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In this paper we address the problem of discriminating data belonging to different classes. We
examine both linear and quadratic formulations of the discrimination function in order to classify
data instances into two classes. The problem is modelled as the unconstrained minimization of a non-
differentiable function, and solved by using a homogeneous version of the Analytic Center Cutting
Plane Method. We give numerical results on some classical benchmark problems from the machine
learning literature.
Keywords: linear and nonlinear separation; machine learning; mathematical program-
ming; ACCPM.

1 Introduction

As pointed out by Bradley et al. in [1], Data Mining and Knowledge Discovery
in Databases has interesting applications for several disciplines, which include
statistics, databases, pattern recognition, artificial intelligence, optimization,
visualization, high performance and parallel computing. One classical prob-
lem is that of predictive modelling, where the goal is to determine relation-
ships between independent attributes and a designated dependent attribute
or outcome class. Concrete applications are reported in many different areas,
for e.g. cancer diagnosis, human genome construction, pattern recognition,
bank/insurance, and more. The problem of predictive modelling, in turn gives
rise to the problem of determining a discrimination function which can be used
as a classifier to separate data based on the outcome class.

A reasonable measure of efficiency of such a classifier (or separator) is
the number of misclassified instances. Unfortunately, minimizing this mea-
sure turns out to be an NP-complete problem [2]. As a surrogate to this
approach, it has been proposed to use a continuous measure of misclassifi-
cation [1] and rely on powerful convex optimization schemes to compute a
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separator. A linear programming formulation for the discrimination of two
classes was proposed by Mangasarian [3] as early as 1965. Subsequent works
proposed alternative formulations and variants. In this paper, we choose to
adopt the same error-minimization optimization model as in [4] for the dis-
crimination problem with two classes. The objective function of our problem
is the weighted sum of a continuous misclassification measure. This function is
convex and non-differentiable. The problem is thus a continuous optimization
one.

Mangasarian [5] proposes a linear program with equilibrium constraint
(LPEC) in order to minimize the number of misclassified instances. In this
work, we prefer to keep the unconstrained formulation, considering it as a
continuous relaxation of the discrete problem. At each iteration of our algo-
rithm, we calculate the number of misclassified instances. The solution with
the least number of misclassified error is kept as the best solution. Hence, the
best solution is not necessarily found at the end of the iterative procedure,
even though the continuous misclassification measure is roughly monotone
decreasing.

The paper is organized as follows. Section 2 introduces the problem formu-
lation and its properties. Section 3 is devoted to the minimization algorithm.
We use a homogeneous version of the Analytic Center Cutting Plane Method
(accpm) [6], due to Nesterov and Vial [7] and implemented in [8]. This homo-
geneous version is referred to as h-ACCPM. We briefly recall the main steps
of the algorithm, and explain why it is particularly well fitted for the discrim-
ination problem. Section 4 presents our numerical experiments on classical
benchmark problems taken from the UCI Machine Learning Repository [9].

2 The two-category discrimination problem

Let us first address the linear discrimination problem with two categories (or
classes). This problem caught the attention of researchers in the 1960s, and
has seen renewed interest in the early 1990s with the explosive growth in the
use of databases.

We consider a set of instances (or points) A = {ai ∈ R
n, i = 1, 2, · · · ,m},

defined by n numerical attributes (or features). Each instance also has binary
label (positive or negative) associated with it, partitioning the set into two
categories.

The separation problem consists of determining a discriminating function
f : R

n → R such that f(ai) > 0 for all points ai with positive label and
f(ai) < 0 for all points ai with negative label. The underlying objective is
to use this separation function for correctly predicting the class of previously
unseen instances.
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2.1 Continuous formulation of the linear separation problem

Consider the partition A1 ∪ A2 of the set A, we wish to find a vector ω ∈
R

n and a scalar γ ∈ R such that the hyperplane {x ∈ R
n : ω

T
x = γ}

separates instances from the two classes A1 and A2 as correctly as possible.
For typographical convenience, we write (ω, γ) instead of

(

ω

γ

)

.
Let A1 and A2 denote the matrices of points in A1 and A2 respectively.

Any separating hyperplane such that

A1ω > eγ, (1)

A2ω < eγ, (2)

where e is a vector of ones of appropriate dimension, is called a separating
hyperplane. Upon normalization, this system is equivalent to

A1ω − e(γ + ν) ≥ 0, (3)

−A2ω + e(γ − ν) ≥ 0, (4)

where the value ν is called the separation margin.
The system (3)-(4) can be satisfied if and only if the classes A1 and A2 are

separable. In such a case, there exist an infinite number of hyperplanes that
separate the two classes; then one looks for the hyperplane that separates the
two classes with the largest margin ν. A composite function that involves ω, γ
and ν can also be used.

In the general case where it may not be possible to find a hyperplane with
the required separation property, we measure the misclassification errors in
the following manner, let

e
1
i = max(−ω

T
ai + γ + ν, 0), ∀ai ∈ A1,

e
2
i = max(ωT

ai − γ + ν, 0), ∀ai ∈ A2.

The linear separation problem can be formulated as the following minimization
problem in R

n+1:

min
(ω,γ)∈Rn×R

F (ω, γ) =
1

|A1|

∑

i

e
1
i +

1

|A2|

∑

i

e
2
i (5)

Problem (5) is convex but not differentiable. It is homogeneous of degree
0 in (ω, γ). Hence, any positive value of ν yields the same misclassification
errors, after an appropriate scaling of ω and γ.
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The discrimination may generate two types or errors: negative instances clas-
sified as positive, and positive instances classified as negative. In some cases
(for example medical diagnostic), these errors do not have the same conse-
quences. Different weights may be given to false positives and false negatives.

2.2 Quadratic separation

Linear separation is a simple but not always a realistic model to encompass
all real-life separation problems. One can well imagine instances where linear
separation might not suffice to obtain a good classification. A finer definition
of the discriminating function f may result in an improved quality of the sep-
aration. But on the other hand, the following reasons discourage investigation
of highly complex forms of separating functions:

(i) Except for very special well-known cases, there is no reason why a priori

information about the family of discriminating would be available,
(ii) Using very refined discriminating functions involves determining a large

number of parameters, making the optimization problem (5) increasingly
difficult.

(iii) As in statistics, more parameters are likely to make the separator less
robust when applied to unseen data.

Keeping that in mind, we look at a simple refinement of the linear discrim-
ination function. We consider the following formulation for the discrimina-
tion function between two classes, that aims at separating A1 from A2 by a
quadratic form

Q(x) = 〈Ωx,x〉 + 〈ω,x〉 + γ. (6)

Without loss of generality, we suppose that Ω is an upper-triangular matrix
in R

n, ω is a real vector of R
n, and γ a scalar. Since this formulation contains

the linear case as a special case, it may lead to a more efficient separation.
The obvious drawback is the increase in the problem dimension, which is now
n(n+1)

2 + n + 1. This results in a severe limitation of the possible applications.
However, in real cases only a few attributes values expressed by Ω are cor-
related. If we have a priori information about the structure of matrix Ω (or
possibly correlated attributes), we can set most values Ωij to zero, reducing
the number of variables and making the problem tractable.

Considering a separation margin ν, we want to find Ω, ω and γ such that

Q(x) ≥ ν, ∀x ∈ A1,

Q(x) ≤ −ν, ∀x ∈ A2.
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The misclassification errors are then,

e
1
i = max(ν − Q(ai), 0), ∀ai ∈ A1,

e
2
i = max(ν + Q(ai), 0), ∀ai ∈ A2.

As in the linear case, the individual errors e
1
i , e

2
i are point-wise maximum

of a linear function in (Ω,ω, γ) and 0. Thus, the minimization is essentially of
the same nature but the variables have a higher dimension.

3 The Homogeneous Analytic Center Cutting Plane Method

We now describe our approach for solving the separation problem, starting
with brief theoretical background of cutting plane methods. This section then
goes on to discuss the motivation behind our approach, and the application of
the algorithm to the specific problem.

3.1 h-ACCPM Algorithm

Let f(u) denote a convex function to be minimized. In our problem of interest,
u = (ω, γ) and f is the sum of the violations. We use f ′(u) to denote the
derivative or an element of the subgradient set of f . Finally, let u

∗ be an
optimal point. By convexity of f and optimality of u

∗,

〈f ′(u),u∗ − u〉 ≤ f(u∗) − f(u) ≤ 0.

Therefore the cut 〈f ′(u),u − u
∗〉 ≥ 0 is valid at each u. A cutting plane

method uses this inequality to build a sequence of query points u
1,u2, . . .,

and a sequence of cuts 〈f ′(uk),uk − u〉 ≥ 0, with the property that

u
k+1 ∈ {u | 〈f ′(uj),uj − u〉 ≥ 0, j = 1, . . . k}.

The sets in which the query points are selected form a nested sequence whose
intersection contains all optimal solutions u

∗. The generic cutting plane algo-
rithm is sketched below

Algorithm 1

Basic iteration

(i) Select a query point u
k+1 ∈ {u | f ′(uj)T (uj − u) ≥ 0, j = 1, . . . k}.

(ii) Compute f ′(uk+1) (oracle).

(iii) Test convergence.
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More information is needed to implement steps 1 and 3. We discuss step
2 in section 3.3. Hopefully, the convergence test should guarantee f(uk+1) ≤
f(u∗) + ε, when it is activated.

The Homogeneous Analytic Center Cutting Plane Method is one such
method with nice convergence properties. The method applies to an homo-
geneous oracle, that is an oracle mapping h(v) defined on a cone K, which at
each v ∈ K satisfies the following properties:

(i) 〈h(v),v − v
∗〉 ≥ 0, ∀v

∗ ∈ V ∗.
(ii) h(tv) = h(v), ∀t > 0.
(iii) 〈h(v),v〉 = 0.

The set V ∗ ⊂ K is the solution set. The mapping f ′(u) associated with a gen-
eral convex function f(u) does not satisfy the last two hypotheses. A suitable
mapping h is constructed via an embedding of the original space into a cone
in R

n+1. The embedding is as follows. It maps any point u ∈ R
n on the ray

{v = (ut, t) ∈ R
n+1 | t > 0}. If we denote v−n the subvector of the n first

components of v ∈ R
n+1 with vn+1 > 0, the projection

v → u =
1

vn+1
v−n

yields the generator u of the ray in R
n+1. The cut in R

n translates into a cut
in the embedding space

〈h(v),v − v
∗〉 ≥ 0

where v
∗ is any point on the ray generated by u

∗ and

h(v) = (f ′(u)T ,−〈f ′(u),u〉)T . (7)

It is easy to verify that 〈h(v),v〉 = 0. Hence,

〈h(v),v − v
∗〉 = −〈f ′(

v−n

vn+1
),v∗

−n〉 + 〈f ′(
v−n

vn+1
),

v−n

vn+1
〉v∗

n+1

= 〈f ′(u),u − u
∗〉v∗

n+1.

Since v
∗
n+1 > 0, the two inequalities 〈f ′(u),u−u

∗〉 ≥ 0 and 〈h(v),v−v
∗〉 ≥ 0

are equivalent.
At step 1, the Homogeneous Analytic Center Cutting Plane Method chooses

as query point the minimizer of the problem

v
k+1 = arg minFk(v),
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where Fk is recursively defined by

1. F0(v) = 1
2 ||v||

2 + F (v).

2. Fk(v) = Fk−1(v) − log〈h(vk),vk − v〉.
The function F (v) is a self-concordant barrier for the cone K. (In general,
F (v) = − log vn+1.)

The homogeneous cutting plane method is proved to produce a solution
f(uk+1) ≤ f(u∗) + ε with a number of iterations k at most proportional to
1/ε2, but the complexity is independent of n. It is thus pseudo-polynomial. For
a detailed convergence analysis, we refer to [7] and [10]. The iterates of the
Homogeneous Analytic Center Cutting Plane Method always satisfy v

k
n+1 > 0.

3.2 Why use the homogeneous cutting plane method?

Any optimization scheme for convex unconstrained problems could be used to
minimize (5). Our decision to use ACCPM has been guided by the following
reasons:

(i) The homogeneous version of ACCPM has been designed especially for
problems arising in cones, and thus applies naturally to the discrimination
problems. The only special requirement is to have a homogeneous oracle.
This is done by embedding the cutting plane given by the oracle into a
higher dimensional space, as done in equation (7).

(ii) For separation margin ν = 0, one of the main difficulties that is encoun-
tered in many mathematical programming approaches is to discard the null
solution ω = 0 and γ = 0. By definition, interior point methods based on
central points never take the null solution into consideration. In the par-
ticular case of h-ACCPM, the origin lies on the boundary of the domain
of the augmented barrier function Fk(v) which goes to +∞ as v goes to
0. Hence, this barrier prevents the iterates from getting too close to the
origin.

This property is useful since it enables us to meet the requirement stated
in [4]: do not resort to extraneous constraint to eliminate the null solution.

3.3 Oracles for linear and quadratic separations

We now look at the computation of step 2 of the cutting plane algorithm in
section 3.1. The parameters of the separator are the unknowns of our problem.

As noted before, the high number of decision variables ( n(n+1)
2 + n + 1) in

the full quadratic model may be a severe limitation. One straightforward im-

provement is to suppose that only some of the n(n+1)
2 variables are significant.

For instance, we consider the intermediate case where Ω is a diagonal matrix.
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Hence, we consider three types of separations in the space of attributes:

(i) Linear separation.
(ii) Quadratic separation with a diagonal matrix Ω.
(iii) Quadratic separation with triangular matrix Ω.

The misclassification error function has the desirable property of being a
convex piecewise linear in the unknown parameters, for all the three formula-
tions.

In all cases, the matrix Ω can be considered as a collection of individual
variables Ωij . Hence, the set of decision variables is viewed as a vector of
n(n+1)

2 + n + 1 components in the case of triangular matrix Ω, and 2n + 1
components in the case of diagonal matrix Ω.

Let A′
1 and A′

2 define the set of misclassified points for A1 and A2 respec-
tively. Hence,

A′
1 = {i : ai ∈ A1, e

1
i > 0},

A′
2 = {i : ai ∈ A2, e

2
i > 0}.

3.3.1 Linear separation oracle. In the linear case, we have Ω = 0. Differ-
entiating (5) in (ω, γ) yields (−ai, 1) for the points of A1, and (ai,−1) for the
points of A′

2. Thus, for any feasible point (ω, γ), the oracle output is defined
by g = g1 + g2, where

g1 = 1
|A1|

∑

i∈A′

1

(−ai, 1),

g2 = 1
|A2|

∑

i∈A′

2

(ai,−1).

3.3.2 Diagonal quadratic separation. In the case of a diagonal matrix Ω,
the gradient transforms to

g1 = 1
|A1|

∑

i∈A′

1

(−ai ⊗ ai,−ai,−1),

g2 = 1
|A2|

∑

i∈A′

2

(ai ⊗ ai,ai, 1),

where ⊗ denotes the component-wise multiplication operator for vectors.

3.3.3 General quadratic separation. For i ∈ A, let ui represent the ele-
ments of the upper-triangular matrix aia

T
i listed as a vector. Differentiating
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the objective function in (Ω,ω, γ) yields (−ui,−ai,−1) for a point of A′
1, and

(ui,ai, 1) for a point of A′
2. Hence, the gradient vector is given by g = g1 +g2,

where

g1 = 1
|A1|

∑

i∈A′

1

(−ui,−ai,−1),

g2 = 1
|A2|

∑

i∈A′

2

(ui,ai, 1).

4 Numerical experiments

4.1 Datasets and simulation procedure

We report on numerical results on data sets originating from the UCI machine
learning database [9], and follow the same simulation procedure as in [11].
Table 1 summarizes the information about our selected data sets. The third
column gives the number of attributes (total) and whether they are binary,
categorical (categ) or numeric (num). The class distribution gives the percent-
age of instances with positive and negative label.

Problem Instances binary categ. num. total class distribution (%)
breastCancer 683 9 9 34.48 / 65.52
cards 690 4 5 6 15 44.49 / 55.51
chess 3196 35 1 36 47.78 / 52.22
credit 1000 24 24 29.89 / 70.11
heartDisease 297 3 5 5 13 45.54 / 54.46
hepatitis 155 13 6 19 48.70 / 51.30
houseVotes84 435 16 16 38.62 / 61.38
ionosphere 351 1 32 33 35.90 / 64.10
liver 345 6 6 42.58 / 57.42
monks3 554 2 4 6 47.60 / 52.40
musk 476 166 166 42.99 / 57.00
pima 768 8 8 34.90 / 65.10
promotergenes 106 57 57 50.00 / 50.00
sonar 208 60 60 46.64 / 53.36
spambase 4601 57 57 39.40 / 60.60
tictactoe 958 9 9 34.66 / 65.34
titanic 2201 2 1 3 32.30 / 67.70
WDBC 569 30 30 37.26 / 62.74
WPBC 194 30 30 23.71 / 76.29

Table 1. Two-category datasets
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Compared to more general methods, the h-ACCPM is quite restrictive, in the
sense that it only accepts complete numerical data. Hence, some preprocess-
ing was necessary. Converting categorical or qualitative data into numerical
data was sometimes straightforward: for example yes/no features became 1/0
or 1/-1 variables. When a few values were missing, we simply removed the
corresponding instances. In the special case where missing values were con-
centrated in the same features, we removed the corresponding features. The
main idea was to avoid removing too many instances in order to have a fair
comparison with other methods. For example, we transformed yes/no features
with missing values into 1/0/-1 variables, 0 representing the missing value.

All variables have been scaled to zero mean and unit variance to prevent nu-
meric problems. Compared to other techniques (for example neural networks),
this does not seem to have great influence on our results.

We first considered the problem as a pure minimization problem, and ran
h-ACCPM in order to minimize the misclassification error over the complete
data sets. In the separation problem, the true objective is not the error func-
tion (distance to target of misclassified points) but the cardinality of the set
of misclassified points. We use h-ACCPM to produce (hopefully) interesting
query points. The best classification rate is not necessarily achieved at points
with the smaller total error. Indeed, outliers may tilt the separation in the
wrong way and induce many misclassifications, though with individual small
errors. In practice, we let the algorithm run for a fixed number of iterations.
We record the number of misclassified points at each iteration. The output
of the run is the separator which achieved the best classification rate. This
provides us with a separation which is optimal with respect to the existing
data sets, but gives no insights about its ability to classify unseen data.

Therefore, we performed a ten-fold cross-validation. For each data set, a
model is built on a training set containing 90% of the data, and the classifier
is evaluated on a testing set composed of the remaining 10%. We repeat the
operation 10 times with non-overlapping testing sets, so that every instance
occurs in the testing set exactly once. Training and testing set are defined
randomly.

We repeat the ten-fold cross-validation 10 times with different partitioning
of the data into training and testing sets. The following statistics are reported:

• Average value of the misclassification rates,

• Median value of the misclassification rate over the 10 cross-validation results,

• Interquartile range (IQR) of the 10-fold cross-validation results. IQR is the
difference between the first and third quartile. Exactly half of the data is
comprised in this range.
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4.1.1 Results. At the time of this submission, we mostly have results for the
linear case. The experiments for the other formulations are still in progress.

Table 2 gives the mean and median errors and the interquartile range (IQR)
for the cross-validation tests. The formulation used for the corresponding result
is listed in column 5, where L refers to Linear, QD to Quadratic Diagonal and
QT to Quadratic Triangular formulation.

dataset mean error median error IQR Formulation
breastCancer 0.76 0.73 0.24 L
cards 7.44 7.57 0.07 L
chess 1.51 1.50 0.09 L
credit 19.65 19.85 0.70 L
heartDisease 5.89 5.88 1.00 L
hepatitis 2.69 2.90 2.19 L
houseVotes84 0.51 0.46 0.35 L
ionosphere 2.59 2.56 0.29 QD
liver 21.17 21.46 1.17 QT
monks3 0.36 0.36 0.00 QT
musk 7.23 7.22 0.24 L
pima 16.31 16.34 0.71 L
promotergenes 2.53 2.36 1.41 L
sonar 8.43 8.43 0.52 L
spambase 6.74 6.75 0.16 L
tictactoe 0.07 0.00 0.07 QT
titanic 20.63 20.65 0.14 QT
WDBC 0.35 0.35 0.26 L
WPBC 6.07 6.16 0.97 L

Table 2. Results for separation problem using h-ACCPM

The linear separation can be considered as a special case of quadratic sep-
aration with a null diagonal matrix Ω. In a similar way, a diagonal matrix
is a special case of triangular matrix. Thus, the error rates should decrease
as the models become more complex. This is not always the case, mainly for
two reasons. First, the models involve more and more variables, so that the
computation effort to get good solutions increases. Since we stop the process
after a given number of iterations, we do not always achieve stabilization in
the quadratic case. Second, it appears to be more difficult to tune the different
parameters of the algorithm for quadratic separations.

However, for some datasets, like monks3, the quadratic separation causes
significant improvement. With the linear formulation this testcase has an av-
erage error of nearly 15%. For the datasets with many attributes, it appears
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necessary to determine first which attributes really contribute to an efficient
separation, so that the number of variables would be kept reasonable. Feature
selection seems to be a good way to improve the present results.

5 Conclusion

In this paper we solved a continuous optimization formulation for the dis-
crimination problem with two classes of instances. We showed that using the
Homogeneous Analytic Center Cutting Plane Method enables us to avoid the
undesired null solution without adding extraneous constraints. We solved 19
benchmark problems taken from the UCI machine learning repository and
improved the best known results on some of them.

Since the problem dimension increases when quadratic (or more sophisti-
cated) separations are calculated, our approach would probably benefit from
feature selection. The method generalizes to multicategory discrimination
problems. Implementing one-versus-rest and one-versus-one approaches is a
natural extension of this work.
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