
1 Introduction

This code was originally developed as an implementation of the advanced step
for Model Predictive Control (hence the name asNMPC). The names of the
suffixes also remind of this fact. On the inside, however, the code is nothing
more than a very basic implementation of a Schur Complement computation of
the Matrix [

A B
C 0

] [
x
y

]
=
[
a
b

]
(1)

where A is the KKT matrix of the interior point formulation of the optimization
problem solved by IPOPT. The point of the implementation as part of IPOPT
is the fact that A is available in factorized form for the optimal solution of
the KKT problem, which means that if B and C are small compared to A,
the computation can be completed much faster using the Schur Complement
approach.

This Schur Complement approach can be useful for different purposes. Three
application were explored so far:

• advanced step NMPC

• Parametric problems

• Computation of the Reduced Hessian Matrix

Each of these applications will be described further down. There are also
examples in the examples/ directory of this distribution.

2 The Applications

2.1 advanced step NMPC

This application is based on the structure of the optimal control problem us-
ing direct transcription methods (for example orthogonal collocation on finite
elements). The general problem formulation is

min
z(t),y(t),u(t)

∫ T

0
ψ(z(t), y(t), u(t))dt

ż(t) = f(z(t), y(t), u(t))
z(0) = w0

g(z(t), y(t), u(t)) = 0
z(t), y(t), u(t) ≥ 0

(2)

Using direct transcription methods, this problem can be transformed into an
NLP of the form

P1 min
z

φ(z)

s.t. c(z) = 0
z0 − w0 = 0

z ≥ 0

(3)

In this formulation, phi(z) is the discretized objective functional. c(z) represents
the discretized system of differential algebraic equations including for example
the collocation equations. z0 − w0 = 0 finally is the initial value condition.
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Consider now the situation where the problem is too large to be solved
within a reasonable sampling time, or the system controlled by the algorithm
is prone to stochastic disturbances that could destabilize the system. In these
cases, additional actions in between the sampling times that can be realized by
the solution of the full problem are necessary. This is where the advanced step
algorithm comes into play.

The advanced step algorithm adapts the solution of the optimal control prob-
lem of the previous sampling time to new data as it comes in. To accomodate
the new data into the model, the initial data has to be dropped - otherwise
the problem would be over-determined. Therefore, the initial condition z0−w0

is dropped, and a new constraint zt − wt is introduced, where wt is the new
measurement at time t. This time has to coincide with a mesh point of the
discretization scheme.

Using the solution to (3), the advanced step algorithm then computes an
approximation to the solution of

P1 min
z

φ(z)

s.t. c(z) = 0
zt − wt = 0
z ≥ 0

(4)

from this approximate solution, new controls adapted to the new measurement
can be extracted and applied to the controlled process. This pass can be re-
peated until a new solution to the full scale problem is available.

The advanced step NMPC algorithm provides greatly increased stability
properties for complex problems. For a detailled analysis see [2, 3]

2.2 Parametric Sensitivity

Though it was not designed for this purpose, the methodology described above
for the initial values can be applied to general parametric NLPs of the form

min
x

f(x, η)

s.t. c(x, η) = 0
x ≥ 0

(5)

where η is a parameter that is considered fixed for each instance of the opti-
mization problem. If this problem is reformulated as

min
x

f(x, η)

s.t. c(x, η) = 0
η − η0 = 0
x ≥ 0

(6)

the sensitivity with respect to a perturbation etap − η0 can be computed by
applying the above advanced step algorithm with t = 0, replacing the equation
η − η0 with η − ηp.

2.3 Reduced Hessian Information

The reduced hessian matrix is defined as the projection of the hessian of the
Lagrangian onto the nullspace of the constraint jacobian. It holds information
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about the curvature and direction at the solution, which is of great importance
in many problem areas.

In Ipopt, the reduced hessian matrix is never formed. If the partition into free
and dependent variables is known beforehand, and there are no active bounds
at the solution, the inverse of the reduced hessian matrix can be extracted easily
using the above Schur complement techniques. A detailed explanation of the
mechanics of this can be found in [1], section 3.2.1.
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