
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Coopr:
a COmmon Optimization Python Repository

William E. Hart
Jean-Paul Watson

Sandia National Laboratories
wehart@sandia.gov

mailto:wehart@sandia.gov�

Slide 2

Overview

GOAL: integrate Python packages related to modeling and
optimization

• coopr.opt

– Generic interfaces for optimization solvers
• coopr.pyomo

– A Pythonic math programming modeling tool
• coopr.pysos

– Create optimization applications from heterogeneous models
• coopr.pysp

– Stochastic programming extensions for Pyomo
• coopr.sucasa

– Customizing IP solvers to integrate symbolic information

Slide 3

coopr.sucasa

SUCASA: the Solver Utility for Customization with Automatic Symbol
Access

Goal: support customized MILP solvers that can leverage algebraic
problem structure

Impact: Enable customization of…

– branching strategies
– incumbent heuristics
– cutting planes
– application I/O
– etc…

Slide 4

Applying SUCASA

Idea: Customize the PICO MILP solver to integrate a class that
contains algebraic information that is exported by AMPL

Phase I:
– Parse AMPL model

sucasa --acro=<dir> -g pmedian.mod
– Generate *.map file that summarizes symbols to be exported
– Generate customized PICO classes

Phase II:
– Build customized PICO solver

make

Phase III:
– Apply customized PICO solver, using exported symbols

sucasa pmedian.mod pmedian.dat

Slide 5

Capturing Symbolic Information

Default behavior: capture symbolic information for
– Variables
– Constraints
– Associated sets needed to index these symbols

AMPL comments can be used to expose the symbols for sets and
parameters

Example: expose all set and parameter symbols

SUCASA SYMBOLS: *

Example: expose the N and Locations symbols

SUCASA SYMBOLS: N Locations

Slide 6

Example: Variable and Constraint Indexing

• Variables are indexed by tuples and explicit indices:

– x(tuple)
– x(index1,index2)

• These methods return integer indices into the list of variables used
by PICO

• Methods can be used to test whether tuples or indices are valid:

– x_isvalid(tuple)
– x_isvalid(index1, index2)

• The set of valid indices is returned by the x_valid() method

• Similar methods are available for constraints

– The indexing functions return the constraint index

Slide 7

coopr.pysos

PYSOS: a Python framework for composing optimization formulations
from heterogeneous components

Idea: integrate modeling components like…

– Python classes
– Excel spreadsheets
– MILP formulations
– Etc…

Goal: coordinate the interface between components

– Map outputs from one component to inputs of another
– Cache component input/output values
– Automate the execution of components

Slide 8

coopr.opt

Coopr Opt: a Python framework managing the execution of
optimization solvers

Idea: Provide high-level components for
– Problems
– Solvers
– Problem converters
– Solver managers

Note: this capability is complementary to the COIN-OR optimization
services (OS) project

– OS defines XML standards and remote execution API
– Coopr defines an API for managing optimization instances
– TBD: develop a solver manager that uses OS services to apply

solvers

Slide 9

A Simple Example

Idea: solve a MIP instance that is defined in a NL input file

import coopr.opt

opt = coopr.opt.SolverFactory(‘glpk’)
results = opt.solve(‘foo.nl’, log=‘foo.log’)
results.write(‘foo.soln’)

foo.nl Solver

SolverFactory

Converter

ConverterFactory

foo.mps glpsol

foo.log

SolverResults

Slide 10

Plugin Components

Goal: Support a dynamic, extensible software capability

Idea:
– Decompose software into distinct components
– Components interact through well-defined interfaces
– The plugin framework manages the interaction of components

Traditional Implementation:
– Optimization base class: defines solver API
– Optimization sub-classes: implement API for different solvers
– Solvers are explicitly included in software (e.g. import

statements)

Plugin Implementation:
– Optimization interface class: defines solver API
– Optimization plugin classes: implement API for different solvers
– Plugin framework manages registration of solvers

Slide 11

coopr.opt Plugins

IProblemWriter – Plugins that write optimization problems

IProblemConverter – Plugins that convert from one optimization
problem format to another

IResultsReader – Plugins that read optimization results

IOptSolver – Plugins that apply optimization solvers

Slide 12

Plugins Impact

• Support extensibility by core-developers without risk of destabilizing core
functionality

– Development of new solver plugins will not impact Coopr core

• Let third-party developers add value without requiring direct involvement
of the core developers

– Extensions can be developed and distributed without modifying
Coopr’s Python distribution

• Automate activation of external software interfaces, based on user
environment

– Automatically register optimization solvers that are found on the
user’s path

• Support run-time loading of new software capabilities
– Load Python EGG files with custom Coopr extensions

Slide 13

coopr.pyomo

Idea: Support mathematical modeling of integer programs in Python

Goals/Requirements:
– Flexible Open Source License
– Customizable Capability

• “Stone Soup” programming model
– Solver Integration

• Support both loosely and tightly coupled solver integration
– Abstract Model Declarations

• Separate modeling and data declarations
– Flexible Programming Language

• A clean syntax, rich set of data types, support for object
oriented programming, easily extensible, well-supported,
well-documented, standard library, etc.

– Portability

Slide 14

Why Python?

• Flexible Open Source License

• Features
– A clean syntax, rich set of data types, support for object oriented

programming, namespaces, exceptions, etc.

• Support and Stability
– Highly stable and well-supported

• Documentation
– Extensive online documentation and several excellent books

• Standard Library
– Includes a large number of useful modules

• Extendibility and Customization
– Simple model for loading Python code developed by a user
– Can easily integrate libraries that optimize compute kernels

• Portability

Slide 15

AMPL Example: prod.mod

set P;

param a {j in P};

param b ;

param c {j in P};

param u {j in P};

var X {j in P};

maximize Total_Profit:

sum {j in P} c[j] * X[j];

subject to Time:

sum {j in P} (1/ a[j]) * X[j] <= b;

subject to Limit {j in P}:

0 <= X[j] <= u[j];

Slide 16

AMPL Example: prod.dat

data;

set P := bands coils;

param: a c u :=

bands 200 25 6000

coils 140 30 4000 ;

param b := 40;

Slide 17

Pyomo Example: prod.py (1)

#

Coopr import

#

from coopr.pyomo import *

#

Setup the model

#

example = Model(name=“Prod Example”)

#

Declare sets, parameters and variables

#

example.P = Set()

example.a = Param(example.P)

example.b = Param()

example.c = Param(example.P)

example.u = Param(example.P)

example.X = Var(example.P)

Slide 18

Pyomo Example: prod.py (2)

Declare objective rule and create object

def Objective_rule(instance):

return summation(instance.c, instance.X)

example.Total_Profit = Objective(rule=Objective_rule,

sense=maximize)

Declare Time constraint rule and create object

def Time_rule(instance):

expr = summation(instance.X, denom=instance.a)

return expr < instance.b

example.Time = Constraint(rule=Time_rule)

Declare Limit constraint rule and create object

def Limit_rule(j, instance):

return(0, instance.X[j], instance.u[j])

example.Limit = Constraint(example.P, rule=Limit_rule)

Slide 19

Solving a Pyomo Model within Python

#

Import the prod.py file

from coopr.pyomo import *

import prod

#

Create the model instance

instance = prod.example.create("prod.dat")

#

Setup the optimizer

opt = solvers.SolverFactory("glpk")

#

Optimize

results = opt.solve(instance)

#

Write the output

results.write(num=1)

Slide 20

Pyomo Scalability

Idea: compare Pyomo and AMPL on random p-median instances

– Pyomo is tested without garbage collection, which helps…

Slide 21

coopr.pysp

PYSP: an extension of Pyomo to support stochastic programming

Idea: augment Pyomo to include

– Stochastic programming decomposition techniques
– Progressive hedging
– A Pythonic representation of scenario trees
– Etc…

NOTE: more details in Jean-Paul’s talk

Slide 22

Getting Started (1)

• Download coopr_install

wget https://software.sandia.gov/trac/coopr/export/1543/trunk/scripts/coopr_install

(See the Coopr wiki: https://software.sandia.gov/svn/trac/coopr)

• Run coopr_install

./coopr_install coopr

• Use sucasa, pyomo, etc, with the virtual Python environment

% coopr/bin/python

>>> Import coopr.opt

<etc>

https://software.sandia.gov/trac/coopr/export/1543/trunk/scripts/coopr_install�
https://software.sandia.gov/svn/trac/coopr�

Slide 23

Getting Started (2)

• Download acro-pico

svn checkout https://software.sandia.gov/svn/public/acro/acro-pico/trunk acro

(See the Acro wiki: https://software.sandia.gov/svn/trac/acro)

• Build Acro

cd acro
./setup configure build

• Use sucasa, pyomo, etc, with the virtual Python environment

% acro/python/bin/python
>>> Import coopr.opt
<etc>

https://software.sandia.gov/svn/public/acro/acro-pico/trunk�

Slide 24

Coopr Releases

Coopr 1.0 – January, 2009
– Initial Release

Coopr 1.1 – September, 2009
– Addition of PYSP
– Major improvements to SUCASA
– Addition of Coopr plugins
– Addition of the coopr_install utility
– Parallel solver manager
– Optimization of Pyomo runtime performance

Online Resources:
– Wiki https://software.sandia.gov/trac/coopr
– Coopr Forum http://code.google.com/p/coopr-forum/

	Coopr:�a COmmon Optimization Python Repository
	Overview
	coopr.sucasa
	Applying SUCASA
	Capturing Symbolic Information
	Example: Variable and Constraint Indexing
	coopr.pysos
	coopr.opt
	A Simple Example
	Plugin Components
	coopr.opt Plugins
	Plugins Impact
	coopr.pyomo
	Why Python?
	AMPL Example: prod.mod
	AMPL Example: prod.dat
	Pyomo Example: prod.py			 (1)
	Pyomo Example: prod.py			 (2)
	Solving a Pyomo Model within Python
	Pyomo Scalability
	coopr.pysp
	Getting Started (1)
	Getting Started (2)
	Coopr Releases

