
The OS Dip Solver:

A Generic Block-Angluar Decomposition Implementation

Horand Gassmann, Jun Ma, Kipp Martin

October 8, 2010

Abstract

In this document we describe how to use the Decomposition in Integer Programming (Dip)
project with the Optimization Services (OS) project. In particular, we describe the OS Dip
solver which is a generic block-angluar decomposition algorithm. The OS Dip solver allows
users to provide their own algorithm to solve the subproblems. The code for this example is
contained in the folder ApplicationTemplates/osDip.

1



1 Introduction and Motivation

We follow the notation of Galati and Ralphs. The integer program of interest is:

zIP = min{c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Zn} (1)

The problem is divided into two constraint sets A′x ≥ b′ which we refer to as the relaxed, coupling,
or block constraints and the core constraints A′′x ≥ b′′. We then define the following polyhedron
based on the relaxed constraints.

P = conv({x ∈ Zn |A′x ≥ b′}) (2)

The LP relaxation of the origianl problem is:

zLP = min{c>x |A′x ≥ b′, A′′x ≥ b′′, x ∈ Rn} (3)

Ideally, the constraints A′x ≥ b′ should be selected so that solving ZD is an easy hard problem and
provides better bounds than ZLP .

zD = min{c>x |A′x ≥ b′, x ∈ P, x ∈ Rn} (4)

A generic block-angular decomposition algorithm is now available. It is based on the Decompo-
sition in Integer Programming (Dip) project jointly with the Optimization Services (OS) project.
We call this the OS Dip solver. It has the following features:

1. All subproblems are solved via an oracle; either the default oracle contained in our distribution
or one provided by the user.

2. The OS Dip Solver code is independent of the oracle used to optimize the subproblems.

3. Variables are assigned to blocks using an OS option file, the block definition and assignment
of variables to these blocks has no effect on the OS Dip Solver code.

4. Different blocks can be assigned different solver oracles based on the option values given in
the OSoL file.

5. There is a default oracle implemented (called OSDipBockCoinSolver) that currently uses Cbc.

6. Users can add their own oracles without altering the OS Dip Solver code. This is done via
polymorphic factories. The user creates a separate file containing the oracle class. The user-
provided Oracle class inherits from the generic OSDipBlockSolver class. The user need only:
1) add the object file name for the new oracle to the Makefile, and 2) add the necessary line
to OSDipFactoryInitializer.h indicating that the new oracle is present.

In particular, the implementation of the OS Dip solver provides a virtual class OSDipBlockSolver
with a pure virtual function solve(). The user is expected to provide a class that inherits from
OSDipBlockSolver and implements the method solve(). The solve() method should optimize
a linear objective function over P. More details are provided in Section 3. The implementation is
such that the user only has to provide a class with a solve method. The user does not have to edit
or alter any of the OS Dip Solver code. By using polymorphic factories the actual solver details are
hidden from the OS Solver. A default solver, OSDipBlockCoinSolver, is provided. This default
solver takes no advantage of special structure and simply calls COIN-OR bf Cbc.

2



2 Building and Testing the OS-Dip Example

Currently, the Decomposition in Integer Programming (Dip) package is not a dependency of the
Optimization Services (OS) package – Dip is not included in the OS Externals file. In order to
run the OS Dip solver it is necessary to download both the OS and Dip projects. Download order
is irrelevant. In the discussion that follows we assume that for both OS and Dip the user has
successfully completed a configure, make, and make install. We also assume that the user is
working with the trunk version of both OS and Dip.

The OS Dip solver C++ code is contained in TemplateApplication/osDip. The configure
will create a Makefile in the TemplateApplication/osDip folder. The Makefile must be edited
to reflect the location of the Dip project. The Makefile contains the line

DIPPATH = /Users/kmartin/coin/dip-trunk/vpath-debug/

This setting assumes that there is a lib directory:

/Users/kmartin/coin/dip-trunk/vpath-debug/lib

with the Dip library that results from make install and an include directory

/Users/kmartin/coin/dip-trunk/vpath/include

with the Dip header files generated by make install. The user should adjust

/Users/kmartin/coin/dip-trunk/vpath/

to a path containing the Dip lib and include directories. After building the executable by
executing the make command run the osdip application using the command:

./osdip --param osdip.parm

This should produce the following output.

FINISH SOLVE
Status= 0 BestLB= 16.00000 BestUB= 16.00000 Nodes= 1
SetupCPU= 0.01 SolveCPU= 0.10 TotalCPU= 0.11 SetupReal= 0.08
SetupReal= 0.12 TotalReal= 0.16
Optimal Solution
-------------------------
Quality = 16.00
0 1.00
1 1.00
12 1.00
13 1.00
14 1.00
15 1.00
17 1.00

If you see this output, life is good and things are working. If this doesn’t work, I almost certainly
did something stupid and forget to fix it. The file osdip.parm is a parameter file. The use of the
parameter file is explained in Section 8.

3



3 The OS Dip Solver – Code Description and Key Classes

The OS Dip Solver uses Dip to implement a Dantzig-Wofe decomposition algorithm for block-
angular integer programs. Here are some key classes.

OSDipBlockSolver: This is a virtual class with a pure virtual function:

void solve(double *cost, std::vector<IndexValuePair*> *solIndexValPair,
double *optVal)

OSDipBlockSolverFactory: This is also virtual class with a pure virtual function:

OSDipBlockSolver* create()

This class also has the static method

OSDipBlockSolver* createOSDipBlockSolver(const string &solverName)

and a map

std::map<std::string, OSDipBlockSolverFactory*> factories;

Factory: This class inherits from the class OSDipBlockSolverFactory. Every sover class that
inherits from the OSDipBlockSolver class should have a Factory class memember and since this
Factory class member inherits from the OSDipBlockSolverFactory class it should implement
a create() method that creates an optject in the class inheriting from OSDipBlockSolver.

OSDipFactoryInitializer: This class initializes the static map

OSDipBlockSolverFactory::factories

in the OSDipBlockSolverFactory class.

OSDipApp: This class inherits from the Dip class DecompApp. In OSDipApp we implement
methods for creating the core (coupling) constraints, i.e. the constraints A′′x ≥ b′′. This is done by
implementing the createModels() method. Regardless, of the problem none of the relaxed or block
constraints in A′x ≥ b′ are created. These are treated implicitly in the solver class that inherits
from the class OSDipBlockSolver. This class also implemnts a method that defines the variables
that appear only in the blocks (createModelMasterOnlys2), and a method for generating an
initial master (the method generateInitVars() ).

Since the constraints A′x ≥ b′ are treated explicitly by the Dip solver the solveRelaxed()
method must be implemented. In our implementation we have the OSDipApp class data member:

std::vector<OSDipBlockSolver* > m_osDipBlockSolver;

when the solveRelaxed() method is called for block whichBlock in turn we make the call

m_osDipBlockSolver[whichBlock]->solve(cost, &solIndexValPair, &varRedCost);

4



and the appropriated solver in class OSDipBlockSolver is called. Finally, the OSDipApp class
also initiates the reading of the OS option and instance files. How these files are used is discussed
in Section 7. Based on option input data this class also creates the appropriate solver object for
each block, i.e. it populates the m osDipBlockSolver vector.

OSDipInterface: This class is used as an interface between the OSDipApp class and classes in
the OS library. This provides a number of get methods to provide information to OSDipApp
such as the coefficients in the A′′ matrix, objective function coefficients, number of blocks etc. The
OSDipInterface class reads the input OSiL and OSoL files and creates in-memory data structures
based on these files.

OSDipBlockCoinSolver: This class inherits from the OSDipBlockSolver class. It is meant to
illustrate how to create a solver class. This class solves each block by calling Cbc. Use of this class
provides a generic black angular decomposition algorithm.

There is also OSDip Main.cpp: which has the main() routine and is the entry point for the
executable. It first creates a new price-branch-and-cut decomposition algorithm and then an Alps
solver for which the solve() method is called.

4 User Requirements

The OSDipBlockCoinSolver class provides a solve method for optimizing a linear objective
function over P given a linear objective function. However, this takes no advantage of the special
structure available in the blocks. Therefore, the user may wish to implement his or her own solver
class. In this case the user is required to do the following:

1. implement a class that inherits from the OSDipBlockSolver class and implements the solve
method,

2. implement a class Factory that inherits from the class OSDipBlockSolverFactory and
implements the create() method,

3. edit the file OSDipFactoryInitializer.h and add a line:

OSDipBlockSolverFactory::factories["MyBlockSolver"] = new
MyBlockSolver::Factory;

4. alter the Makefile to include the new source code.

Important – Directory Structure: In order to keep things clean, there is a directory solvers
in the osDip folder. We suggest using the solvers directory for all of the solvers that inherit from
OSDipBlockSolver.

5 Simple Plant/Lockbox Location Example

The problem minimizing the sum of the cost of capital due to float and the cost of operating the
lock boxes is the problem.
Parameters:

5



m− number of customers to be assigned a lock box

n− number of potential lock box sites

cij− annual cost of capital associated with serving customer j from lock box i

fi− annual fixed cost of operating a lock box at location i

Variables:

xij− a binary variable which is equal to 1 if customer j is assigned to lock box i and 0 if not

yi− a binary variable which is equal to 1 if the lock box at location i is opened and 0 if not

The integer linear program for the lock box location problem is

min
n∑

i=1

m∑
j=1

cijxij +
n∑

i=1

fiyi (5)

(LB) xij − yi ≤ 0, i = 1, . . . , n, j = 1, . . . ,m (6)

s.t.
n∑

i=1

xij = 1, j = 1, . . . ,m (7)

xij , yi ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m. (8)

The objective (5) is to minimize the sum of the cost of capital plus the fixed cost of operating
the lock boxes. Constraints (6) are forcing constraints and require that a lock box be open if a
customer is served by that lock box. For now, we consider these the A′x ≥ b′ constraints. The
requirement that every customer be assigned a lock box is modeled by constraints (7). For now,
we consider these the A′′x ≥ b′′ constraints.

Location Example 1: A three plant, five customer model.

CUSTOMER
1 2 3 4 5 FIXED COSTS

1 2 3 4 5 7 2
PLANT 2 4 3 1 2 6 3

3 5 4 2 1 3 3

Table 1: Data for a 3 plant, 5 customer problem

min 2x11 + 3x12 + 4x13 + 5x14 + 7x15 + 2y1 +
4x21 + 3x22 + x23 + 2x24 + 6x25 + 3y2 +
5x31 + 4x32 + 2x33 + x34 + 3x35 + 3y3

6



x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x14 ≤ y1 ≤ 1
x15 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x24 ≤ y2 ≤ 1
x25 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1
x14 + x24 + x34 = 1
x15 + x25 + x35 = 1

A′′x ≥ b′′ constraints

Location Example 2 (SPL2): A three plant, three customer model.

CUSTOMER
1 2 3 FIXED COSTS

1 2 1 1 1
PLANT 2 1 2 1 1

3 1 1 2 1

Table 2: Data for a three plant, three customer problem

min 2x11 + x12 + x13 + y1 +
x21 + 2x22 + x23 + y2 +
x31 + x32 + 1x33 + +y3

7



x11 ≤ y1 ≤ 1
x12 ≤ y1 ≤ 1
x13 ≤ y1 ≤ 1
x21 ≤ y2 ≤ 1
x22 ≤ y2 ≤ 1
x23 ≤ y2 ≤ 1
x31 ≤ y3 ≤ 1
x32 ≤ y3 ≤ 1
x33 ≤ y3 ≤ 1

A′x ≥ b′ constraints

xij , yi ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

s.t. x11 + x21 + x31 = 1
x12 + x22 + x32 = 1
x13 + x23 + x33 = 1

A′′x ≥ b′′ constraints

6 Generalized Assignment Problem Example

A problem that plays a prominent role in vehicle routing is the generalized assignment problem.
The problem is to assign each of n tasks to m servers without exceeding the resource capacity of
the servers.
Parameters:

n− number of required tasks

m− number of servers

fij− cost of assigning task i to server j

bj− units of resource available to server j

aij− units of server j resource required to perform task i

Variables:

xij− a binary variable which is equal to 1 if task i is assigned to server j and 0 if not

The integer linear program for the generalized assignment problem is

min
n∑

i=1

m∑
j=1

fijxij (9)

(GAP ) s.t.
m∑

j=1

xij = 1, i = 1, . . . , n (10)

n∑
i=1

aijxij ≤ bj , j = 1, . . . ,m (11)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m. (12)

The objective function (9) is to minimize the total assignment cost. Constraint (10) requires
that each task is assigned a server. These constraints correspond to the A′′x ≥ b′′ constraints. The

8



requirement that the server capacity not be exceeded is given in (11). These corresspond to the
A′x ≥ b′ constraints that are used to define P. The test problem used in the file genAssign.osil
is:

min 2x11 + 11x12 + 7x21 + 7x22

+20x31 + 2x32 + 5x41 + 5x42

x11 + x12 = 1
x21 + x22 = 1
x31 + x32 = 1
x41 + x42 = 1

3x11 + 6x21 + 5x31 + 7x41 ≤ 13
2x12 + 4x22 + 10x32 + 4x42 ≤ 10

7 Defining the Problem Instance and Blocks

Here we describe how to use the OSoption stuff and OSInstance. We illustrate with a simple plant
location problem. Refer back to the example in Table 1 for a three-plant, five-customer problem.
We treat the fixed charge constraints as the block constraints, i.e. we treat constraint set 6 as the
set A′x ≥ b′ constraints. These constraints naturally break into a block for each plant, i.e. there is
a block of constraints:

xij ≤ yi (13)

In order to use the OS Dip solver it is necessary to: 1) define the set of variables in each block and
2) define the set of constraints that constitute the core or coupling constraints. This information
is communicated to the OS Dip solver using Optimization Services option Language (OSoL). The
OSoL input file for the example in Table 1 appears in Figures 1 and 2. See lines 32-55. There
is an <other> option with name="variableBlockSet" for each block. Each block then lists the
variables in the block. For example, the first block consists of variable indexed by 0, 1, 2, 3, 4,
and 15. These correspond to variables x11, x12, x13, x13, x14, and y1. Likewise the second block
corresponds to the variable for the second plant and the third block corresponds to variables for
the third plant.

It is also necessary to convey which constraints constitute the core constraints. This is done in
lines 58-64. The core constraints are indexed by 15, 16, 17, 18, 19. These constitute the demand
constraints given in Equation (7).

Notice also that in lines 32, 40, and 48 there is an attribute value in the <other> variable
element with the attribute name equal to variableBlockSet. The attribute value should be
the name of the solver factory that should be assigned to solve that block. For example, if the
optimization problem that results from solving a linear objective over the constraints defining the
first block is solved using MySolver1 then this must correspond to a

OSDipBlockSolverFactory::factories["MySolver1"] = new
MySolver1::Factory;

in the file OSDipFactoryInitializer.h. In the test file, spl1.osol for the first block we set
the solver to a specialized solver for the simple plant location problem (OSDipBlockSplSolver)
and for the other two blocks we use the generic solver (OSDipBlockCoinSolver).

9



1 <?xml version="1.0" encoding="UTF-8"?>
2 <osol>
3 <general>
4 <instanceName>spl1 -- setup constraints are the blocks</instanceName>
5 </general>
6 <optimization>
7 <variables numberOfOtherVariableOptions="6">
8 <other name="initialCol" solver="Dip" numberOfVar="6" value="0">
9 <var idx="0" value="1"/>
10 <var idx="1" value="1"/>
11 <var idx="2" value="1"/>
12 <var idx="3" value="1"/>
13 <var idx="4" value="1"/>
14 <var idx="15" value="1"/>
15 </other>
16 <other name="initialCol" solver="Dip" numberOfVar="6" value="1">
17 <var idx="5" value="1"/>
18 <var idx="6" value="1"/>
19 <var idx="7" value="1"/>
20 <var idx="8" value="1"/>
21 <var idx="9" value="1"/>
22 <var idx="16" value="1"/>
23 </other>
24 <other name="initialCol" solver="Dip" numberOfVar="6" value="2">
25 <var idx="10" value="1"/>
26 <var idx="11" value="1"/>
27 <var idx="12" value="1"/>
28 <var idx="13" value="1"/>
29 <var idx="14" value="1"/>
30 <var idx="17" value="1"/>
31 </other>
32 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver1">
33 <var idx="0"/>
34 <var idx="1"/>
35 <var idx="2"/>
36 <var idx="3"/>
37 <var idx="4"/>
38 <var idx="15"/>
39 </other>
40 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver2">
41 <var idx="5"/>
42 <var idx="6"/>
43 <var idx="7"/>
44 <var idx="8"/>
45 <var idx="9"/>
46 <var idx="16"/>
47 </other>

Figure 1: A sample OSoL file – SPL1.osol

10



One can use the OSoL file to specify a set of starting columns for the initial restricted master.
In Figure 1 see lines 8-31. In and OS option file (OSoL) there is <variables> element that has
<other> children. Initial columns are specified using the <other> elements. This is done by using
the name attribute and setting its value to initialCol. Then the children of the tag contain
index-value pairs that specify the column. For example, the first initial column corresponds to
setting:

x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 1, y1 = 1

Finally note that in all of this discussion we know to apply the options to Dip because the
attribute solver always had value Dip. It is critical to set this attribute in all of the option tags.

8 The Dip Parameter File

The Dip solver has a utility class UtilParameters, for parsing a parameter file. The UtilPa-
rameters class constructor takes a parameter file as an argument. In the case of the OS Dip solver
the name of the parameter file is osdip.parm and the parameter is read in at the command line
with the command

./osdip -param osdip.parm

The UtilParameters class has a method GetSetting() for reading the paramater values. In
the OS Dip implementation there is a class OSDipParam that has a data memmbers key para-
maters such as the name of the input OSiL file and input OSoL file. The OSDipParam class has
a method getSettings() that takes as an argument a pointer to an object in the UtilParameters
and uses GetSetting() method to return the relevant paramater values. For example:

OSiLFile = utilParam.GetSetting("OSiLFile", "", common);
OSoLFile = utilParam.GetSetting("OSoLFile", "", common);

In the current osdip.parm file we have:

#first simple plant location problem
OSiLFile = spl1.osil
#setup constraints as blocks
OSoLFile = spl1.osol
#assignment constraints as blocks
#OSoLFile = spl1-b.osol

#second simple plant location problem
#OSiLFile = spl2.osil
#setup constraints as blocks
#OSoLFile = spl2.osol
#assignment constraints as blocks
#OSoLFile = spl2-b.osol

#third simple plant location problem -- block matrix data not used

11



#OSiLFile = spl3.osil
#setup constraints as blocks
#OSoLFile = spl3.osol

#generalized assignment problem
#OSiLFile = genAssign.osil
#OSoLFile = genAssign.osol

#Martin textbook example
#OSiLFile = smallIPBook.osil
#OSoLFile = smallIPBook.osol

By commenting and uncommenting you can run one of four problems that are in the data
directory. The first example, spl1.osil, corresponds to the simple plant location model given in
Table 1. Using the option file spl1.osol treats the setup forcing constraints 6 as the A′x ≥ b′

constraints. Using the option file spl1-b.osol treats the demand constraints 7 as the A′x ≥ b′

constraints. Likewise for the problem spl2.osil which correponds to the simple plant location data
given in Table 2.

In both examples spl1.osil and spl2.osil the A′x ≥ b′ constraints are explicitly represented
in the OSiL file. However, this is not necessary. The solver Factory OSDipBlockSlpSolver is a
special oracle that only needs the objective function coefficients and pegs variables based on the
sign of the objective function coefficients. The spl3.osil is the example given in Table 1 but without
the setup forcing constraints. Each block uses the OSDipBlockSlpSolver oracle.

The genAssign.osil file corresponds to the generalized assignment problem given in Section 6.
The option file genAssign.osol treats the capacity constraints 11 as the A′x ≥ b′ constraints.

The last problem defined in the file smallIPBook.osil is based on Example 16.3 on page 567
in Large Scale Linear and Integer Optimization. The option file treats the constraints

4x1 + 9x2 ≤ 18, −2x1 + 4x2 ≤ 4

as the A′x ≥ b′ constraints.
The user should also be aware of the parameter solverFactory. This parameter is the name

of the default solver Factory. If a solver is not named for a block in the OSoL file this value is used.
We have set the value of this string to be OSDipBlockCoinSolver.

9 Issues to Fix

• Enhance solveRelaxed to allow parallel processing of blocks. See ticket 30.

• Does not work when there are 0 integer variables. See ticket 31.

• Be able to set options in C++ code. See ticket 41. It would be nice to be able to read all
the options from a generic options file. It seems like right now options for the DecompAlgo
class cannot be set inside C++.

• Problem with Alps bounds at node 0. See ticket 43

• Figure out how to use BranchEnforceInMaster or BranchEnforceInSubProb so I don’t get the
large bonds on the variables. See ticket 47.

12



10 Miscellaneous Issues

If you want to terminate at the root node and just get the dual value under the ALPS option put:

[ALPS]
nodeLimit = 1

More from Matt:

Kipp - the example you sent finds the optimal solution after a
few passes of pricing and therefore never calls the cut generator.
By default, the PC solver, in the root node starts with pricing,
and does not stop until it prices out (or finds optimal, or within gap limits).

If it prices out and has not yet found optimal, then it will proceed to cuts.

This is parameter driven.

You’ll see in the log file (LogDebugLevel = 3),
PRICE_AND_CUT LimitRoundCutIters 2147483647
PRICE_AND_CUT LimitRoundPriceIters 2147483647

This is the number of Price/Cut iterations to take before switching off (i.e., MAXINT).

To force it to cut before pricing out, change this parameter in the parm file.
For example, if you change to :

[DECOMP]
LimitRoundPriceIters = 1
LimitRoundCutIters = 1

It will then go into your generateCuts after one pricing iteration.

If there is an integer solution at the root node, it may be the case that we are still not optimal.
A perfect example is where you want to add tour-breaking constraints. There could be an integer
solution, but you still violate a tour-breaking constraint. Here is what Matt says:

“By default, DIP assumes, that if problem is LP feasible to the linear system and IP feasible,
then it is feasible. In the case where the user knows something that DIP does not (e.g., that the
linear system does not define the entire valid constraint system, as in TSP), then they must provide
a derivation of this function APPisUserFeasible. Then, DIP will check LP feasible, IP feasible and
lastly, APPisUserFeasible before declaring a point a feasible solution.”

For an example of using this see, https://projects.coin-or.org/Dip/browser/trunk/Dip/
examples/TSP/TSP_DecompApp.cpp.

If you return false in APPisUserFeasible it will next call solverRelaxed() and then generateCuts()
for you.

13



11 Setting Options

Kipp – put in information on how to set options for the AlpsDecompModel
Some options to get output

Turn up the log levels to see when that happens:
[DECOMP]
LogDebugLevel = 3
LogLevel = 3
LogDumpModel = 2
LogLpLevel = 1

Yes - it is also used to solve the master problem as an IP.
That is, it periodically changes the variables in the master
problem (lambda) to integers and solves the master as an
integer program. This is a heuristic to try and get incumbent
solutions for the entire problem.
This, in my thesis, is called Price-and-Branch.

14



48 <other name="variableBlockSet" solver="Dip" numberOfVar="6" value="MySolver3">
49 <var idx="10"/>
50 <var idx="11"/>
51 <var idx="12"/>
52 <var idx="13"/>
53 <var idx="14"/>
54 <var idx="17"/>
55 </other>
56 </variables>
57 <constraints numberOfOtherConstraintOptions="1">
58 <other name="constraintSet" solver="Dip" numberOfCon="5" type="Core">
59 <con idx="15"/>
60 <con idx="16"/>
61 <con idx="17"/>
62 <con idx="18"/>
63 <con idx="19"/>
64 </other>
65 </constraints>
66 </optimization>
67 </osol>

Figure 2: A sample OSoL file – SPL1.osol (Continued)

15


