
1 Introduction

The advanced step NMPC code compiles into a library that holds the code for
the Schur complement computation, and an executable which holds an interface
to AMPL. This document describes the usage of the asNMPC code using the
C++ and the AMPL interface.

2 AMPL Interface

Since many models are written in AMPL, this interface makes it very easy to
apply any of the capabilities of the AsNMPC code to your existing models. The
usage of the different tools using this AMPL interface is described below.

2.1 Advanced Step NMPC

Given a discretized DAE model of an optimal control problem in AMPL, ap-
plying the advanced step algorithm is very easy. Suppose a model

min
z

φ(z)

s.t. c(z) = 0
z0 − w0 = 0

z ≥ 0

(1)

Not that for the asNMPC formulation, there need to be explicitly defined vari-
ables z0 for the initial values (whereas usually, these are just parameters). To
define the values for these new variables, additional initial value constraints
z0 − w0 = 0 have to be added. Given this formulation, only four suffixes need
to be set to initialize the asNMPC problem:

nmpc state 0 This suffix has to be set for the initial variables z0. The suffixes
have to be set to values from 1 to length(z0). This enumeration is crucial.

nmpc state 1 This suffix has to be set for the discretized variables at timestep
t corresponding to the inital variables z0. They have to be indexed the
same way as nmpc state 0.

nmpc state value 1 This suffix holds the perturbed values for the variables
at timestep t. It has to be set for the same variables as nmpc state 1.

nmpc init constr This suffix has to be set for the inital value constraints
z0 −w0 = 0. If a constraint is an initial value constraint, set this suffix to
1 (no indexing is necessary).

If you have set these suffixes, the only thing missing is to enable the asNMPC
algorithm by setting the solver option

option ipopt_options ’run_nmpc yes’;

This option can alternatively be set in the ipopt.opt file.
To make sure that the initial value constraints are not eliminated by AMPL,

the presolve feature should be turned off as well:

option presolve 0;

1



An example implementation of the above is provided in the directory

examples/hicks_ampl

There, the asNMPC code is applied to the reactor model described in [1].
The AMPL interface as described above only works for simulations, where

the future measurement is known beforehand. Using the AMPL model definiton
with an outside measurement device is generally possible. If you intend on using
this feature in a real-time environment, please contact the author.

2.2 Parametric Sensitivity

The parametric sensitivity feature uses the same suffixes as the asNMPC al-
gorithm. The parameters need to be defined as variables and set using the
initial value constraints described above. The only difference in the parametric
case is that the suffixes nmpc state 0 and nmpc state 1 are not set for different
variables, but both for the parameters.

A small example of the parametric sensitivity feature is located in the direc-
tory

examples/parametric_ampl

2.3 Reduced Hessian

The reduced hessian feature is even easier to use. The critical problem is to
decide which variables will be free variables at the optimal solution. The free
variables have to be marked by setting the suffix

red_hessian

to 1..n, where n is the number of free variables. The columns of the inverse
reduced hessian, which will be printed, is determined by the ordering of these
indices.

An example of the reduced hessian calculation can be found in

examples/red_hess_ampl

3 C++ Interface

The C++ interface is very simple to apply to an existing Ipopt::TNLP imple-
mentation. With the member function TNLP::::get var con metadata, Ipopt
provides a feature very similar to that of AMPL suffixes.

The procedure of making a TNLP class capable to be used with the asNMPC
code follows the same lines as in AMPL. First, the parameters / initial values
have to be introduced as variables. Then, the initial value equations need to be
added to the constraints, and the jacobian computation has to be adjusted ac-
cordingly. Finally, the suffixes have to be set the same way they would in AMPL
as described above, using the member function TNLP::::get var con metadata.
This is illustrated in the examples examples/redhess cpp and examples/parametric cpp

2



4 Options

There are several new options that can be set in the ipopt.opt file, that de-
termine the behavior of the asNMPC code. The most important options are
the ones that turn the execution of the additional post-optimal code on and off.
These options are

run_nmpc yes

for the advanced step and parametric sensitivity computation, and

compute_red_hessian yes

for the reduced hessian computation.
Further options for the advanced step code are

select step This option determines which formula is used to compute the ad-
vanced step. The options are advanced for the full advanced step with
Schur complement and multiplier correction, sensitivity for the Schur
step without multiplier correction, and ift for the fast backsolve without
Schur complement computation.

n nmpc steps In general, the advanced step is designed to accomodate an
arbitrary number of advanced steps. Right now, however, this value has
to be set to either 0 or 1.

nmpc boundcheck If set to yes, this option turns on the bound correction
algorithm within the advanced step.

nmpc bound eps This option sets the value by which the bounds are to be
relaxed in the boundcheck mode.

References

[1] G. A. Hicks and W. H. Ray. Approximation methods for optimal control syn-
thesis. The Canadian Journal of Chemical Engineering, 49:522–528, 1971.

3


