
Introduction to ipoptr: an R interface to Ipopt ∗

Jelmer Ypma

November 24, 2010

Abstract

This document describes how to use ipoptr, which is an R interface to
Ipopt (Interior Point Optimizer). Ipopt is an open source software package
for large-scale nonlinear optimization (Wächter & Biegler, 2006). It can
be used to solve general nonlinear programming problems with nonlinear
constraints and lower and upper bounds for the controls. Ipopt is written
in C++ and is released as open source code under the Common Public
License (CPL). It is available from the COIN-OR initiative. The code
has been written by Carl Laird and Andreas Wächter, who is the COIN
project leader for Ipopt.

1 Introduction

Ipopt is designed to find (local) solutions of mathematical optimization problems
of the from

min
x∈Rn

f(x)

s.t. gL <= g(x) <= gU

xL <= x <= xU

where f(x) : Rn → R is the objective function, and g(x) : Rn → Rm are
the constraint functions. The vectors gL and gU denote the lower and upper
bounds on the constraints, and the vectors xL and xU are the bounds on the
variables x. The functions f(x) and g(x) can be nonlinear and nonconvex, but
should be twice continuously differentiable. Note that equality constraints can
be formulated in the above formulation by setting the corresponding components
of gL and gU to the same value.

This vignette describes how to formulate minimization problems to be solved
with the R interface to Ipopt. If you want to use the C++ interface directly or
are interested in the Matlab interface, there are other sources of documentation
avialable. Some of the information here is heavily based on the Ipopt Wiki1

and generally that is a good source to find additional information, for instance

∗This package should be considered in beta and comments about any aspect of the package
are welcome. Thanks to Alexios Ghalanos for comments. This document is an R vignette
prepared with the aid of Sweave, Leisch(2002). Financial support of the UK Economic and
Social Research Council through a grant (RES-589-28-0001) to the ESRC Centre for Microdata
Methods and Practice (CeMMAP) is gratefully acknowledged.

1https://projects.coin-or.org/Ipopt

1

on which options to use. All credit for implementing the C++ code for Ipopt
should go to Andreas Wächter and Carl Laird. Please show your appreciation
by citing their paper.

2 Installation

Installing the ipoptr package is not as straightforward as most other R packages,
because it depends on Ipopt. To install (and compile) Ipopt and the R interface
a C/C++ compiler has to be available. On Windows I was succesful using
MSYS to compile Ipopt and then use Rtools2 to compile the R interface from
source. On Ubuntu no additional tools were needed.

Detailed installation instructions for Ipopt are available on http://www.coin-

or.org/Ipopt/documentation. You should follow these first, before trying to
install the R interface. Ipopt needs to be configured using the -fPIC flag for all
GNU compilers. For 64bit Linux one needs to specify

ADD_CXXFLAGS='-fPIC' ADD_FFLAGS='-fPIC' ADD_CFLAGS='-fPIC'

For the installation of the R interface, I will assume that you have a working
installation of Ipopt (i.e. configure, make and make install executed without
problems).

During the installation of Ipopt a file Makevars has been created in the source
directory of the R interface, e.g. $IPOPTDIR/build/Ipopt/contrib/RInterface/src
if you used the same build directory as in the Ipopt installation notes, $IPOPTDIR/build.
The file Makevars in this directory has been configured for your system.

To install the R interface, this file has to be copied to the Ipopt directory
containing the source code, $IPOPTDIR/Ipopt/contrib/RInterface/src. No-
tice that the path of this directory is different from the directory where you
built Ipopt (build is not there).

The source directory $IPOPTDIR/Ipopt/contrib/RInterface/src contains
four files, ipoptr.cpp, IpoptRNLP.cpp, IpoptRNLP.hpp and Makevars.in. Copy
Makevars in this directory and, if you’re on Windows, rename it to Makevars.win.

You can then install the package from R with the command

> install.packages('$IPOPTDIR/Ipopt/contrib/RInterface', repos=NULL, type='source')

where the first argument specifies the directory where the source code for the R
interface to Ipopt is located. You should now be able to load the R interface to
Ipopt and read the help.

> library('ipoptr')

> ?ipoptr

3 Minimizing the Rosenbrock Banana function

As a first example we will solve an unconstrained minimization problem. The
function we look at is the Rosenbrock Banana function

f(x) = 100
(
x2 − x21

)2
+ (1− x1)

2
,

2http://www.murdoch-sutherland.com/Rtools/

2

which is also used as an example in the documentation for the standard R
optimizer optim. The gradient of the objective function is given by

∇f(x) =

(
−400 · x1 · (x2 − x21)− 2 · (1− x1)

200 · (x2 − x21)

)
.

Ipopt always needs gradients to be supplied by the user. After loading the
library

> library(ipoptr)

we start by specifying the objective function and its gradient

> ## Rosenbrock Banana function

> eval_f <- function(x) {

return(100 * (x[2] - x[1] * x[1])^2 + (1 - x[1])^2)

}

> ## Gradient of Rosenbrock Banana function

> eval_grad_f <- function(x) {

return(c(-400 * x[1] * (x[2] - x[1] * x[1]) - 2 * (1 - x[1]),

200 * (x[2] - x[1] * x[1])))

}

We define initial values

> # initial values

> x0 <- c(-1.2, 1)

and then minimize the function using the ipoptr command. This command
runs some checks on the supplied inputs and returns an object with the exit
code of the solver, the optimal value of the objective function and the solution.
The checks do not always return very informative messages, but usually there
is something wrong with dimensions (e.g. eval_grad_f returns a vector that
doesn’t have the same size as x0).

> # solve Rosenbrock Banana function

> res <- ipoptr(x0=x0,

eval_f=eval_f,

eval_grad_f=eval_grad_f)

These are the minimal arguments that have to be supplied. If, like above, no
Hessian is defined, Ipopt uses an approximation. We can see the results by
printing the resulting object.

> print(res)

Call:

ipoptr(x0 = x0, eval_f = eval_f, eval_grad_f = eval_grad_f)

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

3

convergence tolerances (can be specified by options).)

Number of Iterations....: 47

Optimal value of objective function: 3.09761879321718e-19

Optimal value of controls: 1 1

It’s advised to always check the exit code for convergence of the problem and in
this case we can see that the algorithm terminated successfully. Ipopt used 47
iterations to find the solution and the optimal value of the objective function
and the controls are given as well.

If you do not want to, or cannot calculate the gradient analytically, you
can supply a function eval_grad_f that approximates the gradient. However,
this is not advisable and might result in convergence problems, for instance by
not finding the minimum, or by finding the wrong minimum. We can see this
from the following example where we approximate eval_grad_f using finite
differences

> # Approximate eval_f using finite differences

> # http://en.wikipedia.org/wiki/Numerical_differentiation

> approx_grad_f <- function(x) {

minAbsValue <- 0

stepSize <- sqrt(.Machine$double.eps)

if we evaluate at 0, we need a different step size

stepSizeVec <- ifelse(abs(x) <= minAbsValue,

stepSize^3,

x * stepSize)

x_prime <- x

f <- eval_f(x)

grad_f <- rep(0, length(x))

for (i in 1:length(x)) {

x_prime[i] <- x[i] + stepSizeVec[i]

stepSizeVec[i] <- x_prime[i] - x[i]

f_prime <- eval_f(x_prime)

grad_f[i] <- (f_prime - f)/stepSizeVec[i]

x_prime[i] <- x[i]

}

return(grad_f)

}

and using this approximation to minimize the same Rosenbrock Banana func-
tion.

> # increase the maximum number of iterations

> opts <- list("tol"=1.0e-8, "max_iter"=5000)

> # solve Rosenbrock Banana function with approximated gradient

> print(ipoptr(x0=x0,

eval_f=eval_f,

4

eval_grad_f=approx_grad_f,

opts=opts))

Call:

ipoptr(x0 = x0, eval_f = eval_f, eval_grad_f = approx_grad_f,

opts = opts)

Ipopt solver status: 1 (MAXITER_EXCEEDED: Maximum number

of iterations exceeded (can be specified by an option).)

Number of Iterations....: 5000

Current value of objective function: 1.9797550219875e-11

Current value of controls: 0.9999956 0.999991

In this case 5000 iterations are not enough to solve the minimization problem
to the required tolerance. This has to do with the step size we choose to ap-
proximate the gradient

> sqrt(.Machine$double.eps)

[1] 1.490116e-08

which is of the same order of magnitude. If we decrease the tolerance, the
algorithm converges, but the solution is less precise than if we supply gradients
and it takes more iterations to get there.

> # decrease the convergence criterium

> opts <- list("tol"=1.0e-7)

> # solve Rosenbrock Banana function with approximated gradient

> print(ipoptr(x0=x0,

eval_f=eval_f,

eval_grad_f=approx_grad_f,

opts=opts))

Call:

ipoptr(x0 = x0, eval_f = eval_f, eval_grad_f = approx_grad_f,

opts = opts)

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

convergence tolerances (can be specified by options).)

Number of Iterations....: 50

Optimal value of objective function: 1.98034174754174e-11

Optimal value of controls: 0.9999956 0.999991

4 Sparse matrix structure

Ipopt can handle sparseness in the Jacobian of the constraints and the Hes-
sian. The sparseness structure should be defined in advance and stay the same

5

throughout the minimization procedure. A sparseness structure can be defined
as a list of vectors, where each vector contains the indices of the non-zero ele-
ments of one row. E.g. the matrix . . . 1

1 1 . .
1 1 1 1

has a non-zero element in position 4 in the first row. In the second row it
has non-zero elements in position 1 and 2, and the third row contains non-zero
elements at every position. Its structure can be defined as

> sparse_structure <- list(c(4), c(1, 2), c(1, 2, 3, 4))

The function make.sparse can simplify this procedure

> make.sparse(rbind(c(0, 0, 0, 1), c(1, 1, 0, 0), c(1, 1, 1, 1)))

[[1]]

[1] 4

[[2]]

[1] 1 2

[[3]]

[1] 1 2 3 4

This function takes a matrix as argument. All non-zero elements in this matrix
will be defined as non-zero in the sparseness structure, NA or NaN are not allowed.
The function print.sparseness shows the non-zero elements

> print.sparseness(sparse_structure)

1 2 3 4

1 . . . 1

2 2 3 . .

3 4 5 6 7

By default print.sparseness shows the indices of the non-zero elements in the
sparse matrix. Values for the non-zero elements of a sparse matrix have to be
supplied in one vector, in the same order as the the non-zero elements occur
in the structure. I.e. the order of the indices matters and the values of the
following two matrices should be supplied in a different order

> print.sparseness(list(c(1,3,6,8), c(2,5), c(3,7,9)))

1 2 3 4 5 6 7 8 9

1 1 . 2 . . 3 . 4 .

2 . 5 . . 6

3 . . 7 . . . 8 . 9

> print.sparseness(list(c(3,1,6,8), c(2,5), c(3,9,7)))

1 2 3 4 5 6 7 8 9

1 2 . 1 . . 3 . 4 .

2 . 5 . . 6

3 . . 7 . . . 9 . 8

6

Since the sparseness structure defines the indices of non-zero elements by row,
the order of the rows cannot be changed in the R implementation. In principle
a more general order of the non-zero elements (independent of row or column)
could be specified, which can be added as a feature on request. Below are
two final examples on sparseness structure (see ?print.sparseness for more
options and examples)

> # print lower-diagonal 5x5 matrix generated with make.sparse

> A_lower <- make.sparse(lower.tri(matrix(1, nrow=5, ncol=5), diag=TRUE))

> print.sparseness(A_lower)

1 2 3 4 5

1 1

2 2 3 . . .

3 4 5 6 . .

4 7 8 9 10 .

5 11 12 13 14 15

> # print a diagonal 5x5 matrix without indices counts

> A_diag <- make.sparse(diag(5) > 0)

> print.sparseness(A_diag, indices=FALSE)

1 2 3 4 5

1 x

2 . x . . .

3 . . x . .

4 . . . x .

5 x

For larger matrices it is easier to plot them using the plot.sparseness

command

> s <- do.call("cbind", lapply(1:5, function(i) {

diag(5) %x% matrix(1, nrow=5, ncol=20)

}))

> s <- do.call("rbind", lapply(1:5, function(i) { s }))

> s <- cbind(matrix(1, nrow=nrow(s), ncol=40), s)

> plot.sparseness(make.sparse(s))

The resulting sparse matrix structure from this code can be seen in figure 1. All
non-zero elements are shown as black dots by default.

5 Supplying the Hessian

Now that we know how to define a sparseness structure we can supply the
Hessian to the Rosenbrock Banana function from above. Its Hessian is given by

∇2f(x) =

(
2− 400 · (x2 − x21) + 800x21 −400x1

−400x1 200

)
Ipopt needs the Hessian of the Lagrangian in the following form

σf∇2f(x) +

m∑
i=1

λi∇2gi(x),

7

100 200 300 400 500

12
0

60
20

indices.x

in
di

ce
s.

y

Figure 1: Plot of large sparseness structure

where gi(x) represents the ith of m constraints, λi are the multipliers of the
constraints and σf is introduced so that Ipopt can ask for the Hessian of the
objective or the constraints independently if required.

In this case we don’t have any constraints. The user-defined function eval_h

to define the Hessian takes three arguments. The first argument contains the
value of the control variables, x, the second argument contains the multiplication
factor of the Hessian of the objective function, σf , and the third argument
contains a vector with the multipliers of the constraints, λ. We can define the
structure of the Hessian and the function to evaluate the Hessian as follows

> # The Hessian for this problem is actually dense,

> # This is a symmetric matrix, fill the lower left triangle only.

> eval_h_structure <- list(c(1), c(1,2))

> eval_h <- function(x, obj_factor, hessian_lambda) {

return(obj_factor*c(2 - 400*(x[2] - x[1]^2) + 800*x[1]^2, # 1,1

-400*x[1], # 2,1

200)) # 2,2

}

Note that we only specify the lower half of the Hessian, since it is a symmetric
matrix. Also, eval_h returns a vector with all the non-zero elements of the
Hessian in the same order as the non-zero indices in the sparseness structure.
Then we minimize the function using the ipoptr command

> opts <- list("print_level"=0,

"file_print_level"=12,

"output_file"="banana.out",

"tol"=1.0e-8)

> # solve Rosenbrock Banana function with analytic Hessian

> print(ipoptr(x0=x0,

eval_f=eval_f,

eval_grad_f=eval_grad_f,

eval_h=eval_h,

eval_h_structure=eval_h_structure,

opts=opts))

8

Call:

ipoptr(x0 = x0, eval_f = eval_f, eval_grad_f = eval_grad_f, eval_h = eval_h,

eval_h_structure = eval_h_structure, opts = opts)

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

convergence tolerances (can be specified by options).)

Number of Iterations....: 21

Optimal value of objective function: 3.74397564313947e-21

Optimal value of controls: 1 1

Here we also supplied options to not print any intermediate information to the
R screen (print_level=0). Printing output to the screen directly from Ipopt
does not work in all R terminals correctly, so it might be that even though you
specify a positive number here, there will still be no output visible on the screen.
If you want to print things to the screen, a workaround is to do this directly in
the R functions you defined, such as eval_f.

Also, to inspect more details about the minimization we can write all the
output to a file, which will be created in the current working directory. For
larger problems, having a large number for file_print_level can easily gen-
erate very large files, which is probably not desirable. Many more options are
available, and a full list of all the options can be found at the Ipopt website,
http://www.coin-or.org/Ipopt/documentation/node59.html#app.options_ref.
Options can also be supplied from an option file, which can be specified in
option_file_name.

6 Adding constraints

To look at how we can add constraints to a problem, we take example problem
number 71 from the Hock-Schittkowsky test suite, which is also used in the
Ipopt C++ tutorial. The problem is

min
x
x1 · x4 · (x1 + x2 + x3) + x3

s.t.

x1 · x2 · x3 · x4 >= 25

x21 + x22 + x23 + x24 = 40

1 <= x1, x2, x3, x4 <= 5,

and we use x = (1, 5, 5, 1) as initial values. In this problem we have one inequal-
ity constraint, one equality constraint and upper and lower bounds for all the
variables. The optimal solution is (1.00000000, 4.74299963, 3.82114998, 1.37940829).
First we define the objective function and its gradient

> eval_f <- function(x) {

return(x[1]*x[4]*(x[1] + x[2] + x[3]) + x[3])

}

9

> eval_grad_f <- function(x) {

return(c(x[1] * x[4] + x[4] * (x[1] + x[2] + x[3]),

x[1] * x[4],

x[1] * x[4] + 1.0,

x[1] * (x[1] + x[2] + x[3])))

}

Then we define a function that returns the value of the two constraints. We
define the bounds of the constraints (in this case the gL and gU are 25 and 40)
later.

> # constraint functions

> eval_g <- function(x) {

return(c(x[1] * x[2] * x[3] * x[4],

x[1]^2 + x[2]^2 + x[3]^2 + x[4]^2))

}

Then we define the structure of the Jacobian, which is a dense matrix in this
case, and function to evaluate it

> eval_jac_g_structure <- list(c(1,2,3,4), c(1,2,3,4))

> eval_jac_g <- function(x) {

return(c (x[2]*x[3]*x[4],

x[1]*x[3]*x[4],

x[1]*x[2]*x[4],

x[1]*x[2]*x[3],

2.0*x[1],

2.0*x[2],

2.0*x[3],

2.0*x[4]))

}

The Hessian is also dense, but it looks slightly more complicated because we have
to take into account the Hessian of the objective function and of the constraints
at the same time, although you could write a function to calculate them both
separately and then return the combined result in eval_h.

> # The Hessian for this problem is actually dense,

> # This is a symmetric matrix, fill the lower left triangle only.

> eval_h_structure <- list(c(1), c(1,2), c(1,2,3), c(1,2,3,4))

> eval_h <- function(x, obj_factor, hessian_lambda) {

values <- numeric(10)

values[1] = obj_factor * (2*x[4]) # 1,1

values[2] = obj_factor * (x[4]) # 2,1

values[3] = 0 # 2,2

values[4] = obj_factor * (x[4]) # 3,1

values[5] = 0 # 4,2

values[6] = 0 # 3,3

10

values[7] = obj_factor * (2*x[1] + x[2] + x[3]) # 4,1

values[8] = obj_factor * (x[1]) # 4,2

values[9] = obj_factor * (x[1]) # 4,3

values[10] = 0 # 4,4

add the portion for the first constraint

values[2] = values[2] + hessian_lambda[1] * (x[3] * x[4]) # 2,1

values[4] = values[4] + hessian_lambda[1] * (x[2] * x[4]) # 3,1

values[5] = values[5] + hessian_lambda[1] * (x[1] * x[4]) # 3,2

values[7] = values[7] + hessian_lambda[1] * (x[2] * x[3]) # 4,1

values[8] = values[8] + hessian_lambda[1] * (x[1] * x[3]) # 4,2

values[9] = values[9] + hessian_lambda[1] * (x[1] * x[2]) # 4,3

add the portion for the second constraint

values[1] = values[1] + hessian_lambda[2] * 2 # 1,1

values[3] = values[3] + hessian_lambda[2] * 2 # 2,2

values[6] = values[6] + hessian_lambda[2] * 2 # 3,3

values[10] = values[10] + hessian_lambda[2] * 2 # 4,4

return (values)

}

After the hard part is done, we only have to define the initial values, the lower
and upper bounds of the control variables, and the lower and upper bounds
of the constraints. If a variable or a constraint does not have lower or upper
bounds, the values -Inf or Inf can be used. If the upper and lower bounds of
a constraint are equal, Ipopt recognizes this as an equality constraint and acts
accordingly.

> # initial values

> x0 <- c(1, 5, 5, 1)

> # lower and upper bounds of control

> lb <- c(1, 1, 1, 1)

> ub <- c(5, 5, 5, 5)

> # lower and upper bounds of constraints

> constraint_lb <- c(25, 40)

> constraint_ub <- c(Inf, 40)

> opts <- list("print_level"=0,

"file_print_level"=12,

"output_file"="hs071_nlp.out")

> print(ipoptr(x0=x0,

eval_f=eval_f,

eval_grad_f=eval_grad_f,

lb=lb,

ub=ub,

eval_g=eval_g,

eval_jac_g=eval_jac_g,

constraint_lb=constraint_lb,

11

constraint_ub=constraint_ub,

eval_jac_g_structure=eval_jac_g_structure,

eval_h=eval_h,

eval_h_structure=eval_h_structure,

opts=opts))

Call:

ipoptr(x0 = x0, eval_f = eval_f, eval_grad_f = eval_grad_f, lb = lb,

ub = ub, eval_g = eval_g, eval_jac_g = eval_jac_g, eval_jac_g_structure = eval_jac_g_structure,

constraint_lb = constraint_lb, constraint_ub = constraint_ub,

eval_h = eval_h, eval_h_structure = eval_h_structure, opts = opts)

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

convergence tolerances (can be specified by options).)

Number of Iterations....: 8

Optimal value of objective function: 17.0140171451792

Optimal value of controls: 1 4.743 3.82115 1.379408

7 Using data

The final subject we have to cover, is how to pass data to an objective function or
the constraints. There are two ways to do this. The first is to supply additional
arguments to the user defined functions and ipoptr. The second way is to define
an environment that holds the data and pass this environment to ipoptr. Both
methods are shown in tests/parameters.R.

As a very simple example3 suppose we want to find the minimum of

f(x) = a1x
2 + a2x+ a3

for different values of the parameters a1, a2 and a3.
First we define the objective function and its gradient using, assuming that

there is some variable params that contains the values of the parameters.

> eval_f_ex1 <- function(x, params) {

return(params[1]*x^2 + params[2]*x + params[3])

}

> eval_grad_f_ex1 <- function(x, params) {

return(2*params[1]*x + params[2])

}

Note that the first parameter should always be the control variable. All of the
user-defined functions should contain the same set of additional parameters.
You have to supply them as input argument to all functions, even if you’re not
using them in some of the functions.

3A more interesting example is given in tests/lasso.R

12

Then we can solve the problem for a specific set of parameters, in this case
a1 = 1, a2 = 2 and a3 = 3, from initial value x0 = 0, with the following
command

> # solve using ipoptr with additional parameters

> ipoptr(x0 = 0,

eval_f = eval_f_ex1,

eval_grad_f = eval_grad_f_ex1,

params = c(1,2,3))

Call:

ipoptr(x0 = 0, eval_f = eval_f_ex1, eval_grad_f = eval_grad_f_ex1,

params = c(1, 2, 3))

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

convergence tolerances (can be specified by options).)

Number of Iterations....: 1

Optimal value of objective function: 2

Optimal value of controls: -1

For the second method, we don’t have to supply the parameters as additional
arguments to the function.

> eval_f_ex2 <- function(x) {

return(params[1]*x^2 + params[2]*x + params[3])

}

> eval_grad_f_ex2 <- function(x) {

return(2*params[1]*x + params[2])

}

Instead, we define an environment that contains specific values of params

> # define a new environment that contains params

> auxdata <- new.env()

> auxdata$params <- c(1,2,3)

To solve this we supply auxdata as an argument to ipoptr, which will take care
of evaluating the functions in the correct environment, so that auxiliary data is
available.

> # pass the environment that should be used to evaluate functions to ipoptr

> ipoptr(x0 = 0,

eval_f = eval_f_ex2,

eval_grad_f = eval_grad_f_ex2,

ipoptr_environment = auxdata)

Call:

ipoptr(x0 = 0, eval_f = eval_f_ex2, eval_grad_f = eval_grad_f_ex2,

ipoptr_environment = auxdata)

13

Ipopt solver status: 0 (SUCCESS: Algorithm terminated

successfully at a locally optimal point, satisfying the

convergence tolerances (can be specified by options).)

Number of Iterations....: 1

Optimal value of objective function: 2

Optimal value of controls: -1

8 Options

There are many options available, all of which are described on the Ipopt web-
site. One of the options can test whether your derivatives are correct. This op-
tion is activated by setting derivative_test to first-order or second-order
if you want to test second derivatives as well. This process can take quite some
time. To see all the output from this process you can set derivative_test_print_all
to yes, preferably when writing to a file, because of the problems with displaying
on some terminals mentioned above. Without this optios the derivative checker
only shows those lines where an error occurs if a high enough print_level is
supplied.

9 Remarks

If you run many large optimization problems in a row on Windows, at some
point you’ll get errors that Mumps is running out of memory and you won’t get
any solutions. On Linux this same problem hasn’t occurred yet.

The R terminal in Windows doesn’t show any output. The Linux one does.

References

Leisch, F. (2002). Sweave: Dynamic generation of statistical re-
ports using literate data analysis. In W. Härdle & B. Rönz
(Eds.), Compstat 2002 — proceedings in computational statistics
(pp. 575–580). Physica Verlag, Heidelberg. Available from
http://www.stat.uni-muenchen.de/ leisch/Sweave (ISBN 3-7908-
1517-9)

Wächter, A., & Biegler, L. T. (2006). On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming. Mathematical Programming , 106 (1), 25–57.

14

