribute specifies the value of the option.

Default solver values are present, depending on the problem characteristics. For more details,
consult Table 1 (p.8). In order to control the solver used, it is necessary to specify the name of the
solver inside the XML tag <solverToInvoke>. The example solveroptions.osol file contains
the XML tag

<solverToInvoke>symphony</solverToInvoke>

Valid values for the remote solver service specified in the <solverToInvoke> tag are installation
dependent; the solver service at http://74.94.100.129:8080/OSServer/services/OSSolverService
accepts clp, cbc, dylp, glpk, ipopt, bonmin, couenne, symphony, and vol.

By default, the call to the server is a synchronous call. The GAMS process will wait for the
result and then display the result. This may not be desirable when solving large optimization
models. The user may wish to submit a job, turn off his or her computer, and then check at a
later date to see if the job is finished. In order to use the remote solver service in this fashion, i.e.,
asynchronously, it is necessary to use the service_method option.

service_method (string) specifies the method to execute on a server. Valid values for this option
are solve, getJobID, send, knock, retrieve, and kill. We explain how to use each of these.

The default value of service_method is solve. A solve invokes the remote service in syn-
chronous mode. When using the solve method you can optionally specify a set of solver options
in an OSoL file by using the readosol option. The remaining values for the service_method

option are used for an asynchronous call. We illustrate them in the order in which they would most
logically be executed.

service_method getJobID: When working in asynchronous mode, the server needs to uniquely
identify each job. The getJobID service method will result in the server returning a unique job ID.
For example if the following CoinOS.opt file is used

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method getJobID

with the command

gams.exe eastborne.gms optfile=1

the user will see a rather long job ID returned to the screen as output. Assume that the job id
returned is coinor12345xyz. This job ID is used to submit a job to the server with the send

method. Any job ID can be sent to the server as long as it has not been used before.

service_method send: When working in asynchronous mode, use the send service method to
submit a job. When using the send service method a job ID is required. An options file must
be present and must specify a job ID that has not been used before. Assume that in the file
CoinOS.opt we specify the options:
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service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method send

readosol sendWithJobID.osol

The sendWithJobID.osol options file is identical to the solveroptions.osol options file except
that it has an additional XML tag:

<jobID>coinor12345xyz</jobID>

We then execute

gams.exe eastborne.gms optfile=1

If all goes well, the response to the above command should be: “Problem instance successfully sent
to OS service”. At this point the server will schedule the job and work on it. It is possible to turn
off the user computer at this point. At some point the user will want to know if the job is finished.
This is accomplished using the knock service method.

service_method knock: When working in asynchronous mode, this is used to check the status of
a job. Consider the following CoinOS.opt file:

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method knock

readosol sendWithJobID.osol

readospl knock.ospl

writeospl knockResult.ospl

The knock service method requires two inputs. The first input is the name of an options file, in
this case sendWithJobID.osol, specified through the readosol option. In addition, a file in OSpL
format is required. You can use the knock.opsl file provided in the binary distribution. This file
name is specified using the readospl option. If no job ID is specified in the OSoL file then the
status of all jobs on the server will be returned in the file specified by the writeospl option. If a
job ID is specified in the OSoL file, then only information on the specified job ID is returned in the
file specified by the writeospl option. In this case the file name is knockResult.ospl. We then
execute

gams.exe eastborne.gms optfile=1

The file knockResult.ospl will contain information similar to the following:

<job jobID="coinor12345xyz">

<state>finished</state>

<serviceURI>http://192.168.0.219:8443/os/OSSolverService.jws</serviceURI>

<submitTime>2009-11-10T02:13:11.245-06:00</submitTime>

<startTime>2009-11-10T02:13:11.245-06:00</startTime>

<endTime>2009-11-10T02:13:12.605-06:00</endTime>

<duration>1.36</duration>

</job>
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Note that the job is complete as indicated in the <state> tag. It is now time to actually retrieve
the job solution. This is done with the retrieve method.

service_method retrieve: When working in asynchronous mode, this method is used to retrieve
the job solution. It is necessary when using retrieve to specify an options file and in that options
file specify a job ID. Consider the following CoinOS.opt file:

service http://74.94.100.129:8080/OSServer/services/OSSolverService

service_method retrieve

readosol sendWithJobID.osol

writeosrl answer.osrl

When we then execute

gams.exe eastborne.gms optfile=1

the result is written to the file answer.osrl.
Finally there is a kill service method which is used to kill a job that was submitted by mistake

or is running too long on the server.

service_method kill: When working in asynchronous mode, this method is used to terminate a
job. You should specify an OSoL file containing the job ID by using the readosol option.

5.2.2 GAMS Summary:

1. In order to use OS with GAMS you can either specify CoinOS as an option to GAMS at the
command line,

gams eastborne.gms MIP=CoinOS

or you can place the statement Option ProblemType = CoinOS; somewhere in the model
before the Solve statement in the GAMS file.

2. If no options are given, then the model will be solved locally using the default solver (see
Table 1 on p.8).

3. In order to control behavior (for example, whether a local or remote solver is used) an options
file, CoinOS.opt, must be used as follows

gams.exe eastborne.gms optfile=1

4. The CoinOS.opt file is used to specify eight potential options:

• service (string): using the COIN-OR solver server; this is done by giving the option

service http://74.94.100.129:8080/OSServer/services/OSSolverService

• readosol (string): whether or not to send the solver an options file; this is done by
giving the option

readosol solveroptions.osol
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• solver (string): if a local solve is being done, a specific solver is specified by the
option

solver solver_name

Valid values are clp, cbc, glpk, ipopt and bonmin. When the COIN-OR solver service
is being used, the only way to specify the solver to use is through the <solverToInvoke>
tag in an OSoL file. In this case the valid values for the solver are clp, cbc, dylp, glpk,
ipopt, bonmin, couenne, symphony and vol.

• writeosrl (string): the solution result can be put into an OSrL file by specifying the
option

writeosrl osrl_file_name

• writeosil (string): the optimization instance can be put into an OSiL file by speci-
fying the option

writeosil osil_file_name

• writeospl (string): Specifies the name of an OSpL file in which the answer from the
knock or kill method is written, e.g.,

writeospl write_ospl_file_name

• readospl (string): Specifies the name of an OSpL file that the knock method sends
to the server

readospl read_ospl_file_name

• service_method (string): Specifies the method to execute on a server. Valid values
for this option are solve, getJobID, send, knock, retrieve, and kill.

5. If an OS options file is passed to the GAMS CoinOS solver using the GAMS CoinOS option
readosol, then GAMS does not interpret or act on any options in this file. The options in
the OS options file are passed directly to either: i) the default local solver, ii) the local solver
specified by the GAMS CoinOS option solver, or iii) to the remote OS solver service if one
is specified by the GAMS CoinOS option service.

5.3 MATLAB: Using MATLAB to Build and Run OSiL Model Instances

MATLAB has powerful matrix generation and manipulation routines. This section is for users who
wish to use MATLAB to generate the matrix coefficients for linear or quadratic programs and use
the OS library to call a solver and get the result back. Using MATLAB with OS requires the user
to compile a file OSMatlabSolverMex.cpp into a MATLAB executable file (these files will have
a .mex extension) after compilation. This executable file is linked to the OS library and works
through the MATLAB API to communicate with the OS library.

The OS MATLAB application differs from the other applications in the OS/applications folder
in that makefiles are not used. The file

OS/applications/matlab/OSMatlabSolverMex.cpp
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must be compiled inside the MATLAB command window. Building the OS MATLAB application
requires the following steps.

Step 1: The MATLAB installation contains a file mexopts.sh (UNIX) or mexopts.bat (Windows)
that must be edited. This file typically resides in the bin directory of the MATLAB appli-
cation. This file contains compile and link options that must be properly set. Appropriate
paths to header files and libraries must be set. This discussion is based on the assumption
that the user has either done a make install for the OS project or has downloaded a
binary archive of the OS project. In either case there will be an include directory with
the necessary header files and a lib directory with the necessary libraries for linking.

First edit the CXXFLAGS option to point to the header files in the cppad directory and the
include directory in the project root. For example, it should look like:

CXXFLAGS=’-fno-common -no-cpp-precomp -fexceptions

-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/

-I/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/include’

Next edit the CXXLIBS flag so that the OS and supporting libraries are included. For
example, it should look like the following1 on a MacIntosh:

CXXLIBS="$MLIBS -lstdc++ -L/Users/kmartin/coin/os-trunk/vpath/lib

-lOS -lbonmin -lIpopt -lOsiCbc -lOsiClp -lOsiSym -lOsiVol

-lOsiDylp -lCbc -lCgl -lOsi -lClp -lSym -lVol -lDylp

-lCoinUtils -lCbcSolver -lcoinmumps -ldl -lpthread

/usr/local/lib/libgfortran.dylib -lgcc_s.10.5 -lgcc_ext.10.5 -lSystem -lm

Important: It has been the authors’ experience that setting the necessary MATLAB
compiler and linker options to build the mex can be tricky. We include in

OS/applications/matlab/macOSXscript.txt

the exact options that work on a 64 bit Mac with MATLAB release R2009b.

Step 2: Build the MATLAB executable file. Start MATLAB and in the MATLAB command
window connect to the directory OS/examples/matlab which contains the file

OSMatlabSolverMex.cpp

Step 3: Execute the command:

mex -v OSMatlabSolverMex.cpp

On a 64 bit machine the command should be

mex -v -largeArrayDims OSMatlabSolverMex.cpp

1The libraries to include in CXXLIBS depends upon which projects were compiled with OS.
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The name of the resulting executable is system dependent. On an Intel MAC OS X
64 bit chip the name will be OSMatlabSolver.mexmaci64, on a Windows system it is
OSMatlabSolver.mexw32.

Step 4: Set the MATLAB path to include the directory OS/applications/matlab (or more gen-
erally, the directory with the mex executable).

Step 5: In the MATLAB command window, connect to the directory OS/data/matlabFiles. Run
either of the MATLAB files markowitz.m or parincLinear.m. The result should be
displayed in the MATLAB browser window.

To use the OSMatlabSolver it is necessary to put the coefficients from a linear, integer, or
quadratic problem into MATLAB arrays. We illustrate for the linear program:

Minimize 10x1 + 9x2 (1)

Subject to .7x1 + x2 ≤ 630 (2)

.5x1 + (5/6)x2 ≤ 600 (3)

x1 + (2/3)x2 ≤ 708 (4)

.1x1 + .25x2 ≤ 135 (5)

x1, x2 ≥ 0 (6)

The MATLAB representation of this problem in MATLAB arrays is

% the number of constraints

numCon = 4;

% the number of variables

numVar = 2;

% variable types

VarType=’CC’;

% constraint types

A = [.7 1; .5 5/6; 1 2/3; .1 .25];

BU = [630 600 708 135];

BL = [];

OBJ = [10 9];

VL = [-inf -inf];

VU = [];

ObjType = 1;

% leave Q empty if there are no quadratic terms

Q = [];

prob_name = ’ParInc Example’

password = ’’;

%

%

%the solver

solverName = ’ipopt’;

%the remote service address

%if left empty we solve locally -- must solve locally for now

serviceLocation=’’;
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% now solve

callMatlabSolver( numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, ...

VarType, Q, prob_name, password, solverName, serviceLocation)

This example m-file is in the data directory and is file parincLinear.m. Note that in addition to
the problem formulation we can specify which solver to use through the solverName variable. If
solution with a remote solver is desired this can be specified with the serviceLocation variable.
If the serviceLocation is left empty, i.e.,

serviceLocation=’’;

then a local solver is used. In this case it is crucial that the appropriate solver is linked in with the
matlabSolver executable using the CXXLIBS option.

The data directory also contains the m-file template.m which contains extensive comments
about how to formulate the problems in MATLAB. The user can edit template.m as necessary and
create a new instance.

A second example which is a quadratic problem is given in Section 5.3. The appropriate MAT-
LAB m-file is markowitz.m in the data/matlabFiles directory. The problem consists in investing in
a number of stocks. The expected returns and risks (covariances) of the stocks are known. Assume
that the decision variables xi represent the fraction of wealth invested in stock i and that no stock
can have more than 75% of the total wealth. The problem then is to minimize the total risk subject
to a budget constraint and a lower bound on the expected portfolio return.

Assume that there are three stocks (variables) and two constraints (not counting the upper
limit of .75 on the investment variables).

% the number of constraints

numCon = 2;

% the number of variables

numVar = 3;

All the variables are continuous:

VarType=’CCC’;

Next define the constraint upper and lower bounds. There are two constraints, an equality
constraint (an =) and a lower bound on portfolio return of .15 (a ≥). These two constraints are
expressed as

BL = [1 .15];

BU = [1 inf];

The variables are nonnegative and have upper limits of .75 (no stock can comprise more than
75% of the portfolio). This is written as

VL = [];

VU = [.75 .75 .75];

There are no nonzero linear coefficients in the objective function, but the objective function
vector must always be defined and the number of components of this vector is the number of
variables.
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OBJ = [0 0 0 ]

Now the linear constraints. In the model the two linear constraints are

x1 + x2 + x3 = 1

0.3221x1 + 0.0963x2 + 0.1187x3 ≥ .15

These are expressed as

A = [ 1 1 1 ;

0.3221 0.0963 0.1187 ];

Now for the quadratic terms. The only quadratic terms are in the objective function. The
objective function is

min 0.425349694x21 + 0.445784443x22 + 0.231430983x23 + 2× 0.185218694x1x2

+2× 0.139312545x1x3 + 2× 0.13881692x2x3

To represent quadratic terms MATLAB uses an array, here denoted Q, which has four rows,
and a column for each quadratic term. In this example there are six quadratic terms. The first row
of Q is the row index where the terms appear. By convention, the objective function has index -1,
and constraints are counted starting at 0. The first row of Q is

-1 -1 -1 -1 -1 -1

The second row of Q is the index of the first variable in the quadratic term. We use zero based
counting. Variable x1 has index 0, variable x2 has index 1, and variable x3 has index 2. Therefore,
the second row of Q is

0 1 2 0 0 1

The third row of Q is the index of the second variable in the quadratic term. Therefore, the
third row of Q is

0 1 2 1 2 2

Note that terms such as x21 are treated as x1 ∗ x1 and that mixed terms such as x2x3 could be
given in either order.

The last (fourth) row is the coefficient. Therefore, the fourth row reads

.425349654 .445784443 .231430983 .370437388 .27862509 .27763384

The full array is

Q = [ -1 -1 -1 -1 -1 -1;

0 1 2 0 0 1 ;

0 1 2 1 2 2;

.425349654 .445784443 .231430983 .370437388 .27862509 .27763384

];
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Finally, name the problem, specify the solver (in this case ipopt), the service address (and
password if required by the service), and call the solver.

% replace Template with the name of your problem

prob_name = ’Markowitz Example from Anderson, Sweeney, Williams, and Martin’;

password = ’’;

%

%the solver

solverName = ’ipopt’;

%the remote service service address

%if left empty we solve locally -- must solve locally for now

serviceLocation=’’;

% now solve

OSCallMatlabSolver( numVar, numCon, A, BL, BU, OBJ, VL, VU, ObjType, VarType, ...

Q, prob_name, password, solverName, serviceLocation)

6 File Upload: Using a File Upload Package

When the OSAgent class methods solve and send are used, the problem instance in OSiL format is
packaged into a SOAP envelope and communication with the server is done using Web Services (for
example Tomcat Axis). However, packing an XML file into a SOAP envelope may add considerably
to the size of the file (e.g., each < is replaced with &lt; and each > is replaced with &gt;). Also,
communicating with a Web Services servlet can further slow down the communication process. This
could be a problem for large instances. An alternative approach is to use the OSFileUpload exe-
cutable on the client end and the Java servlet OSFileUpload on the server end. The OSFileUpload

client executable is contained in the fileUpload directory inside the applications directory.
This servlet is based upon the Apache Commons FileUpload. See

http://jakarta.apache.org/commons/fileupload/

The OSFileUpload Java class, OSFileUpload.class is in the directory

webapps\os\WEB-INF\classes\org\optimizationservices\oscommon\util

relative to the Web server root. The source code OSFileUpload.class is in the directory

COIN-OS/OS/applications/fileUpload

Before you can use OSFileUpload, you must give a valid URL for the location of the server.
This information must be provided in line 82 of the source code OSFileUpload.cpp before issuing
the make command (in a unix environment) or the build (under MS VisualStudio).

The OSFileUpload client executable (see OS/applications/fileUpload) takes one argument
on the command line, which is the location of the file on the local directory to upload to the server.
For example,

OSFileUpload ../../data/osilFiles/parincQuadratic.osil

The OSFileUpload executable first creates an OSAgent object.

OSSolverAgent* osagent = NULL;

osagent = new OSSolverAgent("http://kipp.chicagobooth.edu/fileupload/servlet/OSFileUpload");
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The OSAgent has a method OSFileUpload with the signature

std::string OSFileUpload(std::string osilFileName, std::string osil);

where osilFileName is the name of the OSiL problem instance to be written on the server and
osil is the string with the actual instance. Then

osagent->OSFileUpload(osilFileName, osil);

will place a call to the server, upload the problem instance in the osil string, and cause the
server to write on its hard drive a file named osilFileName. In our implementation, the uploaded
file (parincQuadratic.osil) is saved to the /home/kmartin/temp/parincQuadratic.osil on the
server hard drive. This location is used in the osol file as shown below.

Once the file is on the server, invoke the local OSSolverService by

./OSSolverService config ../data/configFiles/testremote.config

where the config file is as follows. Notice there is no osil option as the OSiL file has already been
uploaded and its instance location (“local” to the server) is specified in the osol file.

osol ../data/osolFiles/remoteSolve2.osol

serviceLocation http://74.94.100.129:8080/OSServer/services/OSSolverService

serviceMethod solve

and the osol file is

<osol xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<instanceLocation locationType="local">

/home/kmartin/temp/parincQuadratic.osil

</instanceLocation>

<solverToInvoke>ipopt</solverToInvoke>

</general>

</osol>

7 OS Protocols

The objective of OS is to provide a set of standards for representing optimization instances, results,
solver options, and communication between clients and solvers in a distributed environment using
Web Services. These standards are specified by W3C XSD schemas. The schemas for the OS
project are contained in the schemas folder under the OS root. There are numerous schemas in this
directory that are part of the OS standard. For a full description of all the schemas see Ma [4]. We
briefly discuss the standards most relevant to the current version of the OS project.
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7.1 OSiL (Optimization Services instance Language)

OSiL is an XML-based language for representing instances of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs.

OSiL stores optimization problem instances as XML files. Consider the following problem
instance, which is a modification of an example of Rosenbrock [6]:

Minimize (1− x0)2 + 100(x1 − x20)2 + 9x1 (7)

s.t. x0 + 10.5x20 + 11.7x21 + 3x0x1 ≤ 25 (8)

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (9)

x0, x1 ≥ 0 (10)

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of 0.
Figure 5 shows how we represent this information in an XML-based OSiL file. Like all XML files,
this is a text file that contains both markup and data. In this case there are two types of markup,
elements (or tags) and attributes that describe the elements. Specifically, there are a <variables>

element and two <var> elements. Each <var> element has attributes lb, name, and type that
describe properties of a decision variable: its lower bound, “name”, and domain type (continuous,
binary, general integer).

To be useful for communication between solvers and modeling languages, OSiL instance files
must conform to a standard. An XML-based representation standard is imposed through the
use of a W3C XML Schema. The W3C, or World Wide Web Consortium (www.w3.org), promotes
standards for the evolution of the web and for interoperability between web products. XML Schema
(www.w3.org/XML/Schema) is one such standard. A schema specifies the elements and attributes
that define a specific XML vocabulary. The W3C XML Schema is thus a schema for schemas; it
specifies the elements and attributes for a schema that in turn specifies elements and attributes for
an XML vocabulary such as OSiL. An XML file that conforms to a schema is called valid for that
schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that
defines the members and methods in a class. Just as a class in C++ very explicitly describes
member and method names and properties, a schema explicitly describes element and attribute
names and properties.

Figure 6 is a piece of our schema for OSiL. In W3C XML Schema jargon, it defines a complex-
Type, whose purpose is to specify elements and attributes that are allowed to appear in a valid
XML instance file such as the one excerpted in Figure 5. In particular, Figure 6 defines the com-
plexType named Variables, which comprises an element named <var> and an attribute named
numberOfVariables. The numberOfVariables attribute is of a standard type positiveInteger,
whereas the <var> element is a user-defined complexType named Variable. Thus the complex-

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

Figure 5: The <variables> element for the example (1)–(4).
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Type Variables contains a sequence of <var> elements that are of complexType Variable. OSiL’s
schema must also provide a specification for the Variable complexType, which is shown in Figure 7.

In OSiL the linear part of the problem is stored in the <linearConstraintCoefficients>

element, which stores the coefficient matrix using three arrays as proposed in the earlier LPFML
schema [2]. There is a child element of <linearConstraintCoefficients> to represent each array:
<value> for an array of nonzero coefficients, <rowIdx> or <colIdx> for a corresponding array of
row indices or column indices, and <start> for an array that indicates where each row or column
begins in the previous two arrays. This is shown in Figure 8.

The quadratic part of the problem is represented in Figure 9.
The nonlinear part of the problem is given in Figure 10.
The complete OSiL representation can be found in the Appendix (Section 13.1).

7.2 OSnL (Optimization Services nonlinear Language)

The OSnL schema is imported by the OSiL schema and is used to represent the nonlinear part of an
optimization instance. This is explained in greater detail in Section 11.2.4. Also refer to Figure 10
for an illustration of elements from the OSnL standard. This figure represents the nonlinear part

<xs:complexType name="Variables">

<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>

</xs:complexType>

Figure 6: The Variables complexType in the OSiL schema.

<xs:complexType name="Variable">

<xs:attribute name="name" type="xs:string" use="optional"/>

<xs:attribute name="init" type="xs:string" use="optional"/>

<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 7: The Variable complexType in the OSiL schema.
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<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

Figure 8: The <linearConstraintCoefficients> element for constraints (8) and (9).

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>

<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

Figure 9: The <quadraticCoefficients> element for constraint (8).

of the objective in equation (7), that is,

(1− x0)2 + 100(x1 − x20)2.

7.3 OSrL (Optimization Services result Language)

OSrL is an XML-based language for representing the solution of large-scale optimization problems
including linear programs, mixed-integer programs, quadratic programs, and very general nonlinear
programs. An example solution (for the problem given in (7)–(10) ) in OSrL format is given below.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type = "text/xsl"

href = "/Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OSX/OS/stylesheets/OSrL.xslt"?>

<osrl xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<general>

<generalStatus type="normal"/>

<serviceName>Solved using a LINDO service</serviceName>

<instanceName>Modified Rosenbrock</instanceName>

</general>

<optimization numberOfSolutions="1" numberOfVariables="2" numberOfConstraints="2"

numberOfObjectives="1">

<solution targetObjectiveIdx="-1">
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<nl idx="-1">

<plus>

<power>

<minus>

<number value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number value="2.0"/>

</power>

</minus>

<number value="2.0"/>

</power>

<number value="100"/>

</times>

</plus>

</nl>

Figure 10: The <nl> element for the nonlinear part of the objective (7).

<status type="optimal"/>

<variables>

<values numberOfVar="2">

<var idx="0">0.87243</var>

<var idx="1">0.741417</var>

</values>

<other numberOfVar="2" name="reduced_costs" description="the variable reduced costs">

<var idx="0">-4.06909e-08</var>

<var idx="1">0</var>

</other>

</variables>

<objectives>

<values numberOfObj="1">

<obj idx="-1">6.7279</obj>

</values>

</objectives>

<constraints>

<dualValues numberOfCon="2">

<con idx="0">0</con>

<con idx="1">0.766294</con>

</dualValues>

</constraints>

</solution>

</optimization>
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7.4 OSoL (Optimization Services option Language)

OSoL is an XML-based language for representing options that get passed to an optimization solver
or a hosted optimization solver Web service. It contains both standard options for generic services
and extendable option tags for solver-specific directives. Several examples of files in OSoL format
are presented in Section 4.4.

7.5 OSpL (Optimization Services process Language)

This is a standard used to enquire about dynamic process information that is kept by the Opti-
mization Services registry. The string passed to the knock method is in the OSpL format. See the
example given in Section 4.4.5.

8 The OSInstance API

The OSInstance API can be used to:

• get information about model parameters, or convert the OSExpressionTree into a prefix or
postfix representation through a collection of get() methods,

• modify, or even create an instance from scratch, using a number of set() methods,

• provide information to solvers that require function evaluations, Jacobian and Hessian sparsity
patters, function gradient evaluations, and Hessian evaluations.

8.1 Get Methods

The get() methods are used by other classes to access data in an existing OSInstance object or get
an expression tree representation of an instance in postfix or prefix format. Assume osinstance is
an object in the OSInstance class created as illustrated in Figure 13. Then, for example,

osinstance->getVariableNumber();

will return an integer which is the number of variables in the problem,

osinstance->getVariableTypes();

will return a char pointer to the variable types (C for continuous, B for binary, and I for general
integer),

getVariableLowerBounds();

will return a double pointer to the lower bound on each variable. There are similar get() methods
for the constraints. There are numerous get() methods for the data in the <linearConstraintCoefficients>
element, the <quadraticCoefficients> element, and the <nonlinearExpressions> element.

When an osinstance object is created, it is stored as an expression tree in an OSExpressionTree

object. However, some solver APIs (e.g., LINDO) may take the data in a different format such as
postfix and prefix. There are methods to return the data in either postfix or prefix format.

First define a vector of pointers to OSnLNode objects.

std::vector<OSnLNode*> postfixVec;

then get the expression tree for the objective function (index = -1) as a postfix vector of nodes.

42



postfixVec = osinstance->getNonlinearExpressionTreeInPostfix( -1);

If, for example, the osinstance object was the in-memory representation of the instance illustrated
in Section 13.1 and Figure 17 then the code

for (i = 0 ; i < n; i++){

cout << postfixVec[i]->snodeName << endl;

}

will produce

number

variable

minus

number

power

number

variable

variable

number

power

minus

number

power

times

plus

This postfix traversal of the expression tree in Figure 17 lists all the nodes by recursively
processing all subtrees, followed by the root node. The method processNonlinearExpressions()

in the LindoSolver class in the OSSolverInterfaces library component illustrates the use of a
postfix vector of OSnLNode objects to build a Lindo model instance.

8.2 Set Methods

The set() methods can be used to build an in-memory OSInstance object. A code example of
how to do this is in Section 9.2.

8.3 Calculate Methods

The calculate() methods are described in Section 12.

8.4 Modifying an OSInstance Object

The OSInstance API is designed to be used to either build an in-memory OSInstance object or
provide information about the in-memory object (e.g., the number of variables). This interface is
not designed for problem modification. We plan on later providing an OSModification object for
this task. However, by directly accessing an OSInstance object it is possible to modify parameters
in the following classes:

• Variables

• Objectives
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• Constraints

• LinearConstraintCoefficients

For example, to modify the first nonzero objective function coefficient of the first objective
function to 10.7 the user would write,

osinstance->instanceData->objectives->obj[0]->coef[0]->value = 10.7;

If the user wanted to modify the actual number of nonzero coefficients as declared by

osinstance->instanceData->objectives->obj[0]->numberOfObjCoef;

then the only safe course of action would be to delete the current OSInstance object and build a
new one with the modified coefficients. It is strongly recommend that no changes are made involving
allocated memory – i.e., any kind of numberOf***. Modifying an objective function coefficient is
illustrated in the OSModDemo example. See Section 9.4.

After modifying an OSInstance object, it is necessary to set certain boolean variables to true
in order for these changes to get reflected in the OS solver interfaces.

• Variables – if any changes are made to a parameter in this class set

osinstance->bVariablesModified = true;

• Objectives – if any changes are made to a parameter in this class set

osinstance->bObjectivesModified = true;

• Constraints – if any changes are made to a parameter in this class set

osinstance->bConstraintsModified = true;

• LinearConstraintCoefficients – if any changes are made to a parameter in this class set

osinstance->bAMatrixModified = true;

At this point, if the user desires to modify an OSInstance object that contains nonlinear terms,
the only safe strategy is to delete the object and build a new object that contains the modifications.

8.5 Printing a Model for Debugging

The OSiL representation for the test problem rosenbrockmod.osil is given in Appendix 13.1.
Many users will not find the OSiL representation useful for model debugging purposes. For users
who wish to see a model in a standard infix representation we provide a method printModel().
Assume that we have an osinstance object in the OSInstance class that represents the model of
interest. The call

osinstance->printModel( -1)

will result in printing the (first) objective function indexed by -1. In order to print constraint k use
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osinstance->printModel( k)

In order to print the entire model use

osinstance->printModel( )

Below we give the result of osintance->printModel( ) for the problem rosenbrockmod.osil.

Objectives:

min 9*x_1 + (((1 - x_0) ^ 2) + (100*((x_1 - (x_0 ^ 2)) ^ 2)))

Constraints:

(((((10.5*x_0)*x_0) + ((11.7*x_1)*x_1)) + ((3*x_0)*x_1)) + x_0) <= 25

10 <= ((ln( (x_0*x_1)) + (7.5*x_0)) + (5.25*x_1))

Variables:

x_0 Type = C Lower Bound = 0 Upper Bound = 1.7976931348623157e308

x_1 Type = C Lower Bound = 0 Upper Bound = 1.7976931348623157e308

9 Code samples to illustrate the OS Project

This chapter describes some sample applications distributed with the OS project. These applica-
tions are stand-alone developments, but they can be linked against the OS libraries and are intended
to show the sophisticated user how to harness the OS API to build their own interfaces with the
OSxL schemas, their private solvers, front ends, or other projects.

The binary distribution contains a number of sample applications that illustrate the use of the
OS libraries and other aspects of the OS project. The sample code is found in the examples folder.
Each application contains a makefile for unix users; there are also MS Visual Studio project files
for Windows users. At present only MS Visual Studio 2008 is supported.

Under Windows, connect to the MSVisualStudio-v9 directory and open examples.sln in Vi-
sual Studio. All examples can then be built simply by pushing F7 (Build solution). To build only
selected examples it is necessary to open the Configuration Manager from the Build menu and
select the projects desired to be built.

To build any of the examples under unix, it is at present necessary to set the environment
variable PKG_CONFIG_PATH to point to the folder lib/pkgconfig. Unless some directories were
moved after installing the download, the following unix command will suffice:

export PKG_CONFIG_PATH=../../lib/pkgconfig

After that, connect to the appropriate directory for the desired project and run make. For
instance, the code and makefile for the osModDemo example of section 9.4 is in the directory

examples/osModDemo

The Makefile in each example directory is fairly simple and is designed to be easily modified
by the user if necessary. The part of the Makefile to be adjusted, if necessary, is

##########################################################################

# You can modify this example makefile to fit for your own program. #

# Usually, you only need to change the five CHANGEME entries below. #
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##########################################################################

# CHANGEME: This should be the name of your executable

EXE = OSModDemo

# CHANGEME: Here is the name of all object files corresponding to the source

# code that you wrote in order to define the problem statement

OBJS = OSModDemo.o

# CHANGEME: Additional libraries

ADDLIBS =

# CHANGEME: Additional flags for compilation (e.g., include flags)

ADDINCFLAGS = -I${prefix}/include

# CHANGEME: SRCDIR is the path to the source code; VPATH is the path to

# the executable. It is assumed that the lib directory is in prefix/lib

# and the header files are in prefix/include

SRCDIR = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osModDemo

VPATH = /Users/kmartin/Documents/files/code/cpp/OScpp/COIN-OS/OS/examples/osModDemo

prefix = /Users/kmartin/Documents/files/code/cpp/OScpp/vpath

Developers can use the Makefiles as a starting point for building applications that use the OS
project libraries.

9.1 Algorithmic Differentiation: Using the OS Algorithmic Differentiation Meth-
ods

In the OS/examples/algorithmicDiff folder is test code OSAlgorithmicDiffTest.cpp. This code
illustrates the key methods in the OSInstance API that are used for algorithmic differentiation.
These methods are described in Section 12.

9.2 Instance Generator: Using the OSInstance API to Generate Instances

This example is found in the instanceGenerator folder in the examples folder. This example
illustrates how to build a complete in-memory model instance using the OSInstance API. See the
code OSInstanceGenerator.cpp for the complete example. Here we provide a few highlights to
illustrate the power of the API.

The first step is to create an OSInstance object.

OSInstance *osinstance;

osinstance = new OSInstance();

The instance has two variables, x0 and x1. Variable x0 is a continuous variable with lower
bound of −100 and upper bound of 100. Variable x1 is a binary variable. First declare the instance
to have two variables.

osinstance->setVariableNumber( 2);

Next, add each variable. There is an addVariable method with the signature

addVariable(int index, string name, double lowerBound, double upperBound, char type);

Then the calls for these two variables are
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osinstance->addVariable(0, "x0", -100, 100, ’C’);

osinstance->addVariable(1, "x1", 0, 1, ’B’);

There is also a method setVariables for adding more than one variable simultaneously. The
objective function(s) and constraints are added through similar calls.

Nonlinear terms are also easily added. The following code illustrates how to add a nonlinear
term x0 ∗ x1 in the <nonlinearExpressions> section of OSiL. This term is part of constraint 1
and is the second of six constraints contained in the instance.

osinstance->instanceData->nonlinearExpressions->numberOfNonlinearExpressions = 6;

osinstance->instanceData->nonlinearExpressions->nl = new Nl*[ 6 ];

osinstance->instanceData->nonlinearExpressions->nl[ 1] = new Nl();

osinstance->instanceData->nonlinearExpressions->nl[ 1]->idx = 1;

osinstance->instanceData->nonlinearExpressions->nl[ 1]->osExpressionTree =

new OSExpressionTree();

// the nonlinear expression is stored as a vector of nodes in postfix format

// create a variable nl node for x0

nlNodeVariablePoint = new OSnLNodeVariable();

nlNodeVariablePoint->idx=0;

nlNodeVec.push_back( nlNodeVariablePoint);

// create the nl node for x1

nlNodeVariablePoint = new OSnLNodeVariable();

nlNodeVariablePoint->idx=1;

nlNodeVec.push_back( nlNodeVariablePoint);

// create the nl node for *

nlNodePoint = new OSnLNodeTimes();

nlNodeVec.push_back( nlNodePoint);

// now the expression tree

osinstance->instanceData->nonlinearExpressions->nl[ 1]->osExpressionTree->m_treeRoot =

nlNodeVec[ 0]->createExpressionTreeFromPostfix( nlNodeVec);

9.3 branchCutPrice: Using Bcp

This example illustrates the use of the COIN-OR Bcp (Branch-cut-and-price) project. This project
offers the user with the ability to have control over each node in the branch and process. This makes
it possible to add user-defined cuts and/or user-defined variables. At each node in the tree, a call
is made to the method process_lp_result(). In the example problem we illustrate 1) adding
COIN-OR Cgl cuts, 2) a user-defined cut, and 3) a user-defined variable.

9.4 OSModificationDemo: Modifying an In-Memory OSInstance Object

The osModificationDemo folder holds the file OSModificationDemo.cpp. This is similar to the
instanceGenerator example. In this case, a simple linear program is generated. However, this
example also illustrates how to modify an in-memory OSInstance object. In particular, we illustrate
how to modify an objective function coeffient. Note the dual occurrence of the following code

solver->osinstance->bObjectivesModified = true;
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in the OSModificationDemo.cpp file (lines 177 and 187). This line is critical, since otherwise
changes made to the OSInstance object will not be passed to the solver.

This example also illustrates calling a COIN-OR solver, in this case Clp.

Important: the ability to modify a problem instance is still extremely limited in this release.
A better API for problem modification will come with a later release of OS.

9.5 OSSolverDemo: Building In-Memory Solver and Option Objects

The code in the example file OSSolverDemo.cpp in the folder osSolverDemo illustrates how to build
solver interfaces and an in-memory OSOption object. In this example we illustrate building a solver
interface and corresponding OSOption object for the solvers Clp, Cbc, SYMPHONY, Ipopt, Bonmin,
and Couenne. Each solver class inherits from a virtual OSDefaultSolver class. Each solver class
has the string data members

• osil -- this string conforms to the OSiL standard and holds the model instance.

• osol -- this string conforms to the OSoL standard and holds an instance with the solver
options (if there are any); this string can be empty.

• osrl -- this string conforms to the OSrL standard and holds the solution instance; each
solver interface produces an osrl string.

Corresponding to each string there is an in-memory object data member, namely

• osinstance -- an in-memory OSInstance object containing the model instance and get()

and set() methods to access various parts of the model.

• osoption -- an in-memory OSOption object; solver options can be accessed or set using
get() and set() methods.

• osresult -- an in-memory OSResult object; various parts of the model solution are acces-
sible through get() and set() methods.

For each solver we detail five steps:

Step 1: Read a model instance from a file and create the corresponding OSInstance object. For four
of the solvers we read a file with the model instance in OSiL format. For the Clp example we
read an MPS file and convert to OSiL. For the Couenne example we read an AMPL nl file
and convert to OSiL.

Step 2: Create an OSOption object and set options appropriate for the given solver. This is done by
defining

OSOption* osoption = NULL;

osoption = new OSOption();

A key method in the OSOption interface is setAnotherSolverOption(). This method takes
the following arguments in order.

std::string name – the option name;
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std::string value – the value of the option;

std::string solver – the name of the solver to which the option applies;

std::string category – options may fall into categories. For example, consider the
Couenne solver. This solver is also linked to the Ipopt and Bonmin solvers and it is
possible to set options for these solvers through the Couenne API. In order to set an
Ipopt option you would set the solver argument to couenne and set the category

option to ipopt.

std::string type – many solvers require knowledge of the data type, so you can set
the type to double, integer, boolean or string, depending on the solver requirements.
Special types defined by the solver, such as the type numeric used by the Ipopt solver,
can also be accommodated. It is the user’s responsibility to verify the type expected by
the solver.

std::string description – this argument is used to provide any detail or additional
information about the option. An empty string ("") can be passed if such additional
information is not needed.

For excellent documentation that details solver options for Bonmin, Cbc, and Ipopt we rec-
ommend

http://www.coin-or.org/GAMSlinks/gamscoin.pdf

Step 3: Create the solver object. In the OS project there is a virtual solver that is declared by

DefaultSolver *solver = NULL;

The Cbc, Clp and SYMPHONY solvers as well as other solvers of linear and integer linear
programs are all invoked by creating a CoinSolver(). For example, the following is used to
invoke Cbc.

solver = new CoinSolver();

solver->sSolverName ="cbc";

Other solvers, particularly Ipopt, Bonmin and Couenne are implemented separately. So to
declare, for example, an Ipopt solver, one should write

solver = new IpoptSolver();

The syntax is the same regardless of solver.

Step 4: Import the OSOption and OSInstance into the solver and solve the model. This process is
identical regardless of which solver is used. The syntax is:

solver->osinstance = osinstance;

solver->osoption = osoption;

solver->solve();
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Step 5: After optimizing the instance, each of the OS solver interfaces uses the underlying solver
API to get the solution result and write the result to a string named osrl which is a string
representing the solution instance in the OSrL XML standard. This string is accessed by

solver->osrl

In the example code OSSolverDemo.cpp we have written a method,

void getOSResult(std::string osrl)

that takes the osrl string and creates an OSResult object. We then illustrate several of the
OSResult API methods

double getOptimalObjValue(int objIdx, int solIdx);

std::vector<IndexValuePair*> getOptimalPrimalVariableValues(int solIdx);

to get and write out the optimal objective function value, and optimal primal values. See
also Section 9.6.

We now highlight some of the features illustrated by each of the solver examples.

• Clp – In this example we read in a problem instance in MPS format. The class OSmps2osil
has a method mps2osil that is used to convert the MPS instance contained in a file into an
in-memory OSInstance object. This example also illustrates how to set options using the Osi
interface. In particular we turn on intermediate output which is turned off by default in the
Coin Solver Interface.

• Cbc – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object. We then create an OSOption object. This is quite trivial. A
plain-text XML file conforming to the OSiL schema is read into a string osil which is then
converted into the in-memory OSInstance object by

OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( osil);

We set the linear programming algorithm to be the primal simplex method and then set the
option on the pivot selection to be Dantzig rule. Finally, we set the print level to be 10.

• SYMPHONY – In this example we also read a problem instance that is in OSiL format and
create an in-memory OSInstance object. We then create an OSOption object and illustrate
setting the verbosity option.

• Ipopt – In this example we also read a problem instance that is in OSiL format. However,
in this case we do not create an OSInstance object. We read the OSiL file into a string osil.
We then feed the osil string directly into the Ipopt solver by
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solver->osil = osil;

The user always has the option of providing the OSiL to the solver as either a string or
in-memory object.

Next we create an OSOption object. For Ipopt, we illustrate setting the maximum iteration
limit and also provide the name of the output file. In addition, the OSOption object can hold
initial solution values. We illustrate how to initialize all of the variable to 1.0.

numVar = 2; //rosenbrock mod has two variables

xinitial = new double[numVar];

for(i = 0; i < numVar; i++){

xinitial[ i] = 1.0;

}

osoption->setInitVarValuesDense(numVar, xinitial);

• Bonmin – In this example we read a problem instance that is in OSiL format and create an
in-memory OSInstance object just as was done in the Cbc and SYMPHONY examples. We
then create an OSOption object. In setting the OSOption object we intentionally set an option
that will cause the Bonmin solver to terminate early. In particular we set the node_limit to
zero.

osoption->setAnotherSolverOption("node_limit","0","bonmin","","integer","");

This results in early termination of the algorithm. The OSResult class API has a method

std::string getSolutionStatusDescription(int solIdx);

For this example, invoking

osresult->getSolutionStatusDescription( 0)

gives the result:

LIMIT_EXCEEDED[BONMIN]: A resource limit was exceeded, we provide the current solution.

• Couenne – In this example we read in a problem instance in AMPL nl format. The class
OSnl2osil has a method nl2osil that is used to convert the nl instance contained in a file
into an in-memory OSInstance object. This is done as follows:

// convert to the OS native format

OSnl2osil *nl2osil = NULL;

nl2osil = new OSnl2osil( nlFileName);

// create the first in-memory OSInstance

nl2osil->createOSInstance() ;

osinstance = nl2osil->osinstance;

This part of the example also illustrates setting options in one solver from another. Couenne
uses Bonmin which uses Ipopt. So for example,
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osoption->setAnotherSolverOption("max_iter","100","couenne","ipopt","integer","");

identifies the solver as couenne, but the category of value of ipopt tells the solver interface to set
the iteration limit on the Ipopt algorithm that is solving the continuous relaxation of the problem.
Likewise, the setting

osoption->setAnotherSolverOption("num_resolve_at_node","3","couenne","bonmin","integer","");

identifies the solver as couenne, but the category of value of bonmin tells the solver interface to tell
the Bonmin solver to try three starting points at each node.

9.6 OSResultDemo: Building In-Memory Result Object to Display Solver Re-
sult

The OS protocol for representing an optimization result is OSrL. Like the OSiL and OSoL protocol,
this protocol has an associated in-memory OSResult class with corresponding API. The use of the
API is demonstrated in the code OSResultDemo.cpp in the folder OS/examples/OSResultDemo. In
the code we solve a linear program with the Clp solver. The OS solver interface builds an OSrL

string that we read into the OSrLReader class and create and OSResult object. We then use the
OSResult API to get the optimal primal and dual solution. We also use the API to get the reduced
cost values.

9.7 OSCglCuts: Using the OSInstance API to Generate Cutting Planes

In this example, we show how to add cuts to tighten an LP using COIN-OR Cgl (Cut Generation
Library). A file (p0033.osil) in OSiL format is used to create an OSInstance object. The linear
programming relaxation is solved. Then, Gomory, simple rounding, and knapsack cuts are added
using Cgl. The model is then optimized using Cbc.

9.8 OSRemoteTest: Calling a Remote Server

This example illustrates the API for the six service methods described in Section 4.4. The file
osRemoteTest.cpp in folder osRemoteTest first builds a small linear example, solves it remotely in
synchronous mode and displays the solution. The asynchronous mode is also tested by submitting
the problem to a remote solver, checking the status and either retrieving the answer or killing the
process if it has not yet finished.

Windows users should note that this project links to wsock32.lib, which is not part of the
Visual Studio Express Package. It is necessary to also download and install the Windows Platform
SDK, which can be found at

http://www.microsoft.com/downloads/details.aspx?FamilyID=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en.

Further information is provided in the OS User’s Manual.

9.9 OSJavaInstanceDemo: Building an OSiL Instance in Java

In this example we demonstrate how to build an OSiL instance using the Java OSInstance API.
The example code also illustrates calling the OSSolverService executable from Java. In order to
use this example, the user should do an svn checkout:

svn co https://projects.coin-or.org/svn/OS/branches/OSjava OSjava
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The OSjava folder contains the file INSTALL.txt. Please follow the instructions in INSTALL.txt

under the heading:

== Install Without a Web Server==

These instructions assume that the user has installed the Eclipse IDE. See http://www.eclipse.
org/downloads/. At this link we recommend that the user get Eclipse Classic. In addition,
the user should also have a copy of the OSSolverService executable that is compatible with his
or her platform. The OSSolverService executable for several different platforms is available at
http://www.coin-or.org/download/binary/OS/OSSolverService/. The user can also build the
executable as described in this Manual. See Section ??. The code base for this example is in the
folder:

OSjava/OSJavaExamples/src/OSJavaInstanceDemo.java

The code in the file OSJavaInstanceDemo.java demonstrates how the Java OSInstance API that
is in OSCommon can be used to generate a linear program and then call the C++ OSSolverService

executable to solve the problem. Running this example in Eclipse will generate in the folder

OSjava/OSJavaExamples

two files. It will generate parincLinear.osil which is a linear program in the OS OSiL format, it
will also call the OSSolverService executable which generates the result file result.osrl in the
OS OSrL format.

10 Using Dip (Decomposition In Integer Programming)

Important Note: This example uses COIN-OR projects that are not part of the OS distribution
and assumes you have downloaded the CoinAll binary.

We follow the notation of Ralphs and Galati [5]. The integer program of interest is:

zIP = min –c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Zn˝ (11)

The problem is divided into two constraint sets, A′x ≥ b′ which we refer to as the relaxed, coupling,
or block constraints, and the core constraints A′′x ≥ b′′. We then define the following polyhedron
based on the relaxed constraints.

P = conv(–x ∈ Zn |A′x ≥ b′˝) (12)

The LP relaxation of the original problem is:

zLP = min –c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Rn˝ (13)

We also make use of another, related problem zD, defined by

zD = min –c>x |A′x ≥ b′, x ∈ P, x ∈ Rn˝. (14)

Ideally, the constraints A′x ≥ b′ should be selected so that solving ZD is an easy hard problem and
provides better bounds than ZLP .

A generic block-angular decomposition algorithm is now available. We employ an implemen-
tation that uses the Optimization Services (OS) project together with another COIN-OR project,
Decomposition in Integer Programming (Dip). We call this the OS Dip solver. It has the following
features:
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1. All subproblems are solved via an oracle; either the default oracle contained in our distribution
(see below) or one provided by the user.

2. The OS Dip Solver code is independent of the oracle used to optimize the subproblems.

3. Variables are assigned to blocks using an OS option file; the block definition and assignment
of variables to these blocks has no effect on the OS Dip Solver code.

4. Different blocks can be assigned different solver oracles based on the option values given in
the OSoL file.

5. There is a default oracle implemented (called OSDipBlockCoinSolver) that currently uses
Cbc.

6. Users can add their own oracles without altering the OS Dip Solver code. This is done via
polymorphic factories. The user creates a separate file containing the oracle class. The user-
provided Oracle class inherits from the generic OSDipBlockSolver class. The user need only:
1) add the object file name for the new oracle to the Makefile, and 2) add the necessary line
to OSDipFactoryInitializer.h indicating that the new oracle is present.

In particular, the implementation of the OS Dip solver provides a virtual class OSDipBlockSolver
with a pure virtual function solve(). The user is expected to provide a class that inherits from
OSDipBlockSolver and implements the method solve(). The solve() method should optimize
a linear objective function over P. More details are provided in Section 10.2. The implementation
is such that the user only has to provide a class with a solve() method. The user does not have
to edit or alter any of the OS Dip Solver code. By using polymorphic factories the actual solver
details are hidden from the OS Solver. A default solver, OSDipBlockCoinSolver, is provided. This
default solver takes no advantage of special structure and simply calls the COIN-OR solver Cbc.

10.1 Building and Testing the OS-Dip Example

Currently, the Decomposition in Integer Programming (Dip) package is not a dependency of the
Optimization Services (OS) package – Dip is not included in the OS Externals file. In order to
run the OS Dip solver it is necessary to download both the OS and Dip projects. Download order
is irrelevant. In the discussion that follows we assume that for both OS and Dip the user has
successfully completed a configure, make, and make install. We also assume that the user is
working with the trunk version of both OS and Dip.

The OS Dip solver C++ code is contained in TemplateApplication/osDip. The configure

will create a Makefile in the TemplateApplication/osDip folder. The Makefile must be edited
to reflect the location of the Dip project. The Makefile contains the line

DIPPATH = /Users/kmartin/coin/dip-trunk/vpath-debug/

This setting assumes that there is a lib directory:

/Users/kmartin/coin/dip-trunk/vpath-debug/lib

with the Dip library that results from make install and an include directory

/Users/kmartin/coin/dip-trunk/vpath/include

with the Dip header files generated by make install. The user should adjust
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/Users/kmartin/coin/dip-trunk/vpath/

to a path containing the Dip lib and include directories. After building the executable by
executing the make command, run the osdip application using the command:

./osdip --param osdip.parm

This should produce the following output.

FINISH SOLVE

Status= 0 BestLB= 16.00000 BestUB= 16.00000 Nodes= 1

SetupCPU= 0.01 SolveCPU= 0.10 TotalCPU= 0.11 SetupReal= 0.08

SetupReal= 0.12 TotalReal= 0.16

Optimal Solution

-------------------------

Quality = 16.00

0 1.00

1 1.00

12 1.00

13 1.00

14 1.00

15 1.00

17 1.00

If you see this output, things are working properly.
The file osdip.parm is a parameter file. The use of the parameter file is explained in Section

10.7.

10.2 The OS Dip Solver – Code Description and Key Classes

The OS Dip Solver uses Dip to implement a Dantzig-Wofe decomposition algorithm for block-
angular integer programs. Here are some key classes.

OSDipBlockSolver: This is a virtual class with a pure virtual function:

void solve(double *cost, std::vector<IndexValuePair*> *solIndexValPair,

double *optVal)

OSDipBlockSolverFactory: This is also virtual class with a pure virtual function:

OSDipBlockSolver* create()

This class also has the static method

OSDipBlockSolver* createOSDipBlockSolver(const string &solverName)

and a map

std::map<std::string, OSDipBlockSolverFactory*> factories;
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Factory: This class inherits from the class OSDipBlockSolverFactory. Every sover class that
inherits from the OSDipBlockSolver class should have a Factory class member and since this
Factory class member inherits from the OSDipBlockSolverFactory class it should implement
a create() method that creates an object in the class inheriting from OSDipBlockSolver.

OSDipFactoryInitializer: This class initializes the static map

OSDipBlockSolverFactory::factories

in the OSDipBlockSolverFactory class.

OSDipApp: This class inherits from the Dip class DecompApp. In OSDipApp we implement
methods for creating the core (coupling) constraints, i.e., the constraints A′′x ≥ b′′. This is done
by implementing the createModels() method. Regardless of the problem, none of the relaxed
or block constraints in A′x ≥ b′ are created. These are treated implicitly in the solver class that
inherits from the class OSDipBlockSolver. This class also implements a method that defines
the variables that appear only in the blocks (createModelMasterOnlys2), and a method for
generating an initial master (the method generateInitVars() ).

Since the constraints A′x ≥ b′ are treated explicitly by the Dip solver the solveRelaxed()

method must be implemented. In our implementation we have the OSDipApp class data member

std::vector<OSDipBlockSolver* > m_osDipBlockSolver;

when the solveRelaxed() method is called for block whichBlock in turn we make the call

m_osDipBlockSolver[whichBlock]->solve(cost, &solIndexValPair, &varRedCost);

and the appropriate solver in class OSDipBlockSolver is called. Finally, the OSDipApp class
also initiates the reading of the OS option and instance files. How these files are used is discussed
in Section 10.6. Based on option input data this class also creates the appropriate solver object for
each block, i.e., it populates the m_osDipBlockSolver vector.

OSDipInterface: This class is used as an interface between the OSDipApp class and classes in
the OS library. This provides a number of get methods to provide information to OSDipApp
such as the coefficients in the A′′ matrix, objective function coefficients, number of blocks etc. The
OSDipInterface class reads the input OSiL and OSoL files and creates in-memory data structures
based on these files.

OSDipBlockCoinSolver: This class inherits from the OSDipBlockSolver class. It is meant to
illustrate how to create a solver class. This class solves each block by calling Cbc. Use of this class
provides a generic block angular decomposition algorithm.

There is also OSDip˙Main.cpp: which contains the main() routine and is the entry point for
the executable. It first creates a new price-branch-and-cut decomposition algorithm and then an
Alps solver for which the solve() method is called.

10.3 User Requirements

The OSDipBlockCoinSolver class provides a solve method for optimizing a linear objective
function over P given a linear objective function. However, this takes no advantage of the special
structure available in the blocks. Therefore, the user may wish to implement his or her own solver
class. In this case the user is required to do the following:
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1. implement a class that inherits from the OSDipBlockSolver class and implements the solve
method,

2. implement a class Factory that inherits from the class OSDipBlockSolverFactory and
implements the create() method,

3. edit the file OSDipFactoryInitializer.h and add a line:

OSDipBlockSolverFactory::factories["MyBlockSolver"] = new

MyBlockSolver::Factory;

4. alter the Makefile to include the new source code.

Important – Directory Structure: In order to keep things clean, there is a directory solvers
in the osDip folder. We suggest using the solvers directory for all of the solvers that inherit from
OSDipBlockSolver.

10.4 Simple Plant/Lockbox Location Example

The problem is to minimize the sum of the cost of capital due to float and the cost of operating
the lock boxes.
Parameters:

m− number of customers to be assigned a lock box

n− number of potential lock box sites

cij− annual cost of capital associated with serving customer j from lock box i

fi− annual fixed cost of operating a lock box at location i

Variables:

xij− a binary variable which is equal to 1 if customer j is assigned to lock box i and 0 if not

yi− a binary variable which is equal to 1 if the lock box at location i is opened and 0 if not

The integer linear program for the lock box location problem is

min
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi (15)

(LB) xij − yi ≤ 0, i = 1, . . . , n, j = 1, . . . ,m (16)

s.t.

n∑
i=1

xij = 1, j = 1, . . . ,m (17)

xij , yi ∈ –0, 1˝, i = 1, . . . , n, j = 1, . . . ,m. (18)

The objective (15) is to minimize the sum of the cost of capital plus the fixed cost of operating
the lock boxes. Constraints (16) are forcing constraints and require that a lock box be open if a
customer is served by that lock box. For now, we consider these the A′x ≥ b′ constraints. The
requirement that every customer be assigned a lock box is modeled by constraints (17). For now,
we consider these the A′′x ≥ b′′ constraints.
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CUSTOMER
1 2 3 4 5 FIXED COSTS

1 2 3 4 5 7 2
PLANT 2 4 3 1 2 6 3

3 5 4 2 1 3 3

Table 2: Data for a 3 plant, 5 customer problem

Location Example 1: A three plant, five customer model.

min 2x11 + 3x12 + 4x13 + 5x14 + 7x15 + 2y1 +

4x21 + 3x22 + x23 + 2x24 + 6x25 + 3y2 +

5x31 + 4x32 + 2x33 + x34 + 3x35 + 3y3

x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x14 ≤ y1 ≤ 1
x15 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x24 ≤ y2 ≤ 1
x25 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1
x14 + x24 + x34 = 1
x15 + x25 + x35 = 1

A′′x ≥ b′′ constraints

Location Example 2 (SPL2): A three plant, three customer model.
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CUSTOMER
1 2 3 FIXED COSTS

1 2 1 1 1
PLANT 2 1 2 1 1

3 1 1 2 1

Table 3: Data for a three plant, three customer problem

min 2x11 + x12 + x13 + y1 +

x21 + 2x22 + x23 + y2 +

x31 + x32 + 1x33 + +y3

x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1

A′′x ≥ b′′ constraints

10.5 Generalized Assignment Problem Example

A problem that plays a prominent role in vehicle routing is the generalized assignment problem.
The problem is to assign each of n tasks to m servers without exceeding the resource capacity of
the servers.
Parameters:

n− number of required tasks

m− number of servers

fij− cost of assigning task i to server j

bj− units of resource available to server j

aij− units of server j resource required to perform task i

Variables:
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xij− a binary variable which is equal to 1 if task i is assigned to server j and 0 if not

The integer linear program for the generalized assignment problem is

min

n∑
i=1

m∑
j=1

fijxij (19)

(GAP ) s.t.

m∑
j=1

xij = 1, i = 1, . . . , n (20)

n∑
i=1

aijxij ≤ bj , j = 1, . . . ,m (21)

xij ∈ –0, 1˝, i = 1, . . . , n, j = 1, . . . ,m. (22)

The objective function (19) is to minimize the total assignment cost. Constraint (20) requires
that each task is assigned a server. These constraints correspond to the A′′x ≥ b′′ constraints. The
requirement that the server capacity not be exceeded is given in (21). These correspond to the
A′x ≥ b′ constraints that are used to define P. The test problem used in the file genAssign.osil

is:

min 2x11 + 11x12 + 7x21 + 7x22

+20x31 + 2x32 + 5x41 + 5x42

x11 + x12 = 1

x21 + x22 = 1

x31 + x32 = 1

x41 + x42 = 1

3x11 + 6x21 + 5x31 + 7x41 ≤ 13

2x12 + 4x22 + 10x32 + 4x42 ≤ 10

10.6 Defining the Problem Instance and Blocks

Here we describe how to use the OSOption and OSInstance formats. We illustrate with a simple
plant location problem. Refer back to the example in Table 2 for a three-plant, five-customer
problem. We treat the fixed charge constraints as the block constraints, i.e., we treat constraint set
(16) as the set A′x ≥ b′ constraints. These constraints naturally break into a block for each plant,
i.e., there is a block of constraints:

xij ≤ yi (23)

In order to use the OS Dip solver it is necessary to: 1) define the set of variables in each block and
2) define the set of constraints that constitute the core or coupling constraints. This information
is communicated to the OS Dip solver using Optimization Services option Language (OSoL). The
OSoL input file for the example in Table 2 appears in Figures 11 and 12. See lines 32-55. There
is an <other> option with name="variableBlockSet" for each block. Each block then lists the
variables in the block. For example, the first block consists of the variables indexed by 0, 1, 2, 3,
4, and 15. These correspond to variables x11, x12, x13, x13, x14, and y1. Likewise the second block
corresponds to the variable for the second plant and the third block corresponds to variables for
the third plant.
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1 <?xml version="1.0" encoding="UTF-8"?>

2 <osol>

3 <general>

4 <instanceName>spl1 -- setup constraints are the blocks</instanceName>

5 </general>

6 <optimization>

7 <variables numberOfOtherVariableOptions="6">

8 <other name="initialCol" solver="Dip" numberOfVar="6" value="0">

9 <var idx="0" value="1"/>

10 <var idx="1" value="1"/>

11 <var idx="2" value="1"/>

12 <var idx="3" value="1"/>

13 <var idx="4" value="1"/>

14 <var idx="15" value="1"/>

15 </other>

16 <other name="initialCol" solver="Dip" numberOfVar="6" value="1">

17 <var idx="5" value="1"/>

18 <var idx="6" value="1"/>

19 <var idx="7" value="1"/>

20 <var idx="8" value="1"/>

21 <var idx="9" value="1"/>

22 <var idx="16" value="1"/>

23 </other>

24 <other name="initialCol" solver="Dip" numberOfVar="6" value="2">

25 <var idx="10" value="1"/>

26 <var idx="11" value="1"/>

27 <var idx="12" value="1"/>

28 <var idx="13" value="1"/>

29 <var idx="14" value="1"/>

30 <var idx="17" value="1"/>

31 </other>

32 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver1">

33 <var idx="0"/>

34 <var idx="1"/>

35 <var idx="2"/>

36 <var idx="3"/>

37 <var idx="4"/>

38 <var idx="15"/>

39 </other>

40 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver2">

41 <var idx="5"/>

42 <var idx="6"/>

43 <var idx="7"/>

44 <var idx="8"/>

45 <var idx="9"/>

46 <var idx="16"/>

47 </other>

Figure 11: A sample OSoL file – SPL1.osol
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It is also necessary to convey which constraints constitute the core constraints. This is done in
lines 58-64. The core constraints are indexed by 15, 16, 17, 18, 19. These constitute the demand
constraints given in Equation (17).

Notice also that in lines 32, 40, and 48 there is an attribute value in the <other> variable
element with the attribute name equal to variableBlockSet. The attribute value should be
the name of the solver factory that should be assigned to solve that block. For example, if the
optimization problem that results from solving a linear objective over the constraints defining the
first block is solved using MySolver1 then this must correspond to a

OSDipBlockSolverFactory::factories["MySolver1"] = new

MySolver1::Factory;

in the file OSDipFactoryInitializer.h. In the test file, spl1.osol for the first block we set
the solver to a specialized solver for the simple plant location problem (OSDipBlockSplSolver)
and for the other two blocks we use the generic solver (OSDipBlockCoinSolver).

48 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver3">

49 <var idx="10"/>

50 <var idx="11"/>

51 <var idx="12"/>

52 <var idx="13"/>

53 <var idx="14"/>

54 <var idx="17"/>

55 </other>

56 </variables>

57 <constraints numberOfOtherConstraintOptions="1">

58 <other name="constraintSet" solver="Dip" numberOfCon="5" type="Core">

59 <con idx="15"/>

60 <con idx="16"/>

61 <con idx="17"/>

62 <con idx="18"/>

63 <con idx="19"/>

64 </other>

65 </constraints>

66 </optimization>

67 </osol>

Figure 12: A sample OSoL file – SPL1.osol (Continued)

One can use the OSoL file to specify a set of starting columns for the initial restricted master.
In Figure 11 see lines 8-31. In an OS option file (OSoL) there is <variables> element that has
<other> children. Initial columns are specified using the <other> elements. This is done by using
the name attribute and setting its value to initialCol. Then the children of the tag contain
index-value pairs that specify the column. For example, the first initial column corresponds to
setting:

x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 1, y1 = 1
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Finally note that in all of this discussion we know to apply the options to Dip because the
attribute solver always had value Dip. It is critical to set this attribute in all of the option tags.

10.7 The Dip Parameter File

The Dip solver has a utility class UtilParameters, for parsing a parameter file. The UtilPa-
rameters class constructor takes a parameter file as an argument. In the case of the OS Dip solver
the name of the parameter file is osdip.parm and the parameter file is read in at the command
line with the command

./osdip -param osdip.parm

The UtilParameters class has a method GetSetting() for reading the parameter values. In
the OS Dip implementation there is a class OSDipParam that has as data members key parameters
such as the name of the input OSiL file and input OSoL file. The OSDipParam class has a method
getSettings() that takes as an argument a pointer to an object in the UtilParameters and uses
the GetSetting() method to return the relevant parameter values. For example:

OSiLFile = utilParam.GetSetting("OSiLFile", "", common);

OSoLFile = utilParam.GetSetting("OSoLFile", "", common);

In the current osdip.parm file we have:

#first simple plant location problem

OSiLFile = spl1.osil

#setup constraints as blocks

OSoLFile = spl1.osol

#assignment constraints as blocks

#OSoLFile = spl1-b.osol

#second simple plant location problem

#OSiLFile = spl2.osil

#setup constraints as blocks

#OSoLFile = spl2.osol

#assignment constraints as blocks

#OSoLFile = spl2-b.osol

#third simple plant location problem -- block matrix data not used

#OSiLFile = spl3.osil

#setup constraints as blocks

#OSoLFile = spl3.osol

#generalized assignment problem

#OSiLFile = genAssign.osil

#OSoLFile = genAssign.osol

#Martin textbook example

#OSiLFile = smallIPBook.osil

#OSoLFile = smallIPBook.osol
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By commenting and uncommenting you can run one of four problems that are in the data
directory. The first example, spl1.osil, corresponds to the simple plant location model given in
Table 2. Using the option file spl1.osol treats the setup forcing constraints 16 as the A′x ≥ b′

constraints. Using the option file spl1-b.osol treats the demand constraints 17 as the A′x ≥ b′

constraints. Likewise for the problem spl2.osil which correponds to the simple plant location data
given in Table 3.

In both examples spl1.osil and spl2.osil the A′x ≥ b′ constraints are explicitly represented
in the OSiL file. However, this is not necessary. The solver Factory OSDipBlockSlpSolver is a
special oracle that only needs the objective function coefficients and pegs variables based on the
sign of the objective function coefficients. The spl3.osil is the example given in Table 2 but without
the setup forcing constraints. Each block uses the OSDipBlockSlpSolver oracle.

The genAssign.osil file corresponds to the generalized assignment problem given in Section
10.5. The option file genAssign.osol treats the capacity constraints 21 as the A′x ≥ b′ constraints.

The last problem defined in the file smallIPBook.osil is based on Example 16.3 on page 567
in Large Scale Linear and Integer Optimization. The option file treats the constraints

4x1 + 9x2 ≤ 18, −2x1 + 4x2 ≤ 4

as the A′x ≥ b′ constraints.
The user should also be aware of the parameter solverFactory. This parameter is the name

of the default solver Factory. If a solver is not named for a block in the OSoL file this value is used.
We have set the value of this string to be OSDipBlockCoinSolver.

10.8 Issues to Fix

• Enhance solveRelaxed to allow parallel processing of blocks. See ticket 30.

• Does not work when there are 0 integer variables. See ticket 31.

• Be able to set options in C++ code. See ticket 41. It would be nice to be able to read all
the options from a generic options file. It seems like right now options for the DecompAlgo
class cannot be set inside C++.

• Problem with Alps bounds at node 0. See ticket 43

• Figure out how to use BranchEnforceInMaster or BranchEnforceInSubProb so I don’t get the
large bonds on the variables. See ticket 47.

10.9 Miscellaneous Issues

If you want to terminate at the root node and just get the dual value under the ALPS option put:

[ALPS]

nodeLimit = 1

More from Matt:

Kipp - the example you sent finds the optimal solution after a few passes of pricing and therefore never calls the cut generator. By default, the PC solver, in the root node starts with pricing, and does not stop until it prices out (or finds optimal, or within gap limits).

If it prices out and has not yet found optimal, then it will proceed to cuts.
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This is parameter driven.

You’ll see in the log file (LogDebugLevel = 3),

PRICE_AND_CUT LimitRoundCutIters 2147483647

PRICE_AND_CUT LimitRoundPriceIters 2147483647

This is the number of Price/Cut iterations to take before switching off (i.e., MAXINT).

To force it to cut before pricing out, change this parameter in the parm file. For example, if you change to :

[DECOMP]

LimitRoundPriceIters = 1

LimitRoundCutIters = 1

It will then go into your generateCuts after one pricing iteration.

\vskip 12pt

If there is an integer solution at the root node, it may be the case that we are still not optimal. A perfect example is where you want to add tour-breaking constraints. There could be an integer solution, but you still violate a tour-breaking constraint. Here is what Matt says:

‘‘By default, DIP assumes, that if problem is LP feasible to the linear system and IP feasible, then it is feasible. In the case where the user knows something that DIP does not (e.g., that the linear system does not define the entire valid constraint system, as in TSP), then they must provide a derivation of this function APPisUserFeasible. Then, DIP will check LP feasible, IP feasible and lastly, APPisUserFeasible before declaring a point a feasible solution.’’

For an example of using this see, \url{https://projects.coin-or.org/Dip/browser/trunk/Dip/examples/TSP/TSP_DecompApp.cpp}.

11 The OS Library Components

11.1 OSAgent

The OSAgent part of the library is used to facilitate communication with remote solvers. It is not
used if the solver is invoked locally (i.e., on the same machine). There are two key classes in the
OSAgent component of the OS library. The two classes are OSSolverAgent and WSUtil.

The OSSolverAgent class is used to contact a remote solver service. For example, assume that
sOSiL is a string with a problem instance and sOSoL is a string with solver options. Then the
following code will call a solver service and invoke the solve method.

OSSolverAgent *osagent;

string serviceLocation = "http://74.94.100.129:8080/OSServer/services/OSSolverService";

osagent = new OSSolverAgent( serviceLocation );

string sOSrL = osagent->solve(sOSiL, sOSoL);

Other methods in the OSSolverAgent class are send, retrieve, getJobID, knock, and kill. The
use of these methods is described in Section 4.4.

The methods in the OSSolverAgent class call methods in the WSUtil class that perform such
tasks as creating and parsing SOAP messages and making low level socket calls to the server running
the solver service. The average user will not use methods in the WSUtil class, but they are available
to anyone wanting to make socket calls or create SOAP messages.

There is also a method, OSFileUpload, in the OSAgentClass that is used to upload files from
the hard drive of a client to the server. It is very fast and does not involve SOAP or Web Services.
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The OSFileUpload method is illustrated and described in the example code OSFileUpload.cpp

described in Section 6.

11.2 OSCommonInterfaces

The classes in the OSCommonInterfaces component of the OS library are used to read and write
files and strings in the OSiL and OSrL protocols. See Section 7 for more detail on OSiL, OSrL, and
other OS protocols. For a complete listing of all of the files in OSCommonInterfaces see the Doxygen
documentation we deposited at http://www.doxygen.org. Users who have Doxygen installed on
their system can also create their own version of the documentation (see the OS Users’ Manual).
Below we highlight some key classes.

11.2.1 The OSInstance Class

The OSInstance class is the in-memory representation of an optimization instance and is a key
class for users of the OS project. This class has an API defined by a collection of get() methods
for extracting various components (such as bounds and coefficients) from a problem instance, a
collection of set() methods for modifying or generating an optimization instance, and a collection
of calculate() methods for function, gradient, and Hessian evaluations. See Section 8. We now
describe how to create an OSInstance object and the close relationship between the OSiL schema
and the OSInstance class.

11.2.2 Creating an OSInstance Object

The OSCommonInterfaces component contains an OSiLReader class for reading an instance in an
OSiL string and creating an in-memory OSInstance object. Assume that sOSiL is a string that
will hold the instance in OSiL format. Creating an OSInstance object is illustrated in Figure 13.

OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( sOSiL);

Figure 13: Creating an OSInstance Object

11.2.3 Mapping Rules

The OSInstance class has two members, instanceHeader and instanceData. These correspond
to the XML elements <instanceHeader> and <instanceData>. They are of type InstanceHeader

and InstanceData, respectively, which in turn correspond to the OSiL schema’s complexTypes
InstanceHeader and InstanceData, and in themselves are C++ classes.

Moving down one level, Figure 15 shows that the InstanceData class has in turn the members
variables, objectives, constraints, linearConstraintCoefficients, quadraticCoefficients,
and nonlinearExpressions, corresponding to the respective elements in the OSiL file that have
the same name. Each of these are instances of associated classes which correspond to complexTypes
in the OSiL schema.
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class OSInstance{

public:

OSInstance();

InstanceHeader *instanceHeader;

InstanceData *instanceData;

}; //class OSInstance

Figure 14: The OSInstance class

class InstanceData{

public:

InstanceData();

Variables *variables;

Objectives *objectives;

Constraints *constraints;

LinearConstraintCoefficients *linearConstraintCoefficients;

QuadraticCoefficients *quadraticCoefficients;

NonlinearExpressions *nonlinearExpressions;

}; // class InstanceData

Figure 15: The InstanceData class

Figure 16 uses the Variables class to provide a closer look at the correspondence between
schema and class. On the right, the Variables class contains the data member numberOfVariables
and a pointer to the object var of class Variable. The Variable class has data members lb (dou-
ble), ub (double), name (string), and type (char). On the left the corresponding XML complexTypes
are shown, with arrows indicating the correspondences. The following rules describe the mapping
between the OSiL schema and the OSInstance class. (In order to facilitate the mapping, we insist
in the schema construction that every complexType be named, even though this is not strictly
necessary in XML.)

• Each complexType in an OSiL schema corresponds to a class in OSInstance. Thus the OSiL
schema’s complexType Variables corresponds to OSInstance’s class Variables. Elements in
an actual XML file then correspond to objects in OSInstance; for example, the <variables>

element that is of type Variables in an OSiL file corresponds to a variables object in
OSInstance.

• An attribute or element used in the definition of a complexType is a member of the cor-
responding OSInstance class, and the type of the attribute or element matches the type
of the member. In Figure 16, for example, lb is an attribute of the OSiL complexType

named Variable, and lb is a member of the OSInstance class Variable; both have type
double. Similarly, <var> is an element in the definition of the OSiL complexType named
Variables, and var is a member of the OSInstance class Variables; the <var> element has
type Variable and the var member is a Variable object.

• A schema sequence corresponds to an array. For example, in Figure 16 the complexType
Variables has a sequence of <var> elements that are of type Variable, and the corresponding
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Variables class has a member that is an array of type Variable.

• XML allows a wide range of data subtypes, which do not always have counterparts in the
OSInstance object. For instance, the attribute type in the <var> element forms an enumer-
ation, while the corresponding member of the Variable class is declared as char.

• XML allows default values for optional attributes; these default values can be set inside of
the constructor of the corresponding data member.

General nonlinear terms are stored in the data structure as OSExpressionTree objects, which are
the subject of the next section.

The OSInstance class has a collection of get(), set(), and calculate() methods that act as
an API for the optimization instance and are described in Section 8.

Schema complexType In-memory class

<xs:complexType name="Variables"> <--------------------------------------------> class Variables{

public:

<xs:sequence> Variables();

<xs:element name="var" type="Variable" maxOccurs="unbounded"/> <-----------> Variable *var;

</xs:sequence>

<xs:attribute name="numberOfVariables" type="xs:nonnegativeInteger"

use="required"/> <---------------------------------------------> int numberOfVariables;

</xs:complexType> }; // class Variables

<xs:complexType name="Variable"> <---------------------------------------------> class Variable{

public:

Variable();

<xs:attribute name="name" type="xs:string" use="optional"/> <----------------> string name;

<xs:attribute name="type" use="optional" default="C"> <----------------------> char type;

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="C"/>

<xs:enumeration value="B"/>

<xs:enumeration value="I"/>

<xs:enumeration value="S"/>

<xs:enumeration value="D"/>

<xs:enumeration value="J"/>

</xs:restriction>

</xs:simpleType>

</xs:attribute>

<xs:attribute name="lb" type="xs:double" use="optional" default="0"/> <------> double lb;

<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/> <----> double ub;

</xs:complexType> }; // class Variable

OSiL elements In-memory objects

<variables numberOfVariables="2"> OSInstance *osinstance;

<var lb="0" name="x0" type="C"/> osinstance->instanceData->variables->numberOfVariables=2;

<var lb="0" name="x1" type="C"/> osinstance->instanceData->variables->var=new Variable*[2];

</variables> osinstance->instanceData->variables->var[0]->lb=0;

osinstance->instanceData->variables->var[0]->name="x0";

osinstance->instanceData->variables->var[0]->type= ’C’;
osinstance->instanceData->variables->var[1]->lb=0;

osinstance->instanceData->variables->var[1]->name="x1";

osinstance->instanceData->variables->var[1]->type= ’C’;

Figure 16: The <variables> element as an OSInstance object
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11.2.4 The OSExpressionTree OSnLNode Classes

The OSExpressionTree class provides the in-memory representation of the nonlinear terms. Our
design goal is to allow for efficient parsing of OSiL instances, while providing an API that meets
the needs of diverse solvers. Conceptually, any nonlinear expression in the objective or constraints
is represented by a tree. The expression tree for the nonlinear part of the objective function (7), for
example, has the form illustrated in Figure 17. The choice of a data structure to store such a tree
— along with the associated methods of an API — is a key aspect in the design of the OSInstance

class.

Figure 17: Conceptual expression tree for the nonlinear part of the objective (7).

A base abstract class OSnLNode is defined and all of an OSiL file’s operator and operand elements
used in defining a nonlinear expression are extensions of the base element type OSnLNode. There
is an element type OSnLNodePlus, for example, that extends OSnLNode; then in an OSiL instance
file, there are <plus> elements that are of type OSnLNodePlus. Each OSExpressionTree object
contains a pointer to an OSnLNode object that is the root of the corresponding expression tree. To
every element that extends the OSnLNode type in an OSiL instance file, there corresponds a class
that derives from the OSnLNode class in an OSInstance data structure. Thus we can construct an
expression tree of homogenous nodes, and methods that operate on the expression tree to calculate
function values, derivatives, postfix notation, and the like do not require switches or complicated
logic.

double OSnLNodePlus::calculateFunction(double *x){

m_dFunctionValue =

m_mChildren[0]->calculateFunction(x) +

m_mChildren[1]->calculateFunction(x);

return m_dFunctionValue;

} //calculateFunction

Figure 18: The function calculation method for the plus node class with polymorphism
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The OSInstance class has a variety of calculate() methods, based on two pure virtual func-
tions in the OSInstance class. The first of these, calculateFunction(), takes an array of double
values corresponding to decision variables, and evaluates the expression tree for those values. Every
class that extends OSnLNode must implement this method. As an example, the calculateFunction
method for the OSnLNodePlus class is shown in Figure 18. Because the OSiL instance file must be
validated against its schema, and in the schema each <OSnLNodePlus> element is specified to have
exactly two child elements, this calculateFunction method can assume that there are exactly
two children of the node that it is operating on. The use of polymorphism and recursion makes
adding new operator elements easy; it is simply a matter of adding a new class and implementing
the calculateFunction() method for it.

Although in the OSnL schema, there are 200+ nonlinear operators, only the following OSnLNode

classes are currently supported in our implementation.

• OSnLNodeVariable

• OSnLNodeTimes

• OSnLNodePlus

• OSnLNodeSum

• OSnLNodeMinus

• OSnLNodeNegate

• OSnLNodeDivide

• OSnLNodePower

• OSnLNodeProduct

• OSnLNodeLn

• OSnLNodeSqrt

• OSnLNodeSquare

• OSnLNodeSin

• OSnLNodeCos

• OSnLNodeExp

• OSnLNodeIf

• OSnLNodeAbs

• OSnLNodeMax

• OSnLNodeMin

• OSnLNodeE

• OSnLNodePI

• OSnLNodeAllDiff
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11.2.5 The OSOption Class

The OSOption class is the in-memory representation of the options associated with a particular
optimization task. It is another key class for users of the OS project. This class has an API
defined by a collection of get() methods for extracting various components (such as initial values
for decision variables, solver options, job parameters, etc.), and a collection of set() methods
for modifying or generating an option instance. The relationship between in-memory classes and
objects on one hand and complexTypes and elements of the OSoL schema follow the same mapping
rules laid out in Section 11.2.3.

11.2.6 The OSResult Class

Similarly the OSResult class is the in-memory representation of the results returned by the solver
and other information associated with a particular optimization task. This class has an API defined
by a collection of set() methods that allow a solver to create a result instance and a collection of
get() methods for extracting various components (such as optimal values for decision variables,
optimal objective function value, optimal dual variables, etc.). The relationship between in-memory
classes and objects on one hand and complexTypes and elements of the OSoL schema follow the
same mapping rules laid out in Section 11.2.3.

11.3 OSModelInterfaces

This part of the OS library is designed to help integrate the OS standards with other standards
and modeling systems.

11.3.1 Converting MPS Files

The MPS standard is still a popular format for representing linear and integer programming prob-
lems. In OSModelInterfaces, there is a class OSmps2osil that can be used to convert files in MPS
format into the OSiL standard. It is used as follows.

OSmps2osil *mps2osil = NULL;

DefaultSolver *solver = NULL;

solver = new CoinSolver();

solver->sSolverName = "cbc";

mps2osil = new OSmps2osil( mpsFileName);

mps2osil->createOSInstance() ;

solver->osinstance = mps2osil->osinstance;

solver->solve();

The OSmps2osil class constructor takes a string which should be the file name of the instance
in MPS format. The constructor then uses the CoinUtils library to read and parse the MPS file.
The class method createOSInstance then builds an in-memory osinstance object that can be
used by a solver.

11.3.2 Converting AMPL nl Files

AMPL is a popular modeling language that saves model instances in the AMPL nl format. The
OSModelInterfaces library provides a class, OSnl2osil, for reading an nl file and creating a
corresponding in-memory osinstance object. It is used as follows.
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OSnl2osil *nl2osil = NULL;

DefaultSolver *solver = NULL;

solver = new LindoSolver();

nl2osil = new OSnl2osil( nlFileName);

nl2osil->createOSInstance() ;

solver->osinstance = nl2osil->osinstance;

solver->solve();

The OSnl2osil class works much like the OSmps2osil class. The OSnl2osil class constructor
takes a string which should be the file name of the instance in nl format. The constructor then uses
the AMPL ASL library routines to read and parse the nl file. The class method createOSInstance

then builds an in-memory osinstance object that can be used by a solver.
In Section 5.1 we describe the OSAmplClient executable that acts as a “solver” for AMPL. The

OSAmplClient uses the OSnl2osil class to convert the instance in nl format to OSiL format before
calling a solver either locally or remotely.

11.4 OSParsers

The OSParsers component of the OS library contains reentrant parsers that read OSiL, OSoL and
OSrL strings and build, respectively, in-memory OSInstance, OSOption and OSResult objects.

The OSiL parser is invoked through an OSiLReader object as illustrated below. Assume osil

is a string with the problem instance.

OSiLReader *osilreader = NULL;

OSInstance *osinstance = NULL;

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( osil);

The readOSiL method has a single argument which is a (pointer to a) string. The readOSiL

method then calls an underlying method yygetOSInstance that parses the OSiL string. The
major components of the OSiL schema recognized by the parser are

<instanceHeader>

<instanceData>

<variables>

<objectives>

<constraints>

<linearConstraintCoefficients>

<quadraticCoefficients>

<nonlinearExpressions>

There are other components in the OSiL schema, but they are not yet implemented. In most large-
scale applications the <variables>, <objectives>, <constraints>, and <linearConstraintCoefficients>

will comprise the bulk of the instance memory. Because of this, we have “hard-coded” the OSiL
parser to read these specific elements very efficiently. The parsing of the <quadraticCoefficients>
and <nonlinearExpressions> is done using code generated by flex and bison. The typical OS
user will have no need to edit either OSParseosil.l or OSParseosil.y and therefore will not have
to worry about running either flex or bison to generate the parsers.

The files OSParseosrl.l and OSParseosrl.y are used by flex and bison to generate the code
OSParseosrl.cpp and OSParseosrl.tab.cpp for parsing strings in OSrL format. The comments
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made above about the OSiL parser apply to the OSrL parser. The OSoL parser follows the same
layout and rules. The files OSParseosol.l and OSParseosol.y are used by flex and bison to
generate the code OSParseosol.cpp and OSParseosol.tab.cpp for parsing strings in OSoL format.

11.5 OSSolverInterfaces

The OSSolverInterfaces library is designed to facilitate linking the OS library with various solver
APIs. We first describe how to take a problem instance in OSiL format and connect to a solver that
has a COIN-OR OSI interface. See the OSI project www.projects.coin-or.org/Osi. We then
describe hooking to the COIN-OR nonlinear code Ipopt. See www.projects.coin-or.org/Ipopt.
Finally we describe hooking to the commercial solver LINDO. The OS library has been tested with
the following solvers using the Osi Interface.

• Bonmin

• Cbc

• Clp

• Couenne

• Cplex

• DyLP

• Glpk

• Ipopt

• SYMPHONY

• Vol

In the OSSolverInterfaces library there is an abstract class DefaultSolver that has the
following key members:

std::string osil;

std::string osol;

std::string osrl;

OSInstance *osinstance;

OSResult *osresult;

OSOption *osoption;

and the pure virtual function

virtual void solve() = 0 ;

In order to use a solver through the COIN-OR Osi interface it is necessary to create an object in
the CoinSolver class which inherits from the DefaultSolver class and implements the appropriate
solve() function. We illustrate with the Clp solver.

DefaultSolver *solver = NULL;

solver = new CoinSolver();

solver->m_sSolverName = "clp";
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Assume that the data file containing the problem has been read into the string osil and the
solver options are in the string osol. Then the Clp solver is invoked as follows.

solver->osil = osil;

solver->osol = osol;

solver->solve();

Finally, get the solution in OSrL format as follows

cout << solver->osrl << endl;

Some commercial solvers, e.g., LINDO, do not have a COIN-OR Osi interface, but it is possible
to write wrappers so that they can be used in exactly the same manner as a COIN-OR solver. For
example, to invoke the LINDO solver we do the following.

solver = new LindoSolver();

A similar call is used for Ipopt. In this case, the IpoptSolver class inherits from both the
DefaultSolver class and the Ipopt TNLP class. See

https://projects.coin-or.org/Ipopt/browser/stable/3.5/Ipopt/doc/documentation.pdf?format=raw

for more information on the Ipopt solver C++ implementation and the TNLP class.
In the examples above, the problem instance was assumed to be read from a file into the

string osil and then into the class member solver->osil. However, everything can be done
entirely in memory. For example, it is possible to use the OSInstance class to create an in-memory
problem representation and give this representation directly to a solver class that inherits from
DefaultSolver. The class member to use is osinstance. This is illustrated in the example given
in Section 9.2.

11.6 OSUtils

The OSUtils component of the OS library contains utility codes. For example, the FileUtil class
contains useful methods for reading files into string or char* and writing files from string and
char*. The OSDataStructures class holds other classes for things such as sparse vectors, sparse
Jacobians, and sparse Hessians. The MathUtil class contains a method for converting between
sparse matrices in row and column major form.

12 The OS Algorithmic Differentiation Implementation

The OS library provides a set of calculate methods for calculating function values, gradients, and
Hessians. The calculate methods are part of the OSInstance class and are designed to work with
solver APIs. For instance, Ipopt requires derivatives but does not provide its own differentiation
routines, expecting the user to make them available through callbacks.
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12.1 Algorithmic Differentiation: Brief Review

First and second derivative calculations are made using algorithmic differentiation. Here we provide
a brief review of this topic. An excellent reference on algorithmic differentiation is Griewank [3]. The
OS package uses the COIN-OR project CppAD (http://projects.coin-or.org/CppAD), which
is also an excellent resource with extensive documentation and information about algorithmic dif-
ferentiation. See the documentation written by Brad Bell [1]. The development here is from the
CppAD documentation. Consider the function f : X → Y from Rn to Rm. (That is, Y = f(X).)
Assume that f is twice continuously differentiable, so that in particular the second order partials

∂2fk
∂xi∂xj

and
∂2fk
∂xj∂xi

(24)

exist and are equal to each other for all k = 1, . . . ,m and i, j = 1, . . . , n. The task is to compute
the derivatives of f .

First express the input vector as a function of t by

X(t) = x(0) + x(1)t+ x(2)t2 (25)

where x(0), x(1), and x(2) are vectors in Rn and t is a scalar. By judiciously choosing x(0), x(1), and
x(2) we will be able to derive many different expressions of interest.

Note first that we can choose

x(0) = X(0),

x(1) = X ′(0),

x(2) = X ′′(0)/2.

In general, x(k) corresponds to the kth order Taylor coefficient, i.e.,

x(k) =
1

k!
X(k)(0), k = 0, 1, 2. (26)

Regardless of the choice of x(1) and x(2) (note that x(0) = X(0) is forced by equation 25), Y (t) =
f(X(t)) is a function from R1 to Rm and is expressed in terms of its Taylor series expansion as

Y (t) = y(0) + y(1)t+ y(2)t2 + o(t3), (27)

where

y(k) =
1

k!
Y (k)(0), k = 0, 1, 2. (28)

The following are shown in Bell [1].

y(0) = f(x(0)). (29)

Let e(i) denote the ith unit vector. If x(1) = e(i) then y(1) is equal to the ith column of the
Jacobian matrix of f(x) evaluated at x(0). That is,

y(1) =
∂f

∂xi
(x(0)). (30)

In addition, if x(1) = e(i) and x(2) = 0 then for function fk(x), (the kth component of f)

y
(2)
k =

1

2

∂2fk(x(0))

∂xi∂xi
. (31)
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In order to evaluate the mixed partial derivatives, one can instead set x(1) = e(i) + e(j) and
x(2) = 0. This gives for function fk(x),

y
(2)
k =

1

2

(
∂2fk(x(0))

∂xi∂xi
+
∂2fk(x(0))

∂xi∂xj
+
∂2fk(x(0))

∂xj∂xi
+
∂2fk(x(0))

∂xj∂xj

)
, (32)

or, expressed in terms of the mixed partials,

∂2fk(x(0))

∂xi∂xj
= y

(2)
k −

1

2

(
∂2fk(x(0))

∂xi∂xi
+
∂2fk(x(0))

∂xj∂xj

)
. (33)

12.2 Using OSInstance Methods: Low Level Calls

The code snippets used in this section are from the example code algorithmicDiffTest.cpp in the
algorithmicDiffTest folder in the examples folder. The code is based on the following example.

Minimize x20 + 9x1 (34)

s.t. 33− 105 + 1.37x1 + 2x3 + 5x1 ≤ 10 (35)

ln(x0x3) + 7x2 ≥ 10 (36)

x0, x1, x2, x3 ≥ 0 (37)

The OSiL representation of the instance (34)–(37) is given in Appendix 13.2. This example
is designed to illustrate several features of OSiL. Note that in constraint (35) the constant 33
appears in the <con> element corresponding to this constraint and the constant 105 appears as
a <number> OSnL node in the <nonlinearExpressions> section. This distinction is important,
as it will lead to different treatment by the code as documented below. Variables x1 and x2
do not appear in any nonlinear terms. The terms 5x1 in (35) and 7x2 in (36) are expressed in
the <objectives> and <linearConstraintCoefficients> sections, respectively, and will again
receive special treatment by the code. However, the term 1.37x1 in (35), along with the term 2x3, is
expressed in the <nonlinearExpressions> section, hence x1 is treated as a nonlinear variable for
purposes of algorithmic differentiation. Variable x2 never appears in the <nonlinearExpressions>
section and is therefore treated as a linear variable and not used in any algorithmic differentiation
calculations. Variables that do not appear in the <nonlinearExpressions> are never part of the
algorithmic differentiation calculations.

Ignoring the nonnegativity constraints, instance (34)–(37) defines a mapping from R4 to R3:

 x20 + 9x1
33− 105 + 1.37x1 + 2x3 + 5x1

ln(x0x3) + 7x2

 =

 9x1
33 + 5x1

7x2

+

 x20
−105 + 1.37x1 + 2x3

ln(x0x3)


=

 9x1
33 + 5x1

7x2

+

 f1(x)
f2(x)
f3(x)

 , (38)

where f(x) :=

 f1(x)
f2(x)
f3(x)

 . (39)
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The OSiL representation for the instance in (34)–(37) is read into an in-memory OSInstance
object as follows (we assume that osil is a string containing the OSiL instance)

osilreader = new OSiLReader();

osinstance = osilreader->readOSiL( &osil);

There is a method in the OSInstance class, initForAlgDiff() that is used to initialize the non-
linear data structures. A call to this method

osinstance->initForAlgDiff( );

will generate a map of the indices of the nonlinear variables. This is critical because the algorithmic
differentiation only operates on variables that appear in the <nonlinearExpressions> section. An
example of this map follows.

std::map<int, int> varIndexMap;

std::map<int, int>::iterator posVarIndexMap;

varIndexMap = osinstance->getAllNonlinearVariablesIndexMap( );

for(posVarIndexMap = varIndexMap.begin(); posVarIndexMap

!= varIndexMap.end(); ++posVarIndexMap){

std::cout << "Variable Index = " << posVarIndexMap->first << std::endl ;

}

The variable indices listed are 0, 1, and 3. Variable 2 does not appear in the <nonlinearExpressions>
section and is not included in varIndexMap. That is, the function f in (39) will be considered as
a map from R3 to R3.

Once the nonlinear structures are initialized it is possible to take derivatives using algorithmic
differentiation. Algorithmic differentiation is done using either a forward or reverse sweep through
an expression tree (or operation sequence) representation of f . The two key public algorithmic
differentiation methods in the OSInstance class are forwardAD and reverseAD. These are actually
generic “wrappers” around the corresponding CppAD methods with the same signature. This keeps
the OS API public methods independent of any underlying algorithmic differentiation package.

The forwardAD signature is

std::vector<double> forwardAD(int k, std::vector<double> vdX);

where k is the highest order Taylor coefficient of f to be returned, vdX is a vector of doubles in Rn,
and the function return is a vector of doubles in Rm. Thus, k corresponds to the k in Equations
(26) and (28), where vdX corresponds to the x(k) in Equation (26), and the y(k) in Equation (28)
is the vector in range space returned by the call to forwardAD. For example, by Equation (29)
the following call will evaluate each component function defined in (39) corresponding only to the
nonlinear part of (38) – the part denoted by f(x).

funVals = osinstance->forwardAD(0, x0);

Since there are three components in the vector defined by (39), the return value funVals will have
three components. For an input vector,

x0[0] = 1; // the value for variable x0 in function f

x0[1] = 5; // the value for variable x1 in function f

x0[2] = 5; // the value for variable x3 in function f
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the values returned by osinstance->forwardAD(0, x0) are 1, -63.15, and 1.6094, respectively.
The Jacobian of the example in (39) is

J =

 2x0 9.00 0.00 0.00
0.00 6.37 0.00 2.00
1/x0 0.00 7.00 1/x3

 (40)

and the Jacobian Jf of the nonlinear part is

Jf =

 2x0 0.00 0.00
0.00 1.37 2.00
1/x0 0.00 1/x3

 . (41)

When x0 = 1, x1 = 5, x2 = 10, and x3 = 5 the Jacobian Jf is

Jf =

 2.00 0.00 0.00
0.00 1.37 2.00
1.00 0.00 0.20

 . (42)

A forward sweep with k = 1 will calculate the Jacobian column-wise. See (30). The following code
will return column 3 of the Jacobian (42) which corresponds to the nonlinear variable x3.

x1[0] = 0;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

Now calculate second derivatives. To illustrate we use the results in (31)-(33) and calculate

∂2fk(x(0))

∂x0∂x3
k = 1, 2, 3.

Variables x0 and x3 are the first and third nonlinear variables so by (32) the x(1) should be the
sum of the e(1) and e(3) unit vectors and used in the first-order forward sweep calculation.

x1[0] = 1;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

Next set x(2) = 0 and do a second-order forward sweep.

std::vector<double> x2( n);

x2[0] = 0;

x2[1] = 0;

x2[2] = 0;

osinstance->forwardAD(2, x2);

This call returns the vector of values

y
(2)
1 = 1, y

(2)
2 = 0, y

(2)
3 = −0.52.

78



By inspection of (38) (or by appropriate calls to osinstance->forwardAD — not shown here),

∂2f1(x
(0))

∂x0∂x0
= 2,

∂2f1(x
(0))

∂x3∂x3
= 0,

∂2f2(x
(0))

∂x0∂x0
= 0,

∂2f2(x
(0))

∂x3∂x3
= 0,

∂2f3(x
(0))

∂x0∂x0
= −1,

∂2f3(x
(0))

∂x3∂x3
= −0.04.

Then by (33),

∂2f1(x
(0))

∂x0∂x3
= y

(2)
1 −

1

2

(
∂2f1(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= 1− 1

2
(2 + 0) = 0,

∂2f2(x
(0))

∂x0∂x3
= y

(2)
2 −

1

2

(
∂2f2(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= 0− 1

2
(0 + 0) = 0,

∂2f3(x
(0))

∂x0∂x3
= y

(2)
3 −

1

2

(
∂2f3(x

(0))

∂x0∂x0
+
∂2fk(x(0))

∂x3∂x3

)
= −0.52− 1

2
(−1− 0.04) = 0.

Making all of the first and second derivative calculations using forward sweeps is most effective
when the number of rows exceeds the number of variables.

The reverseAD signature is

std::vector<double> reverseAD(int k, std::vector<double> vdlambda);

where vdlambda is a vector of Lagrange multipliers. This method returns a vector in the range
space. If a reverse sweep of order k is called, a forward sweep of all orders through k− 1 must have
been made prior to the call.

12.2.1 First Derivative Reverse Sweep Calculations

In order to calculate first derivatives execute the following sequence of calls.

x0[0] = 1;

x0[1] = 5;

x0[2] = 5;

std::vector<double> vlambda(3);

vlambda[0] = 0;

vlambda[1] = 0;

vlambda[2] = 1;

osinstance->forwardAD(0, x0);

osinstance->reverseAD(1, vlambda);

Since vlambda only includes the third function f3, this sequence of calls will produce the third row
of the Jacobian Jf , i.e.,

∂f3(x
(0))

∂x0
= 1,

∂f3(x
(0))

∂x1
= 0,

∂f3(x
(0))

∂x3
= 0.2.
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12.2.2 Second Derivative Reverse Sweep Calculations

In order to calculate second derivatives using reverseAD forward sweeps of order 0 and 1 must have
been completed. The call to reverseAD(2, vlambda) will return a vector of dimension 2n where n
is the number of variables. If the zero-order forward sweep is forwardAD(0,x0) and the first-order
forward sweep is forwardAD(1, x1) where x1 = e(i), then the return vector z = reverseAD(2,

vlambda) is

z[2j − 2] =
∂L(x(0), λ(0))

∂xj
, j = 1, . . . , n (43)

z[2j − 1] =
∂2L(x(0), λ(0))

∂xi∂xj
, j = 1, . . . , n (44)

where

L(x, λ) =

m∑
k=1

λkfk(x). (45)

For example, the following calls will calculate the third row (column) of the Hessian of the
Lagrangian.

x0[0] = 1;

x0[1] = 5;

x0[2] = 5;

osinstance->forwardAD(0, x0);

x1[0] = 0;

x1[1] = 0;

x1[2] = 1;

osinstance->forwardAD(1, x1);

vlambda[0] = 1;

vlambda[1] = 2;

vlambda[2] = 1;

osinstance->reverseAD(2, vlambda);

This returns

∂L(x(0), λ(0))

∂x0
= 3,

∂L(x(0), λ(0))

∂x1
= 2.74,

∂L(x(0), λ(0))

∂x3
= 4.2,

∂2L(x(0), λ(0))

∂x3∂x0
= 0,

∂2L(x(0), λ(0))

∂x3∂x0
= 0,

∂2L(x(0), λ(0))

∂x3∂x3
= −.04.

The reason why
∂L(x(0), λ(0))

∂x1
= 2× 1.37 = 2.74

and not
∂L(x(0), λ(0))

∂x1
= 1× 9 + 2× 6.37 = 9 + 12.74 = 21.74

is that the terms 9x1 in the objective and 5x1 in the first constraint are captured in the linear section
of the OSiL input and therefore do not appear as nonlinear terms in <nonlinearExpressions>.
As noted before, forwardAD and reverseAD only operate on variables and terms in either the
<quadraticCoefficients> or <nonlinearExpressions> sections.
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12.3 Using OSInstance Methods: High Level Calls

The methods forwardAD and reverseAD are low-level calls and are not designed to work directly
with solver APIs. The OSInstance API has other methods that most users will want to invoke
when linking with solver APIs. We describe these now.

12.3.1 Sparsity Methods

Many solvers such as Ipopt (projects.coin-or.org/Ipopt) require the sparsity pattern of the
Jacobian of the constraint matrix and the Hessian of the Lagrangian function. Note well that the
constraint matrix of the example in Section 12.2 constitutes only the last two rows of (39) but
does include the linear terms. The following code illustrates how to get the sparsity pattern of the
constraint Jacobian matrix

SparseJacobianMatrix *sparseJac;

sparseJac = osinstance->getJacobianSparsityPattern();

for(idx = 0; idx < sparseJac->startSize; idx++){

std::cout << "number constant terms in constraint " << idx << " is "

<< *(sparseJac->conVals + idx) << std::endl;

for(k = *(sparseJac->starts + idx); k < *(sparseJac->starts + idx + 1); k++){

std::cout << "row idx = " << idx << "

col idx = "<< *(sparseJac->indexes + k) << std::endl;

}

}

For the example problem this will produce

JACOBIAN SPARSITY PATTERN

number constant terms in constraint 0 is 0

row idx = 0 col idx = 1

row idx = 0 col idx = 3

number constant terms in constraint 1 is 1

row idx = 1 col idx = 2

row idx = 1 col idx = 0

row idx = 1 col idx = 3

The constant term in constraint 1 corresponds to the linear term 7x2, which is added after the
algorithmic differentiation has taken place. However, the linear term 5x1 in constraint 0 does not
contribute a nonzero in the Jacobian, as it is combined with the term 1.37x1 that is treated as a
nonlinear term and therefore accounted for explicitly. The SparseJacobianMatrix object has a
data member starts which is the index of the start of each constraint row. The int data member
indexes gives the variable index of every potentially nonzero derivative. There is also a double

data member values that gives the value of the partial derivative of the corresponding index at each
iteration. Finally, there is an int data member conVals that is the number of constant terms in
each gradient. A constant term is a partial derivative that cannot change at an iteration. A variable
is considered to have a constant derivative if it appears in the <linearConstraintCoefficients>

section but not in the <nonlinearExpressions>. For a row indexed by idx the variable indices are
in the indexes array between the elements sparseJac->starts + idx and sparseJac->starts

+ idx + 1. The first sparseJac->conVals + idx variables listed are indices of variables with

81



constant derivatives. In this example, when idx is 1, there is one variable with a constant derivative
and it is variable x2. (Actually variable x1 has a constant derivative but the code does not check
to see if variables that appear in the <nonlinearExpressions> section have constant derivative.)
The variables with constant derivatives never appear in the AD evaluation.

The following code illustrates how to get the sparsity pattern of the Hessian of the Lagrangian.

SparseHessianMatrix *sparseHessian;

sparseHessian = osinstance->getLagrangianHessianSparsityPattern( );

for(idx = 0; idx < sparseHessian->hessDimension; idx++){

std::cout << "Row Index = " << *(sparseHessian->hessRowIdx + idx) ;

std::cout << " Column Index = " << *(sparseHessian->hessColIdx + idx);

}

The SparseHessianMatrix class has the int data members hessRowIdx and hessColIdx for index-
ing potential nonzero elements in the Hessian matrix. The double data member hessValues holds
the value of the respective second derivative at each iteration. The data member hessDimension

is the number of nonzero elements in the Hessian.

12.3.2 Function Evaluation Methods

There are several overloaded methods for calculating objective and constraint values. The method

double *calculateAllConstraintFunctionValues(double* x, bool new_x)

will return a double pointer to an array of constraint function values evaluated at x. If the value
of x has not changed since the last function call, then new_x should be set to false and the most
recent function values are returned. When using this method, with this signature, all function
values are calculated in double using an OSExpressionTree object.

A second signature for the calculateAllConstraintFunctionValues is

double *calculateAllConstraintFunctionValues(double* x, double *objLambda,

double *conLambda, bool new_x, int highestOrder)

In this signature, x is a pointer to the current primal values, objLambda is a vector of dual multipli-
ers, conLambda is a vector of dual multipliers on the constraints, new_x is true if any components
of x have changed since the last evaluation, and highestOrder is the highest order of derivative
to be calculated at this iteration. The following code snippet illustrates defining a set of variable
values for the example we are using and then the function call.

double* x = new double[4]; //primal variables

double* z = new double[2]; //Lagrange multipliers on constraints

double* w = new double[1]; //Lagrange multiplier on objective

x[ 0] = 1; // primal variable 0

x[ 1] = 5; // primal variable 1

x[ 2] = 10; // primal variable 2

x[ 3] = 5; // primal variable 3

z[ 0] = 2; // Lagrange multiplier on constraint 0

z[ 1] = 1; // Lagrange multiplier on constraint 1

w[ 0] = 1; // Lagrange multiplier on the objective function

calculateAllConstraintFunctionValues(x, w, z, true, 0);
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When making all high level calls for function, gradient, and Hessian evaluations we pass all the
primal variables in the x argument, not just the nonlinear variables. Underneath the call, the
nonlinear variables are identified and used in AD function calls.

The use of the parameters new_x and highestOrder is important and requires further expla-
nation. The parameter highestOrder is an integer variable that will take on the value 0, 1, or 2
(actually higher values if we want third derivatives etc.). The value of this variable is the highest
order derivative that is required of the current iterate. For example, if a callback requires a func-
tion evaluation and highestOrder = 0 then only the function is evaluated at the current iterate.
However, if highestOrder = 2 then the function call

calculateAllConstraintFunctionValues(x, w, z, true, 2)

will trigger first and second derivative evaluations in addition to the function evaluations.
In the OSInstance class code, every time a forward (forwardAD) or reverse sweep (reverseAD)

is executed a private member, m_iHighestOrderEvaluated is set to the order of the sweep. For
example, forwardAD(1, x) will result in m_iHighestOrderEvaluated = 1. Just knowing the value
of new_x alone is not sufficient. It is also necessary to know highestOrder and compare it with
m_iHighestOrderEvaluated. For example, if new_x is false, but m_iHighestOrderEvaluated =

0, and the callback requires a Hessian calculation, then it is necessary to calculate the first and
second derivatives at the current iterate.

There are exactly two conditions that require a new function or derivative evaluation. A new
evaluation is required if and only if

1. The value of new_x is true

–OR–

2. For the callback function the value of the input parameter highestOrder is strictly greater
than the current value of m_iHhighestOrderEvaluated.

For an efficient implementation of AD it is important to be able to get the Lagrange multipliers
and highest order derivative that is required from inside any callback – not just the Hessian evalu-
ation callback. For example, in Ipopt, if eval_g or eval_f are called, and for the current iterate,
eval_jac and eval_hess are also going to be called, then a more efficient AD implementation is
possible if the Lagrange multipliers are available for eval_g and eval_f.

Currently, whenever new_x = true in the underlying AD implementation we do not retape
(record into the CppAD data structure) the function. This is because we currently throw an
exception if there are any logical operators involved in the AD calculations. This may change in a
future implementation.

There are also similar methods for objective function evaluations. The method

double calculateFunctionValue(int idx, double* x, bool new_x);

will return the value of any constraint or objective function indexed by idx. This method works
strictly with double data using an OSExpressionTree object.

There is also a public variable, bUseExpTreeForFunEval that, if set to true, will cause the
method

calculateAllConstraintFunctionValues(x, objLambda, conLambda, true, highestOrder)

to also use the OS expression tree for function evaluations when highestOrder = 0 rather than
use the operator overloading in the CppAD tape.

83



12.3.3 Gradient Evaluation Methods

One OSInstance method for gradient calculations is

SparseJacobianMatrix *calculateAllConstraintFunctionGradients(double* x, double *objLambda,

double *conLambda, bool new_x, int highestOrder)

If a call has been placed to calculateAllConstraintFunctionValues with highestOrder = 0,
then the appropriate call to get gradient evaluations is

calculateAllConstraintFunctionGradients( x, NULL, NULL, false, 1);

Note that in this function call new_x = false. This prevents a call to forwardAD() with order 0
to get the function values.

If, at the current iterate, the Hessian of the Lagrangian function is also desired then an appro-
priate call is

calculateAllConstraintFunctionGradients(x, objLambda, conLambda, false, 2);

In this case, if there was a prior call

calculateAllConstraintFunctionValues(x, w, z, true, 0);

then only first and second derivatives are calculated, not function values.
When calculating the gradients, if the number of nonlinear variables exceeds or is equal to the

number of rows, a forwardAD(0, x) sweep is used to get the function values, and a reverseAD(1,

ek) sweep for each unit vector ek in the row space is used to get the vector of first order partials for
each row in the constraint Jacobian. If the number of nonlinear variables is less then the number
of rows then a forwardAD(0, x) sweep is used to get the function values and a forwardAD(1, ei)
sweep for each unit vector ei in the column space is used to get the vector of first order partials for
each column in the constraint Jacobian.

Two other gradient methods are

SparseVector *calculateConstraintFunctionGradient(double* x,

double *objLambda, double *conLambda, int idx, bool new_x, int highestOrder);

and

SparseVector *calculateConstraintFunctionGradient(double* x, int idx,

bool new_x );

Similar methods are available for the objective function; however, the objective function gradient
methods treat the gradient of each objective function as a dense vector.

12.3.4 Hessian Evaluation Methods

There are two methods for Hessian calculations. The first method has the signature

SparseHessianMatrix *calculateLagrangianHessian( double* x,

double *objLambda, double *conLambda, bool new_x, int highestOrder);

so if either function or first derivatives have been calculated an appropriate call is

calculateLagrangianHessian( x, w, z, false, 2);

If the Hessian of a single row or objective function is desired the following method is available

SparseHessianMatrix *calculateHessian( double* x, int idx, bool new_x);
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13 Appendix – Sample OSiL files

13.1 OSiL representation for problem given in (7)–(10) (p.38)

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<instanceHeader>

<name>Modified Rosenbrock</name>

<source>Computing Journal 3:175-184, 1960</source>

<description>Rosenbrock problem with constraints</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="2">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

</variables>

<objectives numberOfObjectives="1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con ub="25.0"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues="3">

<start>

<el>0</el><el>2</el><el>3</el>

</start>

<rowIdx>

<el>0</el><el>1</el><el>1</el>

</rowIdx>

<value>

<el>1.</el><el>7.5</el><el>5.25</el>

</value>

</linearConstraintCoefficients>

<quadraticCoefficients numberOfQuadraticTerms="3">

<qTerm idx="0" idxOne="0" idxTwo="0" coef="10.5"/>
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<qTerm idx="0" idxOne="1" idxTwo="1" coef="11.7"/>

<qTerm idx="0" idxOne="0" idxTwo="1" coef="3."/>

</quadraticCoefficients>

<nonlinearExpressions numberOfNonlinearExpressions="2">

<nl idx="-1">

<plus>

<power>

<minus>

<number type="real" value="1.0"/>

<variable coef="1.0" idx="0"/>

</minus>

<number type="real" value="2.0"/>

</power>

<times>

<power>

<minus>

<variable coef="1.0" idx="0"/>

<power>

<variable coef="1.0" idx="1"/>

<number type="real" value="2.0"/>

</power>

</minus>

<number type="real" value="2.0"/>

</power>

<number type="real" value="100"/>

</times>

</plus>

</nl>

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>

<variable coef="1.0" idx="1"/>

</times>

</ln>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>
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13.2 OSiL representation for problem given in (34)–(37) (p.76)

<?xml version="1.0" encoding="UTF-8"?>

<osil xmlns="os.optimizationservices.org"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="os.optimizationservices.org

http://www.optimizationservices.org/schemas/2.0/OSiL.xsd">

<instanceHeader>

<description>A test problem for Algorithmic Differentiation</description>

</instanceHeader>

<instanceData>

<variables numberOfVariables="4">

<var lb="0" name="x0" type="C"/>

<var lb="0" name="x1" type="C"/>

<var lb="0" name="x2" type="C"/>

<var lb="0" name="x3" type="C"/>

</variables>

<objectives numberOfObjectives=" 1">

<obj maxOrMin="min" name="minCost" numberOfObjCoef="1">

<coef idx="1">9.0</coef>

</obj>

</objectives>

<constraints numberOfConstraints="2">

<con ub="10.0" constant="33"/>

<con lb="10.0"/>

</constraints>

<linearConstraintCoefficients numberOfValues="2">

<start>

<el>0</el>

<el>0</el>

<el>1</el>

<el>2</el>

<el>2</el>

</start>

<rowIdx>

<el>0</el>

<el>1</el>

</rowIdx>

<value>

<el>5</el>

<el>7</el>

</value>

</linearConstraintCoefficients>

<nonlinearExpressions numberOfNonlinearExpressions="3">

<nl idx="1">

<ln>

<times>

<variable coef="1.0" idx="0"/>
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<variable coef="1.0" idx="3"/>

</times>

</ln>

</nl>

<nl idx="0">

<sum>

<number type="real" value="-105"/>

<variable coef="1.37" idx="1"/>

<variable coef="2" idx="3"/>

</sum>

</nl>

<nl idx="-1">

<power>

<variable coef="1.0" idx="0"/>

<number type="real" value="2.0"/>

</power>

</nl>

</nonlinearExpressions>

</instanceData>

</osil>
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