MittelmannBndryCntrlNeum4 Class Reference

Class implementating Example 8. More...

#include <MittelmannBndryCntrlNeum.hpp>

Inheritance diagram for MittelmannBndryCntrlNeum4:

Inheritance graph
[legend]
Collaboration diagram for MittelmannBndryCntrlNeum4:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 MittelmannBndryCntrlNeum4 ()
virtual ~MittelmannBndryCntrlNeum4 ()
virtual bool InitializeProblem (Index N)
 Initialize internal parameters, where N is a parameter determining the problme size.

Protected Member Functions

virtual Number y_d_cont (Number x1, Number x2) const
 Target profile function for y.
virtual Number d_cont (Number x1, Number x2, Number y) const
 Forcing function for the elliptic equation.
virtual Number d_cont_dy (Number x1, Number x2, Number y) const
 First partial derivative of forcing function w.r.t.
virtual Number d_cont_dydy (Number x1, Number x2, Number y) const
 Second partial derivative of forcing function w.r.t y,y.
virtual bool d_cont_dydy_alwayszero () const
 returns true if second partial derivative of d_cont w.r.t.
virtual Number b_cont (Number x1, Number x2, Number y, Number u) const
 Function in Neuman boundary condition.
virtual Number b_cont_dy (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_du (Number x1, Number x2, Number y, Number u) const
 First partial derivative of b_cont w.r.t.
virtual Number b_cont_dydy (Number x1, Number x2, Number y, Number u) const
 Second partial derivative of b_cont w.r.t.
virtual bool b_cont_dydy_alwayszero () const
 returns true if second partial derivative of b_cont w.r.t.

Private Member Functions

hide implicitly defined contructors copy operators
 MittelmannBndryCntrlNeum4 (const MittelmannBndryCntrlNeum4 &)
MittelmannBndryCntrlNeum4operator= (const MittelmannBndryCntrlNeum4 &)

Detailed Description

Class implementating Example 8.

Definition at line 490 of file MittelmannBndryCntrlNeum.hpp.


Constructor & Destructor Documentation

MittelmannBndryCntrlNeum4::MittelmannBndryCntrlNeum4 (  )  [inline]

Definition at line 493 of file MittelmannBndryCntrlNeum.hpp.

virtual MittelmannBndryCntrlNeum4::~MittelmannBndryCntrlNeum4 (  )  [inline, virtual]

Definition at line 496 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum4::MittelmannBndryCntrlNeum4 ( const MittelmannBndryCntrlNeum4  )  [private]


Member Function Documentation

virtual bool MittelmannBndryCntrlNeum4::InitializeProblem ( Index  N  )  [inline, virtual]

Initialize internal parameters, where N is a parameter determining the problme size.

This returns false, if N has an invalid value.

Implements RegisteredTNLP.

Definition at line 499 of file MittelmannBndryCntrlNeum.hpp.

References MittelmannBndryCntrlNeumBase::SetBaseParameters().

virtual Number MittelmannBndryCntrlNeum4::y_d_cont ( Number  x1,
Number  x2 
) const [inline, protected, virtual]

Target profile function for y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 517 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::d_cont ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Forcing function for the elliptic equation.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 522 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::d_cont_dy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

First partial derivative of forcing function w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 527 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::d_cont_dydy ( Number  x1,
Number  x2,
Number  y 
) const [inline, protected, virtual]

Second partial derivative of forcing function w.r.t y,y.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 532 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum4::d_cont_dydy_alwayszero (  )  const [inline, protected, virtual]

returns true if second partial derivative of d_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 538 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::b_cont ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Function in Neuman boundary condition.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 543 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::b_cont_dy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 548 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::b_cont_du ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

First partial derivative of b_cont w.r.t.

u

Implements MittelmannBndryCntrlNeumBase.

Definition at line 553 of file MittelmannBndryCntrlNeum.hpp.

virtual Number MittelmannBndryCntrlNeum4::b_cont_dydy ( Number  x1,
Number  x2,
Number  y,
Number  u 
) const [inline, protected, virtual]

Second partial derivative of b_cont w.r.t.

y,y

Implements MittelmannBndryCntrlNeumBase.

Definition at line 558 of file MittelmannBndryCntrlNeum.hpp.

virtual bool MittelmannBndryCntrlNeum4::b_cont_dydy_alwayszero (  )  const [inline, protected, virtual]

returns true if second partial derivative of b_cont w.r.t.

y,y is always zero.

Implements MittelmannBndryCntrlNeumBase.

Definition at line 564 of file MittelmannBndryCntrlNeum.hpp.

MittelmannBndryCntrlNeum4& MittelmannBndryCntrlNeum4::operator= ( const MittelmannBndryCntrlNeum4  )  [private]


The documentation for this class was generated from the following file:
Generated on Sun Nov 28 03:04:07 2010 by  doxygen 1.4.7