
ADOL-C: 1

A Package for the Automatic Differentiation

of Algorithms Written in C/C++

Version 2.5.1, July 2014

Andrea Walther2 and Andreas Griewank3

Abstract

The C++ package ADOL-C described here facilitates the evaluation of first and
higher derivatives of vector functions that are defined by computer programs written in
C or C++. The resulting derivative evaluation routines may be called from C, C++,
Fortran, or any other language that can be linked with C.

The numerical values of derivative vectors are obtained free of truncation errors
at a small multiple of the run time and random access memory required by the given
function evaluation program. Derivative matrices are obtained by columns, by rows or
in sparse format. For solution curves defined by ordinary differential equations, special
routines are provided that evaluate the Taylor coefficient vectors and their Jacobians
with respect to the current state vector. For explicitly or implicitly defined functions
derivative tensors are obtained with a complexity that grows only quadratically in their
degree. The derivative calculations involve a possibly substantial but always predictable
amount of data. Since the data is accessed strictly sequentially it can be automatically
paged out to external files.

Keywords: Computational Differentiation, Automatic Differentiation, Chain Rule, Over-
loading, Taylor Coefficients, Gradients, Hessians, Forward Mode, Reverse Mode, Implicit
Function Differentiation, Inverse Function Differentiation

Abbreviated title: Automatic differentiation by overloading in C++

1The development of earlier versions was supported by the Office of Scientific Computing, U.S. Depart-
ment of Energy, the NSF, and the Deutsche Forschungsgemeinschaft. During the development of the current
version Andrea Walther and Andreas Kowarz were supported by the grant Wa 1607/2-1 of the Deutsche
Forschungsgemeinschaft

2Institute of Mathematics, University of Paderborn, 33098 Paderborn, Germany
3Department of Mathematics, Humboldt-Universität zu Berlin, 10099 Berlin, Germany



2 CONTENTS

Contents

1 Preparing a Section of C or C++ Code for Differentiation 4

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Declaring Active Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Marking Active Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Selecting Independent and Dependent Variables . . . . . . . . . . . . . . . . 6

1.5 A Subprogram as an Active Section . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Overloaded Operators and Functions . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Reusing the Tape for Arbitrary Input Values . . . . . . . . . . . . . . . . . 10

1.8 Conditional Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Step-by-Step Modification Procedure . . . . . . . . . . . . . . . . . . . . . . 12

2 Numbering the Tapes and Controlling the Buffer 13

2.1 Examining the Tape and Predicting Storage Requirements . . . . . . . . . 14

2.2 Customizing ADOL-C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Warnings and Suggestions for Improved Efficiency . . . . . . . . . . . . . . 17

3 Easy-To-Use Drivers 19

3.1 Drivers for Optimization and Nonlinear Equations . . . . . . . . . . . . . . 19

3.2 Drivers for Ordinary Differential Equations . . . . . . . . . . . . . . . . . . 22

3.3 Drivers for Sparse Jacobians and Sparse Hessians . . . . . . . . . . . . . . . 24

3.4 Higher Derivative Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Derivatives of Implicit and Inverse Functions . . . . . . . . . . . . . . . . . 33

4 Basic Drivers for the Forward and Reverse Mode 35

4.1 Drivers for Abs-Normal Form . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Overloaded Forward and Reverse Calls 42

5.1 The Scalar Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 The Vector Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Dependence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



CONTENTS 3

6 Advanced algorithmic differentiation in ADOL-C 47

6.1 Differentiating external functions . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Advanced algorithmic differentiation of time integration processes . . . . . . 48

6.3 Advanced algorithmic differentiation of fixed point iterations . . . . . . . . 51

6.4 Advanced algorithmic differentiation of OpenMP parallel programs . . . . . 52

7 Tapeless forward differentiation in ADOL-C 54

7.1 Modifying the Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.2 Compiling and Linking the Source Code . . . . . . . . . . . . . . . . . . . . 59

7.3 Concluding Remarks for the Tapeless Forward Mode Variant . . . . . . . . 59

8 Traceless forward differentiation in ADOL-C using Cuda 61

8.1 Modifying the source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8.2 Compiling and Linking the Source Code . . . . . . . . . . . . . . . . . . . . 67

9 Installing and Using ADOL-C 67

9.1 Generating the ADOL-C Library . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2 Compiling and Linking the Example Programs . . . . . . . . . . . . . . . . 68

9.3 Description of Important Header Files . . . . . . . . . . . . . . . . . . . . . 69

9.4 Compiling and Linking C/C++ Programs . . . . . . . . . . . . . . . . . . . 70

9.5 Adding Quadratures as Special Functions . . . . . . . . . . . . . . . . . . . 70

10 Example Codes 72

10.1 Speelpenning’s Example (speelpenning.cpp) . . . . . . . . . . . . . . . . . 72

10.2 Power Example (powexam.cpp) . . . . . . . . . . . . . . . . . . . . . . . . . 73

10.3 Determinant Example (detexam.cpp) . . . . . . . . . . . . . . . . . . . . . 75

10.4 Ordinary Differential Equation Example (odexam.cpp) . . . . . . . . . . . . 77



4 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

1 Preparing a Section of C or C++ Code for Differentiation

1.1 Introduction

The package ADOL-C utilizes overloading in C++, but the user has to know only C. The
acronym stands for Automatic Differentiation by OverLoading in C++. In contrast to
source transformation approaches, overloading does not generate intermediate source code.
As starting points to retrieve further information on techniques and application of automatic
differentiation, as well as on other AD tools, we refer to the book [8]. Furthermore, the
web page http://www.autodiff.org of the AD community forms a rich source of further
information and pointers.

ADOL-C facilitates the simultaneous evaluation of arbitrarily high directional deriva-
tives and the gradients of these Taylor coefficients with respect to all independent variables.
Relative to the cost of evaluating the underlying function, the cost for evaluating any such
scalar-vector pair grows as the square of the degree of the derivative but is still completely
independent of the numbers m and n.

This manual is organized as follows. This section explains the modifications required to
convert undifferentiated code to code that compiles with ADOL-C. Section 2 covers aspects
of the tape of recorded data that ADOL-C uses to evaluate arbitrarily high order derivatives.
The discussion includes storage requirements and the tailoring of certain tape characteristics
to fit specific user needs. Descriptions of easy-to-use drivers for a convenient derivative
evaluation are contained in Section 3. Section 4 offers a more mathematical characterization
of the different modes of AD to compute derivatives. At the same time, the corresponding
drivers of ADOL-C are explained. The overloaded derivative evaluation routines using the
forward and the reverse mode of AD are explained in Section 5. Advanced differentiation
techniques as the optimal checkpointing for time integrations, the exploitation of fixed point
iterations, the usages of external differentiated functions and the differentiation of OpenMP
parallel programs are described in Section 6. The tapeless forward mode is presented in
Section 7. Section 9 details the installation and use of the ADOL-C package. Finally,
Section 10 furnishes some example programs that incorporate the ADOL-C package to
evaluate first and higher-order derivatives. These and other examples are distributed with
the ADOL-C source code. The user should simply refer to them if the more abstract and
general descriptions of ADOL-C provided in this document do not suffice.

1.2 Declaring Active Variables

The key ingredient of automatic differentiation by overloading is the concept of an active
variable. All variables that may be considered as differentiable quantities at some time
during the program execution must be of an active type. ADOL-C uses one active scalar
type, called adouble, whose real part is of the standard type double. Typically, one will
declare the independent variables and all quantities that directly or indirectly depend on



1.3 Marking Active Sections 5

them as active. Other variables that do not depend on the independent variables but enter,
for example, as parameters, may remain one of the passive types double, float, or int. There
is no implicit type conversion from adouble to any of these passive types; thus, failure
to declare variables as active when they depend on other active variables will
result in a compile-time error message. In data flow terminology, the set of active
variable names must contain all its successors in the dependency graph. All components of
indexed arrays must have the same activity status.

The real component of an adouble x can be extracted as x.value(). In particular, such
explicit conversions are needed for the standard output procedure printf. The output stream
operator � is overloaded such that first the real part of an adouble and then the string
“(a)” is added to the stream. The input stream operator� can be used to assign a constant
value to an adouble. Naturally, adoubles may be components of vectors, matrices, and other
arrays, as well as members of structures or classes.

The C++ class adouble, its member functions, and the overloaded versions of all arith-
metic operations, comparison operators, and most ANSI C functions are contained in the
file adouble.cpp and its header <adolc/adouble.h>. The latter must be included for
compilation of all program files containing adoubles and corresponding operations.

1.3 Marking Active Sections

All calculations involving active variables that occur between the void function calls

trace on(tag,keep) and trace off(file)

are recorded on a sequential data set called tape. Pairs of these function calls can appear
anywhere in a C++ program, but they must not overlap. The nonnegative integer argument
tag identifies the particular tape for subsequent function or derivative evaluations. Unless
several tapes need to be kept, tag = 0 may be used throughout. The optional integer
arguments keep and file will be discussed in Section 2. We will refer to the sequence of
statements executed between a particular call to trace on and the following call to trace off
as an active section of the code. The same active section may be entered repeatedly, and
one can successively generate several traces on distinct tapes by changing the value of tag.
Both functions trace on and trace off are prototyped in the header file <adolc/taputil.h>,
which is included by the header <adolc/adouble.h> automatically.

Active sections may contain nested or even recursive calls to functions provided by
the user. Naturally, their formal and actual parameters must have matching types. In
particular, the functions must be compiled with their active variables declared as adoubles
and with the header file <adolc/adouble.h> included. Variables of type adouble may be
declared outside an active section and need not go out of scope before the end of an active
section. It is not necessary – though desirable – that free-store adoubles allocated within an
active section be deleted before its completion. The values of all adoubles that exist at the



6 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

beginning and end of an active section are automatically recorded by trace on and trace off,
respectively.

1.4 Selecting Independent and Dependent Variables

One or more active variables that are read in or initialized to the values of constants or
passive variables must be distinguished as independent variables. Other active variables that
are similarly initialized may be considered as temporaries (e.g., a variable that accumulates
the partial sums of a scalar product after being initialized to zero). In order to distinguish
an active variable x as independent, ADOL-C requires an assignment of the form

x�= px // px of any passive numeric type .

This special initialization ensures that x.value() = px, and it should precede any other
assignment to x. However, x may be reassigned other values subsequently. Similarly, one or
more active variables y must be distinguished as dependent by an assignment of the form

y�= py // py of any passive type ,

which ensures that py = y.value() and should not be succeeded by any other assignment to
y. However, a dependent variable y may have been assigned other real values previously,
and it could even be an independent variable as well. The derivative values calculated after
the completion of an active section always represent derivatives of the final values of
the dependent variables with respect to the initial values of the independent
variables.

The order in which the independent and dependent variables are marked by the �=
and�= statements matters crucially for the subsequent derivative evaluations. However,
these variables do not have to be combined into contiguous vectors. ADOL-C counts the
number of independent and dependent variable specifications within each active section and
records them in the header of the tape.

1.5 A Subprogram as an Active Section

As a generic example let us consider a C(++) function of the form shown in Figure 1.

If eval is to be called from within an active C(++) section with x and y as vectors
of adoubles and the other parameters passive, then one merely has to change the type
declarations of all variables that depend on x from double or float to adouble. Subsequently,
the subprogram must be compiled with the header file <adolc/adouble.h> included as
described in Section 1.2. Now let us consider the situation when eval is still to be called
with integer and real arguments, possibly from a program written in Fortran77, which does
not allow overloading.



1.6 Overloaded Operators and Functions 7

void eval(int n, int m, // number of independents and dependents
double *x, // independent variable vector
double *y, // dependent variable vector
int *k, // integer parameters
double *z) // real parameters

{ // beginning of function body
double t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin of computation

t += z[i]*x[i]; // continue
· · · · · · · · · · · · // continue
y[m-1] = t/m; // end of computation

} // end of function

Figure 1: Generic example of a subprogram to be activated

To automatically compute derivatives of the dependent variables y with respect to the
independent variables x, we can make the body of the function into an active section. For
example, we may modify the previous program segment as in Figure 2. The renaming and
doubling up of the original independent and dependent variable vectors by active counter-
parts may seem at first a bit clumsy. However, this transformation has the advantage that
the calling sequence and the computational part, i.e., where the function is really evaluated,
of eval remain completely unaltered. If the temporary variable t had remained a double,
the code would not compile, because of a type conflict in the assignment following the
declaration. More detailed example codes are listed in Section 10.

1.6 Overloaded Operators and Functions

As in the subprogram discussed above, the actual computational statements of a C(++)
code need not be altered for the purposes of automatic differentiation. All arithmetic
operations, as well as the comparison and assignment operators, are overloaded, so any or
all of their operands can be an active variable. An adouble x occurring in a comparison
operator is effectively replaced by its real value x.value(). Most functions contained in
the ANSI C standard for the math library are overloaded for active arguments. The only
exceptions are the non-differentiable functions fmod and modf. Otherwise, legitimate C
code in active sections can remain completely unchanged, provided the direct output of
active variables is avoided. The rest of this subsection may be skipped by first time users
who are not worried about marginal issues of differentiability and efficiency.

The modulus fabs(x) is everywhere Lipschitz continuous but not properly differentiable
at the origin, which raises the question of how this exception ought to be handled. For-



8 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

void eval( int n,m, // number of independents and dependents
double *px, // independent passive variable vector
double *py, // dependent passive variable vector
int *k, // integer parameters
double *z) // parameter vector

{ // beginning of function body
short int tag = 0; // tape array and/or tape file specifier
trace on(tag); // start tracing
adouble *x, *y; // declare active variable pointers
x = new adouble[n]; // declare active independent variables
y = new adouble[m]; // declare active dependent variables
for (int i=0; i < n; i++)

x[i]�= px[i]; // select independent variables
adouble t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin crunch

t += z[i]*x[i]; // continue crunch
· · · · · · · · · · · · // continue crunch
· · · · · · · · · · · · // continue crunch
y[m-1] = t/m; // end crunch as before
for (int j=0; j < m; j++)

y[j]�= py[j]; // select dependent variables
delete[] y; // delete dependent active variables
delete[] x; // delete independent active variables
trace off(); // complete tape

} // end of function

Figure 2: Activated version of the code listed in Figure 1

tunately, one can easily see that fabs(x) and all its compositions with smooth functions
are still directionally differentiable. These directional derivatives of arbitrary order can be
propagated in the forward mode without any ambiguity. In other words, the forward mode
as implemented in ADOL-C computes Gateaux derivatives in certain directions, which re-
duce to Fréchet derivatives only if the dependence on the direction is linear. Otherwise,
the directional derivatives are merely positively homogeneous with respect to the scaling of
the directions. For the reverse mode, ADOL-C sets the derivative of fabs(x) at the origin
somewhat arbitrarily to zero.

We have defined binary functions fmin and fmax for adouble arguments, so that function
and derivative values are obtained consistent with those of fabs according to the identities

min(a, b) = [a+ b− |a− b|]/2 and max(a, b) = [a+ b+ |a− b|]/2 .



1.6 Overloaded Operators and Functions 9

These relations cannot hold if either a or b is infinite, in which case fmin or fmax and their
derivatives may still be well defined. It should be noted that the directional differentiation
of fmin and fmax yields at ties a = b different results from the corresponding assignment
based on the sign of a− b. For example, the statement

if (a < b) c = a; else c = b;

yields for a = b and a′ < b′ the incorrect directional derivative value c′ = b′ rather than
the correct c′ = a′. Therefore this form of conditional assignment should be avoided by
use of the function fmin(a, b). There are also versions of fmin and fmax for two passive
arguments and mixed passive/active arguments are handled by implicit conversion. On the
function class obtained by composing the modulus with real analytic functions, the concept
of directional differentiation can be extended to the propagation of unique one-sided Taylor
expansions. The branches taken by fabs, fmin, and fmax, are recorded on the tape.

The functions sqrt, pow, and some inverse trigonometric functions have infinite slopes
at the boundary points of their domains. At these marginal points the derivatives are
set by ADOL-C to either ±InfVal, 0 or NoNum, where InfVal and NoNum are user-defined
parameters, see Section 2.2. On IEEE machines InfVal can be set to the special value
Inf = 1.0/0.0 and NoNum to NaN = 0.0/0.0. For example, at a = 0 the first derivative b′ of
b = sqrt(a) is set to

b′ =


InfVal if a′ > 0
0 if a′ = 0
NoNum if a′ < 0

.

In other words, we consider a and consequently b as a constant when a′ or more generally
all computed Taylor coefficients are zero.

The general power function pow(x, y) = xy is computed whenever it is defined for the
corresponding double arguments. If x is negative, however, the partial derivative with respect
to an integral exponent is set to zero. The derivatives of the step functions floor, ceil, frexp,
and ldexp are set to zero at all arguments x. The result values of the step functions are
recorded on the tape and can later be checked to recognize whether a step to another level
was taken during a forward sweep at different arguments than at taping time.

Some C implementations supply other special functions, in particular the error function
erf(x). For the latter, we have included an adouble version in <adouble.cpp>, which has
been commented out for systems on which the double valued version is not available. The
increment and decrement operators ++, −− (prefix and postfix) are available for adoubles.
Ambiguous statements like a += a++; must be avoided because the compiler may sequence
the evaluation of the overloaded expression differently from the original in terms of doubles.

As we have indicated above, all subroutines called with active arguments must be mod-
ified or suitably overloaded. The simplest procedure is to declare the local variables of the
function as active so that their internal calculations are also recorded on the tape. Unfor-
tunately, this approach is likely to be unnecessarily inefficient and inaccurate if the original



10 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

subroutine evaluates a special function that is defined as the solution of a particular math-
ematical problem. The most important examples are implicit functions, quadratures, and
solutions of ordinary differential equations. Often the numerical methods for evaluating
such special functions are elaborate, and their internal workings are not at all differentiable
in the data. Rather than differentiating through such an adaptive procedure, one can obtain
first and higher derivatives directly from the mathematical definition of the special function.
Currently this direct approach has been implemented only for user-supplied quadratures as
described in Section 9.5.

1.7 Reusing the Tape for Arbitrary Input Values

In some situations it may be desirable to calculate the value and derivatives of a function at
arbitrary arguments by using a tape of the function evaluation at one argument and reeval-
uating the function and its derivatives using the given ADOL-C routines. This approach
can significantly reduce run times, and it also allows to port problem functions, in the
form of the corresponding tape files, into a computing environment that does not support
C++ but does support C or Fortran. Therefore, the routines provided by ADOL-C for the
evaluation of derivatives can be used to at arguments x other than the point at which the
tape was generated, provided there are no user defined quadratures and all comparisons
involving adoubles yield the same result. The last condition implies that the control flow is
unaltered by the change of the independent variable values. Therefore, this sufficient con-
dition is tested by ADOL-C and if it is not met the ADOL-C routine called for derivative
calculations indicates this contingency through its return value. Currently, there are six
return values, see Table 1.

+3 The function is locally analytic.

+2
The function is locally analytic but the sparsity structure (compared to the sit-
uation at the taping point) may have changed, e.g. while at taping arguments
fmax(a,b) returned a we get b at the argument currently used.

+1
At least one of the functions fmin, fmax or fabs is evaluated at a tie or zero,
respectively. Hence, the function to be differentiated is Lipschitz-continuous but
possibly non-differentiable.

0
Some arithmetic comparison involving adoubles yields a tie. Hence, the function
to be differentiated may be discontinuous.

-1
An adouble comparison yields different results from the evaluation point at which
the tape was generated.

-2
The argument of a user-defined quadrature has changed from the evaluation point
at which the tape was generated.

Table 1: Description of return values



1.8 Conditional Assignments 11

2

Taping point
3

0

-1

1

Figure 3: Return values around the taping point

In Figure 3 these return values are illustrated. If the user finds the return value of an
ADOL-C routine to be negative the taping process simply has to be repeated by executing
the active section again. The crux of the problem lies in the fact that the tape records only
the operations that are executed during one particular evaluation of the function. It also
has no way to evaluate integrals since the corresponding quadratures are never recorded
on the tape. Therefore, when there are user-defined quadratures the retaping is necessary
at each new point. If there are only branches conditioned on adouble comparisons one
may hope that re-taping becomes unnecessary when the points settle down in some small
neighborhood, as one would expect for example in an iterative equation solver.

1.8 Conditional Assignments

It appears unsatisfactory that, for example, a simple table lookup of some physical property
forces the re-recording of a possibly much larger calculation. However, the basic philosophy
of ADOL-C is to overload arithmetic, rather than to generate a new program with jumps
between “instructions”, which would destroy the strictly sequential tape access and require
the infusion of substantial compiler technology. Therefore, we introduce the two constructs
of conditional assignments and active integers as partial remedies to the branching problem.

In many cases, the functionality of branches can be replaced by conditional assign-
ments. For this purpose, we provide a special function called condassign(a,b,c,d). Its calling
sequence corresponds to the syntax of the conditional assignment

a = (b > 0) ? c : d;



12 1 PREPARING A SECTION OF C OR C++ CODE FOR DIFFERENTIATION

which C++ inherited from C. However, here the arguments are restricted to be active or
passive scalar arguments, and all expression arguments are evaluated before the test on b,
which is different from the usual conditional assignment or the code segment.

Suppose the original program contains the code segment

if (b > 0) a = c; else a = d;

Here, only one of the expressions (or, more generally, program blocks) c and d is eval-
uated, which exactly constitutes the problem for ADOL-C. To obtain the correct value
a with ADOL-C, one may first execute both branches and then pick either c or d using
condassign(a,b,c,d). To maintain consistency with the original code, one has to make sure
that the two branches do not have any side effects that can interfere with each other or
may be important for subsequent calculations. Furthermore the test parameter b has to
be an adouble or an adouble expression. Otherwise the test condition b is recorded on the
tape as a constant with its run time value. Thus the original dependency of b on active
variables gets lost, for instance if b is a comparison expression, see Section 1.6. If there is
no else part in a conditional assignment, one may call the three argument version condas-
sign(a,b,c), which is logically equivalent to condassign(a,b,c,a) in that nothing happens if b is
non-positive. The header file <adolc/adouble.h> contains also corresponding definitions of
condassign(a,b,c,d) and condassign(a,b,c) for passive double arguments so that the modified
code without any differentiation can be tested for correctness.

A generalization of this concept for more than two branches, e.g., akin to a switch state-
ment or a cascade of if...else if, may be done by enabling ADOLC ADVANCED BRANCHING
and performing selection on elements of an advector with active indices.

1.9 Step-by-Step Modification Procedure

To prepare a section of given C or C++ code for automatic differentiation as described
above, one applies the following step-by-step procedure.

1. Use the statements trace on(tag) or trace on(tag,keep) and trace off() or trace off(file)
to mark the beginning and end of the active section.

2. Select the set of active variables, and change their type from double or float to adouble.

3. Select a sequence of independent variables, and initialize them with�= assignments
from passive variables or vectors.

4. Select a sequence of dependent variables among the active variables, and pass their
final values to passive variable or vectors thereof by�= assignments.

5. Compile the codes after including the header file <adolc/adouble.h>.



13

Typically, the first compilation will detect several type conflicts – usually attempts to con-
vert from active to passive variables or to perform standard I/O of active variables. Since
all standard C programs can be activated by a mechanical application of the procedure
above, the following section is of importance only to advanced users.

2 Numbering the Tapes and Controlling the Buffer

The trace generated by the execution of an active section may stay within a triplet of
internal arrays or it may be written out to three corresponding files. We will refer to these
triplets as the tape array or tape file, in general tape, which may subsequently be used to
evaluate the underlying function and its derivatives at the original point or at alternative
arguments. If the active section involves user-defined quadratures it must be executed and
re-taped at each new argument. Similarly, if conditions on adouble values lead to a different
program branch being taken at a new argument the evaluation process also needs to be re-
taped at the new point. Otherwise, direct evaluation from the tape by the routine function
(Section 3.1) is likely to be faster. The use of quadratures and the results of all comparisons
on adoubles are recorded on the tape so that function and other forward routines stop and
return appropriate flags if their use without prior re-taping is unsafe. To avoid any re-
taping certain types of branches can be recorded on the tape through the use of conditional
assignments described before in Section 1.8.

Several tapes may be generated and kept simultaneously. A tape array is used as a triplet
of buffers or a tape file is generated if the length of any of the buffers exceeds the maximal
array lengths of OBUFSIZE, VBUFSIZE or LBUFSIZE. These parameters are defined in the
header file <adolc/usrparms.h> and may be adjusted by the user in the header file before
compiling the ADOL-C library, or on runtime using a file named .adolcrc. Lines in this
file must have the form

"VARIABLE" = "VALUE"

where the quotation marks are mandatory. The filesystem folder, where the tapes files
may be written to disk, can be changed by changing the definition of TAPE DIR in the
header file <adolc/dvlparms.h> before compiling the ADOL-C library, or on runtime by
defining TAPE DIR in the .adolcrc file. By default this is defined to be the present working
directory (.).

For simple usage, trace on may be called with only the tape tag as argument, and
trace off may be called without argument. The optional integer argument keep of trace on
determines whether the numerical values of all active variables are recorded in a buffered
temporary array or file called the taylor stack. This option takes effect if keep = 1 and
prepares the scene for an immediately following gradient evaluation by a call to a routine
implementing the reverse mode as described in the Section 4 and Section 5. A file is used
instead of an array if the size exceeds the maximal array length of TBUFSIZE defined in



14 2 NUMBERING THE TAPES AND CONTROLLING THE BUFFER

<adolc/usrparms.h> and may be adjusted in the same way like the other buffer sizes
mentioned above. Alternatively, gradients may be evaluated by a call to gradient, which
includes a preparatory forward sweep for the creation of the temporary file. If omitted, the
argument keep defaults to 0, so that no temporary taylor stack file is generated.

By setting the optional integer argument file of trace off to 1, the user may force a
numbered tape file to be written even if the tape array (buffer) does not overflow. If the
argument file is omitted, it defaults to 0, so that the tape array is written onto a tape file
only if the length of any of the buffers exceeds [OLVT]BUFSIZE elements.

After the execution of an active section, if a tape file was generated, i.e., if the length of
some buffer exceeded [OLVT]BUFSIZE elements or if the argument file of trace off was set to
1, the files will be saved in the directory defined as ADOLC TAPE DIR (by default the current
working directory) under filenames formed by the strings ADOLC OPERATIONS NAME,
ADOLC LOCATIONS NAME, ADOLC VALUES NAME and ADOLC TAYLORS NAME defined
in the header file <adolc/dvlparms.h> appended with the number given as the tag argu-
ment to trace on and have the extension .tap.

Later, all problem-independent routines like gradient, jacobian, forward, reverse, and
others expect as first argument a tag to determine the tape on which their respective
computational task is to be performed. By calling trace on with different tape tags, one can
create several tapes for various function evaluations and subsequently perform function and
derivative evaluations on one or more of them.

For example, suppose one wishes to calculate for two smooth functions f1(x) and f2(x)

f(x) = max{f1(x), f2(x)}, ∇f(x),

and possibly higher derivatives where the two functions do not tie. Provided f1 and f2 are
evaluated in two separate active sections, one can generate two different tapes by calling
trace on with tag = 1 and tag = 2 at the beginning of the respective active sections. Subse-
quently, one can decide whether f(x) = f1(x) or f(x) = f2(x) at the current argument and
then evaluate the gradient ∇f(x) by calling gradient with the appropriate argument value
tag = 1 or tag = 2.

2.1 Examining the Tape and Predicting Storage Requirements

At any point in the program, one may call the routine

void tapestats(unsigned short tag, size t* counts)



2.2 Customizing ADOL-C 15

with counts beeing an array of at least eleven integers. The first argument tag specifies the
particular tape of interest. The components of counts represent

counts[0]: the number of independents, i.e. calls to�= ,
counts[1]: the number of dependents, i.e. calls to�= ,
counts[2]: the maximal number of live active variables,
counts[3]: the size of taylor stack (number of overwrites),
counts[4]: the buffer size (a multiple of eight),

counts[5]: the total number of operations recorded,
counts[6-13]: other internal information about the tape.

The values maxlive = counts[2] and tssize = counts[3] determine the temporary storage
requirements during calls to the routines implementing the forward and the reverse mode.
For a certain degree deg ≥ 0, the scalar version of the forward mode involves apart from the
tape buffers an array of (deg+1)∗maxlive doubles in core and, in addition, a sequential data
set called the value stack of tssize∗keep revreals if called with the option keep > 0. Here the
type revreal is defined as double or float. The latter choice halves the storage requirement
for the sequential data set, which stays in core if its length is less than TBUFSIZE bytes and
is otherwise written out to a temporary file. The parameter TBUFSIZE is defined in the
header file <adolc/usrparms.h>. The drawback of the economical revreal = float choice
is that subsequent calls to reverse mode implementations yield gradients and other adjoint
vectors only in single-precision accuracy. This may be acceptable if the adjoint vectors
represent rows of a Jacobian that is used for the calculation of Newton steps. In its scalar
version, the reverse mode implementation involves the same number of doubles and twice
as many revreals as the forward mode implementation. The storage requirements of the
vector versions of the forward mode and reverse mode implementation are equal to that of
the scalar versions multiplied by the vector length.

2.2 Customizing ADOL-C

Based on the information provided by the routine tapestats, the user may alter the following
types and constant dimensions in the header file <adolc/usrparms.h> to suit his problem
and environment.

OBUFSIZE, LBUFSIZE, VBUFSIZE: These integer determines the length of internal buffers
(default: 524 288). If the buffers are large enough to accommodate all required data,
any file access is avoided unless trace off is called with a positive argument. This
desirable situation can be achieved for many problem functions with an execution
trace of moderate size. Primarily these values occur as an argument to malloc, so
that setting it unnecessarily large may have no ill effects, unless the operating system
prohibits or penalizes large array allocations. It is however recommended to leave the
values in <adolc/usrparms.h> unchanged and set them using the .adolcrc file in
the current working directory at runtime.



16 2 NUMBERING THE TAPES AND CONTROLLING THE BUFFER

TBUFSIZE: This integer determines the length of the internal buffer for a taylor stack
(default: 524 288).

TBUFNUM: This integer determines the maximal number of taylor stacks (default: 32).

fint: The integer data type used by Fortran callable versions of functions.

fdouble: The floating point data type used by Fortran callable versions of functions.

inf num: This together with inf den sets the “vertical” slope InfVal = inf num/inf den of
special functions at the boundaries of their domains (default: inf num = 1.0). On
IEEE machines the default setting produces the standard Inf. On non-IEEE machines
change these values to produce a small InfVal value and compare the results of two
forward sweeps with different InfVal settings to detect a “vertical” slope.

inf den: See inf num (default: 0.0).

non num: This together with non den sets the mathematically undefined derivative value
NoNum = non num/non den of special functions at the boundaries of their domains
(default: non num = 0.0). On IEEE machines the default setting produces the stan-
dard NaN. On non-IEEE machines change these values to produce a small NoNum
value and compare the results of two forward sweeps with different NoNum settings
to detect the occurrence of undefined derivative values.

non den: See non num (default: 0.0).

ADOLC EPS: For testing on small numbers to avoid overflows (default: 10E-20).

DIAG OUT: File identifier used as standard output for ADOL-C diagnostics (default: std-
out).

The following types and options may be set using the command-line options of the
./configure script.

locint: The range of the integer type locint determines how many adoubles can be simulta-
neously alive (default: unsigned int). In extreme cases when there are more than 232

adoubles alive at any one time, the type locint must be changed to unsigned long. This
can be done by passing --enable-ulong to ./configure.

revreal: The choice of this floating-point type trades accuracy with storage for reverse sweeps
(default: double). While functions and their derivatives are always evaluated in double
precision during forward sweeps, gradients and other adjoint vectors are obtained with
the precision determined by the type revreal. The less accurate choice revreal = float
nearly halves the storage requirement during reverse sweeps. This can be done by
passing --disable-double to ./configure.



2.3 Warnings and Suggestions for Improved Efficiency 17

ATRIG ERF: The overloaded versions of the inverse hyperbolic functions and the error func-
tion are enabled (default: undefined) by passing --enable-atrig-erf to ./configure

ADOLC USE CALLOC: Selects the memory allocation routine used by ADOL-C. Malloc will
be used if this variable is undefined. ADOLC USE CALLOC is defined by default to
avoid incorrect result caused by uninitialized memory. It can be set undefined by
passing --disable-use-calloc to ./configure.

ADOLC ADVANCED BRANCHING: Enables routines required for automatic branch selec-
tion (default: disabled). The boolean valued comparison operators with two adouble

type arguments will not return boolean values anymore and may not be used in
branch control statements (if, while, for etc.). Instead conditional assignments
using condassign or selection operations on elements of advector type should be
used. Enabling this option and rewriting the function evaluation using condassign

or selections of advector elements will prevent the need for retracing the function at
branch switches. This can be enabled by passing --enable-advanced-branching to
./configure.

2.3 Warnings and Suggestions for Improved Efficiency

Since the type adouble has a nontrivial constructor, the mere declaration of large adouble
arrays may take up considerable run time. The user should be warned against the usual
Fortran practice of declaring fixed-size arrays that can accommodate the largest possible
case of an evaluation program with variable dimensions. If such programs are converted to
or written in C, the overloading in combination with ADOL-C will lead to very large run
time increases for comparatively small values of the problem dimension, because the actual
computation is completely dominated by the construction of the large adouble arrays. The
user is advised to create dynamic arrays of adoubles by using the C++ operator new and
to destroy them using delete. For storage efficiency it is desirable that dynamic objects are
created and destroyed in a last-in-first-out fashion.

Whenever an adouble is declared, the constructor for the type adouble assigns it a nom-
inal address, which we will refer to as its location. The location is of the type locint defined
in the header file <adolc/usrparms.h>. Active vectors occupy a range of contiguous loca-
tions. As long as the program execution never involves more than 65 536 active variables,
the type locint may be defined as unsigned short. Otherwise, the range may be extended by
defining locint as (unsigned) int or (unsigned) long, which may nearly double the overall mass
storage requirement. Sometimes one can avoid exceeding the accessible range of unsigned
shorts by using more local variables and deleting adoubles created by the new operator in a
last-in-first-out fashion. When memory for adoubles is requested through a call to malloc()
or other related C memory-allocating functions, the storage for these adoubles is allocated;
however, the C++ adouble constructor is never called. The newly defined adoubles are never
assigned a location and are not counted in the stack of live variables. Thus, any results



18 2 NUMBERING THE TAPES AND CONTROLLING THE BUFFER

depending upon these pseudo-adoubles will be incorrect. For these reasons DO NOT use
malloc() and related C memory-allocating functions when declaring adoubles
(see the following paragraph).

When an adouble goes out of scope or is explicitly deleted, the destructor notices that
its location(s) may be freed for subsequent (nominal) reallocation. In general, this is not
done immediately but is delayed until the locations to be deallocated form a contiguous tail
of all locations currently being used.

As a consequence of this allocation scheme, the currently alive adouble locations always
form a contiguous range of integers that grows and shrinks like a stack. Newly declared
adoubles are placed on the top so that vectors of adoubles obtain a contiguous range of
locations. While the C++ compiler can be expected to construct and destruct automatic
variables in a last-in-first-out fashion, the user may upset this desirable pattern by deleting
free-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,
but the numerical results will still be correct, unless an exception occurs because the range
of locint is exceeded. In general, free-store adoubles should be deleted in a last-in-first-
out fashion toward the end of the program block in which they were created. When this
pattern is maintained, the maximum number of adoubles alive and, as a consequence, the
randomly accessed storage space of the derivative evaluation routines is bounded by a small
multiple of the memory used in the relevant section of the original program. Failure to
delete dynamically allocated adoubles may cause that the maximal number of adoubles alive
at one time will be exceeded if the same active section is called repeatedly. The same effect
occurs if static adoubles are used.

To avoid the storage and manipulation of structurally trivial derivative values, one
should pay careful attention to the naming of variables. Ideally, the intermediate values
generated during the evaluation of a vector function should be assigned to program vari-
ables that are consistently either active or passive, in that all their values either are or
are not dependent on the independent variables in a nontrivial way. For example, this
rule is violated if a temporary variable is successively used to accumulate inner products
involving first only passive and later active arrays. Then the first inner product and all its
successors in the data dependency graph become artificially active and the derivative eval-
uation routines described later will waste time allocating and propagating trivial or useless
derivatives. Sometimes even values that do depend on the independent variables may be
of only transitory importance and may not affect the dependent variables. For example,
this is true for multipliers that are used to scale linear equations, but whose values do not
influence the dependent variables in a mathematical sense. Such dead-end variables can
be deactivated by the use of the value function, which converts adoubles to doubles. The
deleterious effects of unnecessary activity are partly alleviated by run time activity flags in
the derivative routine hov reverse presented in Section 4.

The adouble default constructor sets to zero the associated value. This implies a certain
overhead that may seem unnecessary when no initial value is actually given, however, the
implicit initialization of arrays from a partial value list is the only legitimate construct



19

(known to us) that requires this behavior. An array instantiation such as

double x[3]={2.0};

will initialize x[0] to 2.0 and initialize (implicitly) the remaining array elements x[1] and x[2]
to 0.0. According to the C++ standard the array element construction of the type changed
instantiation

adouble x[3]={2.0};

will use the constructor adouble(const double&); for x[0] passing in 2.0 but will call the
adouble default constructor x[1] and x[2] leaving these array elements uninitialized unless the
default constructor does implement the initialization to zero. The C++ constructor syntax
does not provide a means to distinguish this implicit initialization from the declaration of
any simple uninitialized variable. If the user can ascertain the absence of array instantiations
such as the above then one can configure ADOL-C with the --disable-stdczero option ,
see Section 9.1, to avoid the overhead of these initializations.

3 Easy-To-Use Drivers

For the convenience of the user, ADOL-C provides several easy-to-use drivers that compute
the most frequently required derivative objects. Throughout, we assume that after the
execution of an active section, the corresponding tape with the identifier tag contains a
detailed record of the computational process by which the final values y of the dependent
variables were obtained from the values x of the independent variables. We will denote this
functional relation between the input variables x and the output variables y by

F : IRn 7→ IRm, x→ F (x) ≡ y.

The return value of all drivers presented in this section indicate the validity of the tape as
explained in Section 1.7. The presented drivers are all C functions and therefore can be
used within C and C++ programs. Some Fortran-callable companions can be found in the
appropriate header files.

3.1 Drivers for Optimization and Nonlinear Equations

The drivers provided for solving optimization problems and nonlinear equations are proto-
typed in the header file <adolc/drivers/drivers.h>, which is included automatically by
the global header file <adolc/adolc.h> (see Section 9.3).

The routine function allows to evaluate the desired function from the tape instead of
executing the corresponding source code:



20 3 EASY-TO-USE DRIVERS

int function(tag,m,n,x,y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x
double y[m]; // dependent vector y = F (x)

If the original evaluation program is available this double version should be used to compute
the function value in order to avoid the interpretative overhead.

For the calculation of whole derivative vectors and matrices up to order 2 there are the
following procedures:

int gradient(tag,n,x,g)
short int tag; // tape identification
int n; // number of independent variables n and m = 1
double x[n]; // independent vector x
double g[n]; // resulting gradient ∇F (x)

int jacobian(tag,m,n,x,J)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x
double J[m][n]; // resulting Jacobian F ′(x)

int hessian(tag,n,x,H)
short int tag; // tape identification
int n; // number of independent variables n and m = 1
double x[n]; // independent vector x
double H[n][n]; // resulting Hessian matrix ∇2F (x)

The driver routine hessian computes only the lower half of ∇2f(x0) so that all values H[i][j]
with j > i of H allocated as a square array remain untouched during the call of hessian.
Hence only i+ 1 doubles need to be allocated starting at the position H[i].

To use the full capability of automatic differentiation when the product of derivatives
with certain weight vectors or directions are needed, ADOL-C offers the following four
drivers:

int vec jac(tag,m,n,repeat,x,u,z)
short int tag; // tape identification
int m; // number of dependent variables m



3.1 Drivers for Optimization and Nonlinear Equations 21

int n; // number of independent variables n
int repeat; // indicate repeated call at same argument
double x[n]; // independent vector x
double u[m]; // range weight vector u
double z[n]; // result z = uTF ′(x)

If a nonzero value of the parameter repeat indicates that the routine vec jac has been called
at the same argument immediately before, the internal forward mode evaluation will be
skipped and only reverse mode evaluation with the corresponding arguments is executed
resulting in a reduced computational complexity of the function vec jac.

int jac vec(tag,m,n,x,v,z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x
double v[n]; // tangent vector v
double z[m]; // result z = F ′(x)v

int hess vec(tag,n,x,v,z)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x
double v[n]; // tangent vector v
double z[n]; // result z = ∇2F (x)v

int hess mat(tag,n,p,x,V,Z)
short int tag; // tape identification
int n; // number of independent variables n
int p; // number of columns in V
double x[n]; // independent vector x
double V[n][p]; // tangent matrix V
double Z[n][p]; // result Z = ∇2F (x)V

int lagra hess vec(tag,m,n,x,v,u,h)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x
double v[n]; // tangent vector v
double u[m]; // range weight vector u
double h[n]; // result h = uT∇2F (x)v



22 3 EASY-TO-USE DRIVERS

The next procedure allows the user to perform Newton steps only having the corresponding
tape at hand:

int jac solv(tag,n,x,b,mode)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x as
double b[n]; // in: right-hand side b, out: result w of F (x)w = b
int mode; // option to choose different solvers

On entry, parameter b of the routine jac solv contains the right-hand side of the equation
F (x)w = b to be solved. On exit, b equals the solution w of this equation. If mode = 0 only
the Jacobian of the function given by the tape labeled with tag is provided internally. The
LU-factorization of this Jacobian is computed for mode = 1. The solution of the equation
is calculated if mode = 2. Hence, it is possible to compute the LU-factorization only once.
Then the equation can be solved for several right-hand sides b without calculating the
Jacobian and its factorization again.

If the original evaluation code of a function contains neither quadratures nor branches,
all drivers described above can be used to evaluate derivatives at any argument in its
domain. The same still applies if there are no user defined quadratures and all comparisons
involving adoubles have the same result as during taping. If this assumption is falsely made
all drivers while internally calling the forward mode evaluation will return the value -1 or
-2 as already specified in Section 1.7.

3.2 Drivers for Ordinary Differential Equations

When F is the right-hand side of an (autonomous) ordinary differential equation

x′(t) = F (x(t)),

we must have m = n. Along any solution path x(t) its Taylor coefficients xj at some time,
e.g., t = 0, must satisfy the relation

xi+1 =
1

1 + i
yi.

with the yj the Taylor coefficients of its derivative y(t) = x′(t), namely,

y(t) ≡ F (x(t)) : IR 7→ IRm

defined by an autonomous right-hand side F recorded on the tape. Using this relation, one
can generate the Taylor coefficients xi, i ≤ deg, recursively from the current point x0. This
task is achieved by the driver routine forode defined as follows:



3.2 Drivers for Ordinary Differential Equations 23

int forode(tag,n,tau,dol,deg,X)
short int tag; // tape identification
int n; // number of state variables n
double tau; // scaling parameter
int dol; // degree on previous call
int deg; // degree on current call
double X[n][deg+1]; // Taylor coefficient vector X

If dol is positive, it is assumed that forode has been called before at the same point so that
all Taylor coefficient vectors up to the dol-th are already correct.

Subsequently one may call the driver routine reverse or corresponding low level routines
as explained in the Section 5 and Section 4, respectively, to compute the family of square
matrices Z[n][n][deg] defined by

Zj ≡ U
∂yj
∂x0
∈ IRq×n,

with double** U= In the identity matrix of order n.

For the numerical solutions of ordinary differential equations, one may also wish to
calculate the Jacobians

Bj ≡
dxj+1

dx0
∈ IRn×n , (1)

which exist provided F is sufficiently smooth. These matrices can be obtained from the
partial derivatives ∂yi/∂x0 by an appropriate version of the chain rule. To compute the
total derivatives B = (Bj)0≤j<d defined in (1), one has to evaluate 1

2d(d− 1) matrix-matrix
products. This can be done by a call of the routine accode after the corresponding evaluation
of the hov reverse function. The interface of accode is defined as follows:

int accode(n,tau,deg,Z,B,nz)
int n; // number of state variables n
double tau; // scaling parameter
int deg; // degree on current call
double Z[n][n][deg]; // partials of coefficient vectors
double B[n][n][deg]; // result B as defined in (1)
short nz[n][n]; // optional nonzero pattern

Sparsity information can be exploited by accode using the array nz. For this purpose, nz has
to be set by a call of the routine reverse or the corresponding basic routines as explained
below in Section 4 and Section 5, respectively. The non-positive entries of nz are then
changed by accode so that upon return

B[i][j][k] ≡ 0 if k ≤ −nz[i][j] .



24 3 EASY-TO-USE DRIVERS

In other words, the matrices Bk = B[ ][ ][k] have a sparsity pattern that fills in as k grows.
Note, that there need to be no loss in computational efficiency if a time-dependent ordinary
differential equation is rewritten in autonomous form.

The prototype of the ODE-drivers forode and accode is contained in the header file
<adolc/drivers/odedrivers.h>. The global header file <adolc/adolc.h> includes this
file automatically, see Section 9.3.

An example program using the procedures forode and accode together with more detailed
information about the coding can be found in Section 10.4. The corresponding source code
odexam.cpp is contained in the subdirectory examples.

3.3 Drivers for Sparse Jacobians and Sparse Hessians

Quite often, the Jacobians and Hessians that have to be computed are sparse matri-
ces. Therefore, ADOL-C provides additionally drivers that allow the exploitation of spar-
sity. The exploitation of sparsity is frequently based on graph coloring methods, dis-
cussed for example in [3] and [6]. The sparse drivers of ADOL-C presented in this sec-
tion rely on the the coloring package ColPack developed by the authors of [3] and [6].
ColPack is not directly incorporated in ADOL-C, and therefore needs to be installed sep-
arately to use the sparse drivers described here. ColPack is available for download at
http://www.cscapes.org/coloringpage/software.htm. More information about the re-
quired installation of ColPack is given in Section 9.

Sparse Jacobians and Sparse Hessians

To compute the entries of sparse Jacobians and sparse Hessians, respectively, in coordinate
format one may use the drivers:

int sparse jac(tag,m,n,repeat,x,&nnz,&rind,&cind,&values,&options)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int repeat; // indicate repeated call at same argument
double x[n]; // independent vector x
int nnz; // number of nonzeros
unsigned int rind[nnz]; // row index
unsigned int cind[nnz]; // column index
double values[nnz]; // non-zero values
int options[4]; // array of control parameters

int sparse hess(tag,n,repeat,x,&nnz,&rind,&cind,&values,&options)



3.3 Drivers for Sparse Jacobians and Sparse Hessians 25

short int tag; // tape identification
int n; // number of independent variables n and m = 1
int repeat; // indicate repeated call at same argument
double x[n]; // independent vector x
int nnz; // number of nonzeros
unsigned int rind[nnz]; // row indices
unsigned int cind[nnz]; // column indices
double values[nnz]; // non-zero values
int options[2]; // array of control parameters

Once more, the input variables are the identifier for the internal representation tag, if
required the number of dependents m, and the number of independents n for a consistency
check. Furthermore, the flag repeat=0 indicates that the functions are called at a point with
a new sparsity structure, whereas repeat=1 results in the re-usage of the sparsity pattern
from the previous call. The current values of the independents are given by the array x.
The input/output variable nnz stores the number of the nonzero entries. Therefore, nnz
denotes also the length of the arrays r ind storing the row indices, c ind storing the column
indices, and values storing the values of the nonzero entries. If sparse jac and sparse hess
are called with repeat=0, the functions determine the number of nonzeros for the sparsity
pattern defined by the value of x, allocate appropriate arrays r ind, c ind, and values and
store the desired information in these arrays. During the next function call with repeat=1
the allocated memory is reused such that only the values of the arrays are changed. Before
calling sparse jac or sparse hess once more with repeat=0 the user is responsible for the
deallocation of the array r ind, c ind, and values using the function delete[]!

For each driver the array options can be used to adapted the computation of the sparse
derivative matrices to the special needs of application under consideration. Most frequently,
the default options will give a reasonable performance. The elements of the array options
control the action of sparse jac according to Table 2.

The component options[1] determines the usage of the safe or tight mode of sparsity
computation. The first, more conservative option is the default. It accounts for all de-
pendences that might occur for any value of the independent variables. For example, the
intermediate c = max(a,b) is always assumed to depend on all independent variables that
a or b dependent on, i.e. the bit pattern associated with c is set to the logical OR of those
associated with a and b. In contrast the tight option gives this result only in the unlikely
event of an exact tie a = b. Otherwise it sets the bit pattern associated with c either to
that of a or to that of b, depending on whether c = a or c = b locally. Obviously, the
sparsity pattern obtained with the tight option may contain more zeros than that obtained
with the safe option. On the other hand, it will only be valid at points belonging to an area
where the function F is locally analytic and that contains the point at which the internal
representation was generated. Since generating the sparsity structure using the safe version
does not require any reevaluation, it may thus reduce the overall computational cost despite



26 3 EASY-TO-USE DRIVERS

component value

options[0] way of sparsity pattern computation
0 propagation of index domains (default)
1 propagation of bit pattern

options[1] test the computational graph control flow
0 safe mode (default)
1 tight mode

options[2] way of bit pattern propagation
0 automatic detection (default)
1 forward mode
2 reverse mode

options[3] way of compression
0 column compression (default)
1 row compression

Table 2: sparse jac parameter options

the fact that it produces more nonzero entries. The value of options[2] selects the direction
of bit pattern propagation. Depending on the number of independent n and of dependent
variables m one would prefer the forward mode if n is significant smaller than m and would
otherwise use the reverse mode.

The elements of the array options control the action of sparse hess according to Table 3.

component value

options[0] test the computational graph control flow
0 safe mode (default)
1 tight mode

options[1] way of recovery
0 indirect recovery (default)
1 direct recovery

Table 3: sparse hess parameter options

The described driver routines for the computation of sparse derivative matrices are
prototyped in the header file <adolc/sparse/sparsedrivers.h>, which is included auto-
matically by the global header file <adolc/adolc.h> (see Section 9.3). Example codes illus-
trating the usage of sparse jac and sparse hess can be found in the file sparse_jacobian.cpp
and sparse_hessian.cpp contained in examples/additional_examples/sparse.



3.3 Drivers for Sparse Jacobians and Sparse Hessians 27

Computation of Sparsity Pattern

ADOL-C offers a convenient way of determining the sparsity structure of a Jacobian matrix
using the function:

int jac pat(tag, m, n, x, JP, options)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent variables x0
unsigned int JP[][]; // row compressed sparsity structure
int options[2]; // array of control parameters

The sparsity pattern of the Jacobian is computed in a compressed row format. For this
purpose, JP has to be an m dimensional array of pointers to unsigned ints, i.e., one has
unsigned int* JP[m]. During the call of jac pat, the number n̂i of nonzero entries in row i of
the Jacobian is determined for all 1 ≤ i ≤ m. Then, a memory allocation is performed such
that JP[i-1] points to a block of n̂i + 1 unsigned int for all 1 ≤ i ≤ m and JP[i-1][0] is set to
n̂i. Subsequently, the column indices of the j nonzero entries in the ith row are stored in
the components JP[i-1][1], . . . , JP[i-1][j].

The elements of the array options control the action of jac pat according to Table 4.
The value of options[0] selects the way to compute the sparsity pattern. The component

component value

options[0] way of sparsity pattern computation
0 propagation of index domains (default)
1 propagation of bit pattern

options[1] test the computational graph control flow
0 safe mode (default)
1 tight mode

options[2] way of bit pattern propagation
0 automatic detection (default)
1 forward mode
2 reverse mode

Table 4: jac pat parameter options

options[1] determines the usage of the safe or tight mode of bit pattern propagation. The
first, more conservative option is the default. It accounts for all dependences that might
occur for any value of the independent variables. For example, the intermediate c = max(a,b)
is always assumed to depend on all independent variables that a or b dependent on, i.e.
the bit pattern associated with c is set to the logical OR of those associated with a and
b. In contrast the tight option gives this result only in the unlikely event of an exact tie



28 3 EASY-TO-USE DRIVERS

a = b. Otherwise it sets the bit pattern associated with c either to that of a or to that of
b, depending on whether c = a or c = b locally. Obviously, the sparsity pattern obtained
with the tight option may contain more zeros than that obtained with the safe option. On
the other hand, it will only be valid at points belonging to an area where the function
F is locally analytic and that contains the point at which the internal representation was
generated. Since generating the sparsity structure using the safe version does not require
any reevaluation, it may thus reduce the overall computational cost despite the fact that it
produces more nonzero entries. The value of options[2] selects the direction of bit pattern
propagation. Depending on the number of independent n and of dependent variables m one
would prefer the forward mode if n is significant smaller than m and would otherwise use
the reverse mode.

The routine jac pat may use the propagation of bitpattern to determine the sparsity
pattern. Therefore, a kind of “strip-mining” is used to cope with large matrix dimensions.
If the system happens to run out of memory, one may reduce the value of the constant
PQ STRIPMINE MAX following the instructions in <adolc/sparse/sparse_fo_rev.h>.

The driver routine is prototyped in the header file <adolc/sparse/sparsedrivers.h>,
which is included automatically by the global header file <adolc/adolc.h> (see Section 9.3).
The determination of sparsity patterns is illustrated by the examples sparse_jacobian.cpp
and jacpatexam.cpp contained in examples/additional_examples/sparse.

To compute the sparsity pattern of a Hessian in a row compressed form, ADOL-C
provides the driver

int hess pat(tag, n, x, HP, options)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent variables x0
unsigned int HP[][]; // row compressed sparsity structure
int option; // control parameter

where the user has to provide HP as an n dimensional array of pointers to unsigned ints.
After the function call HP contains the sparsity pattern, where HP[j][0] contains the number
of nonzero elements in the jth row for 1 ≤ j ≤ n. The components P[j][i], 0 <i ≤ P[j][0]
store the indices of these entries. For determining the sparsity pattern, ADOL-C uses the
algorithm described in [13]. The parameteroption determines the usage of the safe (option
= 0, default) or tight mode (option = 1) of the computation of the sparsity pattern as
described above.

This driver routine is prototyped in the header file <adolc/sparse/sparsedrivers.h>,
which is included automatically by the global header file <adolc/adolc.h> (see Section 9.3).
An example employing the procedure hess pat can be found in the file sparse_hessian.cpp
contained in examples/additional_examples/sparse.



3.3 Drivers for Sparse Jacobians and Sparse Hessians 29

Calculation of Seed Matrices

To compute a compressed derivative matrix from a given sparsity pattern, one has to cal-
culate an appropriate seed matrix that can be used as input for the derivative calculation.
To facilitate the generation of seed matrices for a sparsity pattern given in row compressed
form, ADOL-C provides the following two drivers, which are based on the ColPack library:

int generate seed jac(m, n, JP, S, p)
int m; // number of dependent variables m
int n; // number of independent variables n
unsigned int JP[][]; // row compressed sparsity structure of Jacobian
double S[n][p]; // seed matrix
int p; // number of columns in S

The input variables to generate seed jac are the number of dependent variables m, the
number of independent variables n and the sparsity pattern JP of the Jacobian computed for
example by jac pat. First, generate seed jac performs a distance-2 coloring of the bipartite
graph defined by the sparsity pattern JP as described in [3]. The number of colors needed
for the coloring determines the number of columns p in the seed matrix. Subsequently,
generate seed jac allocates the memory needed by S and initializes S according to the graph
coloring. The coloring algorithm that is applied in generate seed jac is used also by the
driver sparse jac described earlier.

int generate seed hess(n, HP, S, p)
int n; // number of independent variables n
unsigned int HP[][]; // row compressed sparsity structure of Jacobian
double S[n][p]; // seed matrix
int p; // number of columns in S

The input variables to generate seed hess are the number of independents n and the sparsity
pattern HP of the Hessian computed for example by hess pat. First, generate seed hess per-
forms an appropriate coloring of the adjacency graph defined by the sparsity pattern HP:
An acyclic coloring in the case of an indirect recovery of the Hessian from its compressed
representation and a star coloring in the case of a direct recovery. Subsequently, gener-
ate seed hess allocates the memory needed by S and initializes S according to the graph
coloring. The coloring algorithm applied in generate seed hess is used also by the driver
sparse hess described earlier.

The specific set of criteria used to define a seed matrix S depends on whether the sparse
derivative matrix to be computed is a Jacobian (nonsymmetric) or a Hessian (symmetric).
It also depends on whether the entries of the derivative matrix are to be recovered from the
compressed representation directly (without requiring any further arithmetic) or indirectly
(for example, by solving for unknowns via successive substitutions). Appropriate recovery



30 3 EASY-TO-USE DRIVERS

routines are provided by ColPack and used in the drivers sparse jac and sparse hess described
in the previous subsection. Examples with a detailed analysis of the employed drivers for
the exploitation of sparsity can be found in the papers [4] and [5].

These driver routines are prototyped in <adolc/sparse/sparsedrivers.h>, which is in-
cluded automatically by the global header file <adolc/adolc.h> (see Section 9.3). An exam-
ple code illustrating the usage of generate seed jac and generate seed hess can be found in the
file sparse_jac_hess_exam.cpp contained in examples/additional_examples/sparse.

3.4 Higher Derivative Tensors

Many applications in scientific computing need second- and higher-order derivatives. Often,
one does not require full derivative tensors but only the derivatives in certain directions
si ∈ IRn. Suppose a collection of p directions si ∈ IRn is given, which form a matrix

S = [s1, s2, . . . , sp] ∈ IRn×p.

One possible choice is S = In with p = n, which leads to full tensors being evaluated.
ADOL-C provides the function tensor eval to calculate the derivative tensors

∇k
S F (x0) =

∂k

∂zk
F (x0 + Sz)

∣∣∣∣
z=0

∈ IRpk for k = 0, . . . , d (2)

simultaneously. The function tensor eval has the following calling sequence and parameters:

void tensor eval(tag,m,n,d,p,x,tensor,S)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int p; // number of directions p
double x[n]; // values of independent variables x0
double tensor[m][size]; // result as defined in (2) in compressed form
double S[n][p]; // seed matrix S

Using the symmetry of the tensors defined by (2), the memory requirement can be reduced
enormously. The collection of tensors up to order d comprises

(
p+d
d

)
distinct elements.

Hence, the second dimension of tensor must be greater or equal to
(
p+d
d

)
. To compute the

derivatives, tensor eval propagates internally univariate Taylor series along
(
n+d−1

d

)
direc-

tions. Then the desired values are interpolated. This approach is described in [9].

The access of individual entries in symmetric tensors of higher order is a little tricky.
We always store the derivative values in the two dimensional array tensor and provide two
different ways of accessing them. The leading dimension of the tensor array ranges over the



3.4 Higher Derivative Tensors 31

component index i of the function F , i.e., Fi+1 for i = 0, . . . ,m−1. The sub-arrays pointed
to by tensor[i] have identical structure for all i. Each of them represents the symmetric
tensors up to order d of the scalar function Fi+1 in p variables. The

(
p+d
d

)
mixed partial

derivatives in each of the m tensors are linearly ordered according to the tetrahedral scheme
described by Knuth [12]. In the familiar quadratic case d = 2 the derivative with respect
to zj and zk with z as in (2) and j ≤ k is stored at tensor[i][l] with l = k ∗ (k + 1)/2 + j.
At j = 0 = k and hence l = 0 we find the function value Fi+1 itself and the gradient
∇Fi+1 = ∂Fi+1/∂xk is stored at l = k(k + 1)/2 with j = 0 for k = 1, . . . , p.

For general d we combine the variable indices to a multi-index j = (j1, j2, . . . , jd), where
jk indicates differentiation with respect to variable xjk with jk ∈ {0, 1, . . . , p}. The value
jk = 0 indicates no differentiation so that all lower derivatives are also contained in the
same data structure as described above for the quadratic case. The location of the partial
derivative specified by j is computed by the function

int tensor address(d, j)
int d; // highest derivative degree d
int j[d]; // multi-index j

and it may thus be referenced as tensor[i][tensor address(d, j)]. Notice that the address com-
putation does depend on the degree d but not on the number of directions p, which could
theoretically be enlarged without the need to reallocate the original tensor. Also, the com-
ponents of j need to be non-increasing. To some C programmers it may appear more natural
to access tensor entries by successive dereferencing in the form tensorentry[i][ j1 ][ j2 ]. . .[ jd ].
We have also provided this mode, albeit with the restriction that the indices j1, j2, . . . , jd
are non-increasing. In the second order case this means that the Hessian entries must be
specified in or below the diagonal. If this restriction is violated the values are almost cer-
tain to be wrong and array bounds may be violated. We emphasize that subscripting is not
overloaded but that tensorentry is a conventional and thus moderately efficient C pointer
structure. Such a pointer structure can be allocated and set up completely by the function

void** tensorsetup(m,p,d,tensor)
int m; // number of dependent variables n
int p; // number of directions p
int d; // highest derivative degree d
double tensor[m][size]; // pointer to two dimensional array

Here, tensor is the array of m pointers pointing to arrays of size ≥
(
p+d
d

)
allocated by the

user before. During the execution of tensorsetup, d− 1 layers of pointers are set up so that
the return value allows the direct dereferencing of individual tensor elements.

For example, suppose some active section involving m ≥ 5 dependents and n ≥ 2
independents has been executed and taped. We may select p = 2, d = 3 and initialize the



32 3 EASY-TO-USE DRIVERS

n × 2 seed matrix S with two columns s1 and s2. Then we are able to execute the code
segment

double**** tensorentry = (double****) tensorsetup(m,p,d,tensor);
tensor eval(tag,m,n,d,p,x,tensor,S);

This way, we evaluated all tensors defined in (2) up to degree 3 in both directions s1 and
s2 at some argument x. To allow the access of tensor entries by dereferencing the pointer
structure tensorentry has been created. Now, the value of the mixed partial

∂3F5(x+ s1z1 + s2z2)

∂z21∂z2

∣∣∣∣
z1=0=z2

can be recovered as

tensorentry[4][2][1][1] or tensor[4][tensor address(d, j)],

where the integer array j may equal (1,1,2), (1,2,1) or (2,1,1). Analogously, the entry

tensorentry[2][1][0][0] or tensor[2][tensor address(d, j)]

with j = (1,0,0) contains the first derivative of the third dependent variable F3 with respect
to the first differentiation parameter z1.

Note, that the pointer structure tensorentry has to be set up only once. Changing the
values of the array tensor, e.g. by a further call of tensor eval, directly effects the values ac-
cessed by tensorentry. When no more derivative evaluations are desired the pointer structure
tensorentry can be deallocated by a call to the function

int freetensor(m,p,d, (double ****) tensorentry)
int m; // number of dependent variables m
int p; // number of independent variables p
int d; // highest derivative degree d
double*** tensorentry[m]; // return value of tensorsetup

that does not deallocate the array tensor.

The drivers provided for efficient calculation of higher order derivatives are prototyped
in the header file <adolc/drivers/taylor.h>, which is included by the global header
file <adolc/adolc.h> automatically (see Section 9.3). Example codes using the above
procedures can be found in the files taylorexam.C and accessexam.C contained in the
subdirectory examples/additional_examples/taylor.



3.5 Derivatives of Implicit and Inverse Functions 33

3.5 Derivatives of Implicit and Inverse Functions

Frequently, one needs derivatives of variables y ∈ IRm that are implicitly defined as functions
of some variables x ∈ IRn−m by an algebraic system of equations

G(z) = 0 ∈ IRm with z = (y, x) ∈ IRn.

Naturally, the n arguments of G need not be partitioned in this regular fashion and we wish
to provide flexibility for a convenient selection of the n − m truly independent variables.
Let P ∈ IR(n−m)×n be a 0 − 1 matrix that picks out these variables so that it is a column
permutation of the matrix [0, In−m] ∈ IR(n−m)×n. Then the nonlinear system

G(z) = 0, P z = x,

has a regular Jacobian, wherever the implicit function theorem yields y as a function of x.
Hence, we may also write

F (z) =

(
G(z)
Pz

)
≡
(

0
Pz

)
≡ S x, (3)

where S = [0, Ip]
T ∈ IRn×p with p = n −m. Now, we have rewritten the original implicit

functional relation between x and y as an inverse relation F (z) = Sx. In practice, we may
implement the projection P simply by marking n−m of the independents also dependent.

Given any F : IRn 7→ IRn that is locally invertible and an arbitrary seed matrix S ∈ IRn×p

we may evaluate all derivatives of z ∈ IRn with respect to x ∈ IRp by calling the following
routine:

void inverse tensor eval(tag,n,d,p,z,tensor,S)
short int tag; // tape identification
int n; // number of variables n
int d; // highest derivative degree d
int p; // number of directions p
double z[n]; // values of independent variables z
double tensor[n][size]; // partials of z with respect to x
double S[n][p]; // seed matrix S

The results obtained in tensor are exactly the same as if we had called tensor eval with tag
pointing to a tape for the evaluation of the inverse function z = F−1(y) for which naturally
n = m. Note that the columns of S belong to the domain of that function. Individual
derivative components can be accessed in tensor exactly as in the explicit case described
above.

It must be understood that inverse tensor eval actually computes the derivatives of z
with respect to x that is defined by the equation F (z) = F (z0) + S x. In other words the



34 3 EASY-TO-USE DRIVERS

base point at which the inverse function is differentiated is given by F (z0). The routine has
no capability for inverting F itself as solving systems of nonlinear equations F (z) = 0 in
the first place is not just a differentiation task. However, the routine jac solv described in
Section 3.1 may certainly be very useful for that purpose.

As an example consider the following two nonlinear expressions

G1(z1, z2, z3, z4) = z21 + z22 − z23
G2(z1, z2, z3, z4) = cos(z4)− z1/z3 .

The equations G(z) = 0 describe the relation between the Cartesian coordinates (z1, z2) and
the polar coordinates (z3, z4) in the plane. Now, suppose we are interested in the derivatives
of the second Cartesian y1 = z2 and the second (angular) polar coordinate y2 = z4 with
respect to the other two variables x1 = z1 and x2 = z3. Then the active section could look
simply like

for (j=1; j < 5; j++) z[j]�= zp[j];
g[1] = z[1]*z[1]+z[2]*z[2]-z[3]*z[3];
g[2] = cos(z[4]) - z[1]/z[3];
g[1]�= gp[1]; g[2]�= gp[2];
z[1]�= zd[1]; z[3]�= zd[2];

where zd[1] and zd[2] are dummy arguments. In the last line the two independent variables
z[1] and z[3] are made simultaneously dependent thus generating a square system that can
be inverted (at most arguments). The corresponding projection and seed matrix are

P =

(
1 0 0 0
0 0 1 0

)
and ST =

(
0 0 1 0
0 0 0 1

)
.

Provided the vector zp is consistent in that its Cartesian and polar components describe the
same point in the plane the resulting tuple gp must vanish. The call to inverse tensor eval
with n = 4, p = 2 and d as desired will yield the implicit derivatives, provided tensor has
been allocated appropriately of course and S has the value given above. The example is
untypical in that the implicit function could also be obtained explicitly by symbolic mani-
pulations. It is typical in that the subset of z components that are to be considered as truly
independent can be selected and altered with next to no effort at all.

The presented drivers are prototyped in the header file <adolc/drivers/taylor.h>.
As indicated before this header is included by the global header file <adolc/adolc.h> au-
tomatically (see Section 9.3). The example programs inversexam.cpp, coordinates.cpp
and trigger.cpp in the directory examples/additional_examples/taylor show the ap-
plication of the procedures described here.



35

4 Basic Drivers for the Forward and Reverse Mode

In this section, we present tailored drivers for different variants of the forward mode and the
reverse mode, respectively. For a better understanding, we start with a short description of
the mathematical background.

Provided no arithmetic exception occurs, no comparison including fmax or fmin yields a
tie, fabs does not yield zero, and all special functions were evaluated in the interior of their
domains, the functional relation between the input variables x and the output variables
y denoted by y = F (x) is in fact analytic. In other words, we can compute arbitrarily
high derivatives of the vector function F : IRn 7→ IRm defined by the active section. We
find it most convenient to describe and compute derivatives in terms of univariate Taylor
expansions, which are truncated after the highest derivative degree d that is desired by the
user. Let

x(t) ≡
d∑

j=0

xjt
j : IR 7→ IRn (4)

denote any vector polynomial in the scalar variable t ∈ IR. In other words, x(t) describes a
path in IRn parameterized by t. The Taylor coefficient vectors

xj =
1

j!

∂j

∂tj
x(t)

∣∣∣∣
t=0

are simply the scaled derivatives of x(t) at the parameter origin t = 0. The first two vectors
x1, x2 ∈ IRn can be visualized as tangent and curvature at the base point x0, respectively.
Provided that F is d times continuously differentiable, it follows from the chain rule that
the image path

y(t) ≡ F (x(t)) : IR 7→ IRm (5)

is also smooth and has (d+ 1) Taylor coefficient vectors yj ∈ IRm at t = 0, so that

y(t) =

d∑
j=0

yjt
j +O(td+1). (6)

Also as a consequence of the chain rule, one can observe that each yj is uniquely and
smoothly determined by the coefficient vectors xi with i ≤ j. In particular we have

y0 = F (x0)

y1 = F ′(x0)x1

y2 = F ′(x0)x2 +
1

2
F ′′(x0)x1x1 (7)

y3 = F ′(x0)x3 + F ′′(x0)x1x2 +
1

6
F ′′′(x0)x1x1x1

. . .



36 4 BASIC DRIVERS FOR THE FORWARD AND REVERSE MODE

In writing down the last equations we have already departed from the usual matrix-vector
notation. It is well known that the number of terms that occur in these “symbolic” expres-
sions for the yj in terms of the first j derivative tensors of F and the “input” coefficients
xi with i ≤ j grows very rapidly with j. Fortunately, this exponential growth does not
occur in automatic differentiation, where the many terms are somehow implicitly combined
so that storage and operations count grow only quadratically in the bound d on j.

Provided F is analytic, this property is inherited by the functions

yj = yj(x0, x1, . . . , xj) ∈ IRm,

and their derivatives satisfy the identities

∂yj
∂xi

=
∂yj−i
∂x0

= Aj−i(x0, x1, . . . , xj−i) (8)

as established in [2]. This yields in particular

∂y0
∂x0

=
∂y1
∂x1

=
∂y2
∂x2

=
∂y3
∂x3

= A0 = F ′(x0)

∂y1
∂x0

=
∂y2
∂x1

=
∂y3
∂x2

= A1 = F ′′(x0)x1

∂y2
∂x0

=
∂y3
∂x1

= A2 = F ′′(x0)x2 +
1

2
F ′′′(x0)x1x1

∂y3
∂x0

= A3 = F ′′(x0)x3 + F ′′′(x0)x1x2 +
1

6
F (4)(x0)x1x1x1

. . .

The m × n matrices Ak, k = 0, . . . , d, are actually the Taylor coefficients of the Jacobian
path F ′(x(t)), a fact that is of interest primarily in the context of ordinary differential
equations and differential algebraic equations.

Given the tape of an active section and the coefficients xj , the resulting yj and their
derivatives Aj can be evaluated by appropriate calls to the ADOL-C forward mode imple-
mentations and the ADOL-C reverse mode implementations. The scalar versions of the
forward mode propagate just one truncated Taylor series from the (xj)j≤d to the (yj)j≤d.
The vector versions of the forward mode propagate families of p ≥ 1 such truncated Taylor
series in order to reduce the relative cost of the overhead incurred in the tape interpretation.
In detail, ADOL-C provides

int zos forward(tag,m,n,keep,x,y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int keep; // flag for reverse mode preparation
double x[n]; // independent vector x = x0
double y[m]; // dependent vector y = F (x0)



37

for the zero-order scalar forward mode. This driver computes y = F (x) with 0 ≤ keep ≤ 1.
The integer flag keep plays a similar role as in the call to trace on: It determines if zos forward
writes the first Taylor coefficients of all intermediate quantities into a buffered temporary
file, i.e., the value stack, in preparation for a subsequent reverse mode evaluation. The
value keep = 1 prepares for fos reverse or fov reverse as exlained below.

To compute first-order derivatives, one has

int fos forward(tag,m,n,keep,x0,x1,y0,y1)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int keep; // flag for reverse mode preparation
double x0[n]; // independent vector x0
double x1[n]; // tangent vector x1
double y0[m]; // dependent vector y0 = F (x0)
double y1[m]; // first derivative y1 = F ′(x0)x1

for the first-order scalar forward mode. Here, one has 0 ≤ keep ≤ 2, where

keep =

{
1 prepares for fos reverse or fov reverse
2 prepares for hos reverse or hov reverse

as exlained below. For the first-order vector forward mode, ADOL-C provides

int fov forward(tag,m,n,p,x0,X,y0,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int p; // number of directions
double x0[n]; // independent vector x0
double X[n][p]; // tangent matrix X
double y0[m]; // dependent vector y0 = F (x0)
double Y[m][p]; // first derivative matrix Y = F ′(x)X

For the computation of higher derivative, the driver

int hos forward(tag,m,n,d,keep,x0,X,y0,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int keep; // flag for reverse mode preparation
double x0[n]; // independent vector x0



38 4 BASIC DRIVERS FOR THE FORWARD AND REVERSE MODE

double X[n][d]; // tangent matrix X
double y0[m]; // dependent vector y0 = F (x0)
double Y[m][d]; // derivative matrix Y

implementing the higher-order scalar forward mode. The rows of the matrix X must
correspond to the independent variables in the order of their initialization by the �=
operator. The columns of X = {xj}j=1...d represent Taylor coefficient vectors as in (4).
The rows of the matrix Y must correspond to the dependent variables in the order of their
selection by the�= operator. The columns of Y = {yj}j=1...d represent Taylor coefficient
vectors as in (6), i.e., hos forward computes the values y0 = F (x0), y1 = F ′(x0)x1, . . . ,
where X = [x1, x2, . . . , xd] and Y = [y1, y2, . . . , yd]. Furthermore, one has 0 ≤ keep ≤ d+ 1,
with

keep

{
= 1 prepares for fos reverse or fov reverse
> 1 prepares for hos reverse or hov reverse

Once more, there is also a vector version given by

int hov forward(tag,m,n,d,p,x0,X,y0,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int p; // number of directions p
double x0[n]; // independent vector x0
double X[n][p][d]; // tangent matrix X
double y0[m]; // dependent vector y0 = F (x0)
double Y[m][p][d]; // derivative matrix Y

for the higher-order vector forward mode that computes y0 = F (x0), Y1 = F ′(x0)X1, . . . ,
where X = [X1, X2, . . . , Xd] and Y = [Y1, Y2, . . . , Yd].

There are also overloaded versions providing a general forward-call. Details of the ap-
propriate calling sequences are given in Section 5.

Once, the required information is generated due to a forward mode evaluation with an
approriate value of the parameter keep, one may use the following implementation variants
of the reverse mode. To compute first-order derivatives one can use

int fos reverse(tag,m,n,u,z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double u[m]; // weight vector u
double z[n]; // resulting adjoint value zT = uTF ′(x)



39

as first-order scalar reverse mode implementation that computes the product zT = uTF ′(x)
after calling zos forward, fos forward, or hos forward with keep=1. The corresponding first-
order vector reverse mode driver is given by

int fov reverse(tag,m,n,q,U,Z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int q; // number of weight vectors q
double U[q][m]; // weight matrix U
double Z[q][n]; // resulting adjoint Z = UF ′(x)

that can be used after calling zos forward, fos forward, or hos forward with keep=1. To
compute higher-order derivatives, ADOL-C provides

int hos reverse(tag,m,n,d,u,Z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
double u[m]; // weight vector u
double Z[n][d+1]; // resulting adjoints

as higher-order scalar reverse mode implementation yielding the adjoints zT0 = uTF ′(x0) =
uTA0, z

T
1 = uTF ′′(x0)x1 = uTA1, . . . , where Z = [z0, z1, . . . , zd] after calling fos forward or

hos forward with keep = d+ 1 > 1. The vector version is given by

int hov reverse(tag,m,n,d,q,U,Z,nz)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
double U[q][m]; // weight vector u
double Z[q][n][d+1]; // resulting adjoints
short int nz[q][n]; // nonzero pattern of Z

as higher-order vector reverse mode driver to compute the adjoints Z0 = UF ′(x0) = UA0,
Z1 = UF ′′(x0)x1 = UA1, . . . , where Z = [Z0, Z1, . . . , Zd] after calling fos forward or
hos forward with keep = d+ 1 > 1. After the function call, the last argument of hov reverse
contains information about the sparsity pattern, i.e. each nz[i][j] has a value that character-
izes the functional relation between the i-th component of UF ′(x) and the j-th independent
value xj as:



40 4 BASIC DRIVERS FOR THE FORWARD AND REVERSE MODE

0 trivial
1 linear

2 polynomial
3 rational

4 transcendental
5 non-smooth

Here, “trivial” means that there is no dependence at all and “linear” means that the partial
derivative is a constant that does not dependent on other variables either. “Non-smooth”
means that one of the functions on the path between xi and yj was evaluated at a point
where it is not differentiable. All positive labels 1, 2, 3, 4, 5 are pessimistic in that the actual
functional relation may in fact be simpler, for example due to exact cancellations.

There are also overloaded versions providing a general reverse-call. Details of the ap-
propriate calling sequences are given in the following Section 5.

4.1 Drivers for Abs-Normal Form

In this subsection we consider functions y = F (x) : IRn → IRm that are non-smooth because
of the occurrence of the absolute value function. The drivers provided generate a piecewise-
linear approximation of the function F in a point x0 and first order derivatives of this second
order approximation. The piecewise-linear model will be called piecewise linearization in
the following. Further information about the piecewise linearization you can find in [7].

The piecewise linearization is given in abs-normal form by[
z
y

]
=

[
c
b

]
+

[
Z L
J Y

] [
x
|z|

]
.

Here z ∈ IRs is a vector of s ≥ 0 switching variables and correspondingly the two vectors
and four matrices specifying the function F have the format

c ∈ IRs, Z ∈ IRs×n, L ∈ IRs×s, b ∈ IRm, J ∈ IRm×n, Y ∈ IRm×s.

The matrix L is strictly lower triangular.

To compute the piecewise linearization ∆F (x0;x) the abs-normal mode has to be enabled
by using

enableMinMaxUsingAbs()

before the trace on() command. If one is interested in the number s of absolute value
functions occurring in the function evaluation, one can get it by

int get num switches(tag)
short int tag; // tape identification

after tracing the function F .



4.1 Drivers for Abs-Normal Form 41

In abs-normal mode several drivers are available. For a start there is a driver to evaluate
y = F (x). The driver also returns the values of z which are the arguments of the intermedi-
ate absolute value functions. The evaluations of the absolute value function is interpreted
as |zi| = σi ∗ zi with σi = sign(zi) in the zero order mode. The vector σ ≡ {−1, 0, 1}s is
called signature vector.

int zos an forward(tag,m,n,keep,x,y,z)
short int tag; // tape identification
int n; // number of independent variables n and m = 1
int m; // number of dependent variables m
int keep; // flag for reverse mode preparation
double x[n]; // independent vector x
double y[m]; // dependent vector y = F (x)
double z[s]; // argument of abs(z)

Additionally, there are drivers for the forward mode to evaluate first order derivatives of
the piecewise linearization. For first order derivatives another signature vector generated
by

int firstsign(zi, Z[i])
double z[s]; // i-th component of argument of abs(z)
double Z[s][p]; // i-th row of first derivative Z = z′(x)X

has to be used. firstsign(u) of a vector u is defined as the sign() of the first non-vanishing
component of u if that exists; otherwise the value is zero. More detailed information can
be found in [7].

int fos an forward(tag,m,n,x0,x1,y0,y1,z0,z2)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x0[n]; // independent vector x
double x1[n]; // tangent vector x1
double y0[m]; // dependent vector y0 = F (x0)
double y1[m]; // first derivative y1 = F ′(x0)x1
double z0[s]; // argument of abs(z0)
double z1[s]; // first derivative z1 = z′0(x0)x1

int fov an forward(tag,m,n,p,x,X,y,Y,z,Z)
short int tag; // tape identification
int m; // number of dependent variables m



42 5 OVERLOADED FORWARD AND REVERSE CALLS

int n; // number of independent variables n
int p; // number of directions
double x[n]; // independent vector x
double X[n][p]; // tangent matrix X
double y[m]; // dependent vector y = F (x)
double Y[m][p]; // first derivative matrix Y = F ′(x)X
double z[s]; // argument of abs(z)
double Z[s][p]; // first derivative matrix Z = z′(x)X

In contrast to the drivers above the reverse mode does not require any directions. It
always returns one row of the Jacobian matrix.

int fov an reverse(tag,m,n,s,rownum,z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int s; // number of sign switches
int rownum; // required row no. of abs-normal form
double z[n]; // resulting adjoint value zT = uTF ′(x)

5 Overloaded Forward and Reverse Calls

In this section, the several versions of the forward and reverse routines, which utilize the
overloading capabilities of C++, are described in detail. With exception of the bit pattern
versions all interfaces are prototyped in the header file <adolc/interfaces.h>, where also
some more specialized forward and reverse routines are explained. Furthermore, ADOL-C
provides C and Fortran-callable versions prototyped in the same header file. The bit pat-
tern versions of forward and reverse introduced in the Section 5.3 are prototyped in the
header file <adolc/sparse/sparsedrivers.h>, which will be included by the header file
<adolc/interfaces.h> automatically.

5.1 The Scalar Case

Given any correct tape, one may call from within the generating program, or subsequently
during another run, the following procedure:

int forward(tag,m,n,d,keep,X,Y)
short int tag; // tape identification
int m; // number of dependent variables m



5.2 The Vector Case 43

int n; // number of independent variables n
int d; // highest derivative degree d
int keep; // flag for reverse sweep
double X[n][d+1]; // Taylor coefficients X of independent variables
double Y[m][d+1]; // Taylor coefficients Y as in (6)

The rows of the matrix X must correspond to the independent variables in the order of
their initialization by the �= operator. The columns of X = {xj}j=0...d represent Taylor
coefficient vectors as in (4). The rows of the matrix Y must correspond to the dependent
variables in the order of their selection by the�= operator. The columns of Y = {yj}j=0...d

represent Taylor coefficient vectors as in (6). Thus the first column of Y contains the
function value F (x) itself, the next column represents the first Taylor coefficient vector of
F , and the last column the d-th Taylor coefficient vector. The integer flag keep determines
how many Taylor coefficients of all intermediate quantities are written into the value stack
as explained in Section 4. If keep is omitted, it defaults to 0.

The given tag value is used by forward to determine the name of the file on which the
tape was written. If the tape file does not exist, forward assumes that the relevant tape
is still in core and reads from the buffers. After the execution of an active section with
keep = 1 or a call to forward with any keep ≤ d+ 1, one may call the function reverse with
d = keep − 1 and the same tape identifier tag. When u is a vector and Z an n × (d + 1)
matrix reverse is executed in the scalar mode by the calling sequence

int reverse(tag,m,n,d,u,Z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
double u[m]; // weighting vector u
double Z[n][d+1]; // resulting adjoints Z

to compute the adjoints zT0 = uTF ′(x0) = uTA0, z
T
1 = uTF ′′(x0)x1 = uTA1, . . . , where

Z = [z0, z1, . . . , zd].

5.2 The Vector Case

When U is a matrix reverse is executed in the vector mode by the following calling sequence

int reverse(tag,m,n,d,q,U,Z,nz)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n



44 5 OVERLOADED FORWARD AND REVERSE CALLS

int d; // highest derivative degree d
int q; // number of weight vectors q
double U[q][m]; // weight matrix U
double Z[q][n][d+1]; // resulting adjoints
short nz[q][n]; // nonzero pattern of Z

to compute the adjoints Z0 = UF ′(x0) = UA0, Z1 = UF ′′(x0)x1 = UA1, . . . , where
Z = [Z0, Z1, . . . , Zd]. When the arguments p and U are omitted, they default to m and the
identity matrix of order m, respectively.

Through the optional argument nz of reverse one can compute information about the
sparsity pattern of Z as described in detail in the previous Section 4.

The return values of reverse calls can be interpreted according to Table 1, but negative
return values are not valid, since the corresponding forward sweep would have stopped
without completing the necessary taylor file. The return value of reverse may be higher
than that of the preceding forward call because some operations that were evaluated at a
critical argument during the forward sweep were found not to impact the dependents during
the reverse sweep.

In both scalar and vector mode, the degree d must agree with keep − 1 for the most
recent call to forward, or it must be equal to zero if reverse directly follows the taping of
an active section. Otherwise, reverse will return control with a suitable error message. In
order to avoid possible confusion, the first four arguments must always be present in the
calling sequence. However, if m or d attain their trivial values 1 and 0, respectively, then
corresponding dimensions of the arrays X, Y, u, U, or Z can be omitted, thus eliminating
one level of indirection. For example, we may call reverse(tag,1,n,0,1.0,g) after declaring
double g[n] to calculate a gradient of a scalar-valued function.

Sometimes it may be useful to perform a forward sweep for families of Taylor series with
the same leading term. This vector version of forward can be called in the form

int forward(tag,m,n,d,p,x0,X,y0,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int p; // number of Taylor series p
double x0[n]; // values of independent variables x0
double X[n][p][d]; // Taylor coefficients X of independent variables
double y0[m]; // values of dependent variables y0
double Y[m][p][d]; // Taylor coefficients Y of dependent variables

where X and Y hold the Taylor coefficients of first and higher degree and x0, y0 the common
Taylor coefficients of degree 0. There is no option to keep the values of active variables



5.3 Dependence Analysis 45

that are going out of scope or that are overwritten. Therefore this function cannot prepare
a subsequent reverse sweep. The return integer serves as a flag to indicate quadratures or
altered comparisons as described above in Section 1.7.

Since the calculation of Jacobians is probably the most important automatic differentia-
tion task, we have provided a specialization of vector forward to the case where d = 1. This
version can be called in the form

int forward(tag,m,n,p,x,X,y,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int p; // number of partial derivatives p
double x[n]; // values of independent variables x0
double X[n][p]; // seed derivatives of independent variables X
double y[m]; // values of dependent variables y0
double Y[m][p]; // first derivatives of dependent variables Y

When this routine is called with p = n and X the identity matrix, the resulting Y is simply
the Jacobian F ′(x0). In general, one obtains the m× p matrix Y = F ′(x0)X for the chosen
initialization of X. In a workstation environment a value of p somewhere between 10 and
50 appears to be fairly optimal. For smaller p the interpretive overhead is not appropriately
amortized, and for larger p the p-fold increase in storage causes too many page faults.
Therefore, large Jacobians that cannot be compressed via column coloring as could be done
for example using the driver sparse jac should be “strip-mined” in the sense that the above
first-order-vector version of forward is called repeatedly with the successive n× p matrices
X forming a partition of the identity matrix of order n.

5.3 Dependence Analysis

The sparsity pattern of Jacobians is often needed to set up data structures for their storage
and factorization or to allow their economical evaluation by compression [1]. Compared to
the evaluation of the full Jacobian F ′(x0) in real arithmetic computing the Boolean matrix
P̃ ∈ {0, 1}m×n representing its sparsity pattern in the obvious way requires a little less
run-time and certainly a lot less memory.

The entry P̃ji in the j-th row and i-th column of P̃ should be 1 = true exactly when
there is a data dependence between the i-th independent variable xi and the j-th dependent
variable yj . Just like for real arguments one would wish to compute matrix-vector and
vector-matrix products of the form P̃ ṽ or ũT P̃ by appropriate forward and reverse routines
where ṽ ∈ {0, 1}n and ũ ∈ {0, 1}m. Here, multiplication corresponds to logical AND and
addition to logical OR, so that algebra is performed in a semi-ring.

For practical reasons it is assumed that s = 8∗sizeof(unsigned long int) such Boolean



46 5 OVERLOADED FORWARD AND REVERSE CALLS

vectors ṽ and ũ are combined to integer vectors v ∈ INn and u ∈ INm whose components
can be interpreted as bit patterns. Moreover p or q such integer vectors may be combined
column-wise or row-wise to integer matrices X ∈ INn×p and U ∈ INq×m, which naturally
correspond to Boolean matrices X̃ ∈ {0, 1}n×(sp) and Ũ ∈ {0, 1}(sq)×m. The provided bit
pattern versions of forward and reverse allow to compute integer matrices Y ∈ INm×p and
Z ∈ INq×m corresponding to

Ỹ = P̃ X̃ and Z̃ = Ũ P̃ , (9)

respectively, with Ỹ ∈ {0, 1}m×(sp) and Ũ ∈ {0, 1}(sq)×n. In general, the application of the
bit pattern versions of forward or reverse can be interpreted as propagating dependences
between variables forward or backward, therefore both the propagated integer matrices and
the corresponding Boolean matrices are called dependence structures.

The bit pattern forward routine

int forward(tag,m,n,p,x,X,y,Y,mode)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int p; // number of integers propagated p
double x[n]; // values of independent variables x0
unsigned long int X[n][p]; // dependence structure X
double y[m]; // values of dependent variables y0
unsigned long int Y[m][p]; // dependence structure Y according to (9)
char mode; // 0 : safe mode (default), 1 : tight mode

can be used to obtain the dependence structure Y for a given dependence structure X. The
dependence structures are represented as arrays of unsigned long int the entries of which are
interpreted as bit patterns as described above. For example, for n = 3 the identity matrix
I3 should be passed with p = 1 as the 3× 1 array

X =

 10000000 00000000 00000000 000000002
01000000 00000000 00000000 000000002
00100000 00000000 00000000 000000002


in the 4-byte long integer format. The parameter mode determines the mode of dependence
analysis as explained already in Section 3.3.

A call to the corresponding bit pattern reverse routine

int reverse(tag,m,n,q,U,Z,mode)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n



47

int q; // number of integers propagated q
unsigned long int U[q][m]; // dependence structure U
unsigned long int Z[q][n]; // dependence structure Z according to (9)
char mode; // 0 : safe mode (default), 1 : tight mode

yields the dependence structure Z for a given dependence structure U .

To determine the whole sparsity pattern P̃ of the Jacobian F ′(x) as an integer matrix
P one may call forward or reverse with p ≥ n/s or q ≥ m/s, respectively. For this purpose
the corresponding dependence structure X or U must be defined to represent the identity
matrix of the respective dimension. Due to the fact that always a multiple of s Boolean
vectors are propagated there may be superfluous vectors, which can be set to zero.

The return values of the bit pattern forward and reverse routines correspond to those
described in Table 1.

One can control the storage growth by the factor p using “strip-mining” for the calls
of forward or reverse with successive groups of columns or respectively rows at a time,
i.e. partitioning X or U appropriately as described for the computation of Jacobians in
Section 5.2.

6 Advanced algorithmic differentiation in ADOL-C

6.1 Differentiating external functions

Ideally, AD is applied to a given computation as a whole. This is not always possible
because parts of the computation may be coded in a different programming language or
may a call to an external library. In the former case one may want to differentiate the
parts in question with a different AD tool or provide hand written derivatives. To integrate
these In practice, however, sophisticated projects usually evolve over a long period of time.
Within this process, a heterogeneous code base for the project develops, which may include
the incorporation of external solutions, changes in programming paradigms or even of pro-
gramming languages. Equally heterogeneous, the computation of derivative values appears.
Hence, different AD-tools may be combined with hand-derived codes based on the same
or different programming languages. ADOL-C supports such settings by the concept of
externally differentiated functions, that is, a function not differentiated by ADOL-C itself.
The required derivatives have to be provided by the user.

For this purpose, it is required that the externally differentiated function (for example
named euler step ) has the following signature.

int euler step(int n, double *x, int m, double *y);

Note that the formal paraemters in the signature have double type, that is, they are not



48 6 ADVANCED ALGORITHMIC DIFFERENTIATION IN ADOL-C

active as in the original program before the ADOL-C type change. The externally differen-
tiated function has to be registered4 using an ADOL-C method as follows.

ext diff fct *edf = reg ext fct(euler step);.

This returns a pointer to an ext diff fct instance specific to the registered function. Then,
the user has to supply the function pointers for the call back methods (for example here
zos for euler step and fos rev euler step) the user implemented to compute the derivatives as
follows.

edf->zos forward = zos for euler step;
// function pointer for computing Zero-Order-Scalar (=zos)
// forward information
edf->fos reverse = fos rev euler step;
// function pointer for computing First-Order-Scalar (=fos)
reverse information

To facilitate the switch between active and passive versions of the parameters x and y
one has to provide (allocate) both variants. I.e. if the call to euler step was originally

rc=euler step(n, sOld, m, sNew); then the ADOL-C typechange for the calling

context will turn sOld and sNew in adouble pointers. To trigger the appropriate action for
the derivative computation (i.e. creating an external differentiation entry on the trace) the
original call to the externally differentiated function must be substituted by

rc=call ext fct(edf, n, sOldPassive, sOld, m, sNewPassive, sNew);

Here, sOldPassive and sNewPassive are the passive counterparts (double pointers allocated
to length n and m, respectively) to the active arguments sNew in adouble. The usage of
the external function facility is illustrated by the example ext_diff_func contained in
examples/additional_examples/ext_diff_func. There,the external differentiated func-
tion is also a C code, but the handling as external differentiated functions also a decrease
of the overall required tape size.

6.2 Advanced algorithmic differentiation of time integration processes

For many time-dependent applications, the corresponding simulations are based on ordinary
or partial differential equations. Furthermore, frequently there are quantities that influence
the result of the simulation and can be seen as control of the systems. To compute an
approximation of the simulated process for a time interval [0, T ] and evaluated the desired
target function, one applies an appropriate integration scheme given by

4we record the function pointer



6.2 Advanced algorithmic differentiation of time integration processes 49

some initializations yielding x0
for i = 0, . . . , N − 1
xi+1 = F (xi, ui, ti)

evaluation of the target function

where xi ∈ Rn denotes the state and ui ∈ Rm the control at time ti for a given time grid
t0, . . . , tN with t0 = 0 and tN = T . The operator F : Rn ×Rm ×R 7→ Rn defines the time
step to compute the state at time ti. Note that we do not assume a uniform grid.

When computing derivatives of the target function with respect to the control, the
consequences for the tape generation using the “basic” taping approach as implemented in
ADOL-C so far are shown in the left part of Figure 4. As can be seen, the iterative process

tape generation

time loop target
function

init

tape generation

Basic taping process Advanced taping process

Figure 4: Different taping approaches

is completely unrolled due to the taping process. That is, the tape contains an internal
representation of each time step. Hence, the overall tape comprises a serious amount of
redundant information as illustrated by the light grey rectangles in Figure 4.

To overcome the repeated storage of essentially the same information, a nested taping
mechanism has been incorporated into ADOL-C as illustrated on the right-hand side of
Figure 4. This new capability allows the encapsulation of the time-stepping procedure such
that only the last time step xN = F (xN−1, uN−1) is taped as one representative of the time
steps in addition to a function pointer to the evaluation procedure F of the time steps. The
function pointer has to be stored for a possibly necessary retaping during the derivative
calculation as explained below.

Instead of storing the complete tape, only a very limited number of intermediate states
are kept in memory. They serve as checkpoints, such that the required information for
the backward integration is generated piecewise during the adjoint calculation. For this
modified adjoint computation the optimal checkpointing schedules provided by revolve
are employed. An adapted version of the software package revolve is part of ADOL-C
and automatically integrated in the ADOL-C library. Based on revolve, c checkpoints are
distributed such that computational effort is minimized for the given number of checkpoints
and time steps N . It is important to note that the overall tape size is drastically reduced
due to the advanced taping strategy. For the implementation of this nested taping we



50 6 ADVANCED ALGORITHMIC DIFFERENTIATION IN ADOL-C

introduced a so-called “differentiating context” that enables ADOL-C to handle different
internal function representations during the taping procedure and the derivative calculation.
This approach allows the generation of a new tape inside the overall tape, where the coupling
of the different tapes is based on the external differentiated function described above.

Written under the objective of minimal user effort, the checkpointing routines of ADOL-C
need only very limited information. The user must provide two routines as implementation
of the time-stepping function F with the signatures

int time step function(int n, adouble *u);
int time step function(int n, double *u);

where the function names can be chosen by the user as long as the names are unique.It is
possible that the result vector of one time step iteration overwrites the argument vector of
the same time step. Then, no copy operations are required to prepare the next time step.

At first, the adouble version of the time step function has to be registered using the
ADOL-C function

CP Context cpc(time step function);.

This function initializes the structure cpc. Then, the user has to provide the remaining
checkpointing information by the following commands:

cpc.setDoubleFct(time step function);
// double variante of the time step function
cpc.setNumberOfSteps(N);
// number of time steps to perform
cpc.setNumberOfCheckpoints(10);
// number of checkpoint
cpc.setDimensionXY(n);
// dimension of input/output
cpc.setInput(y);
// input vector
cpc.setOutput(y);
// output vector
cpc.setTapeNumber(tag check);
// subtape number for checkpointing
cpc.setAlwaysRetaping(false);
// always retape or not ?

Subsequently, the time loop in the function evaluation can be substituted by a call of the
function

int cpc.checkpointing();



6.3 Advanced algorithmic differentiation of fixed point iterations 51

Then, ADOL-C computes derivative information using the optimal checkpointing strategy
provided by revolve internally, i.e., completely hidden from the user.

The presented driver is prototyped in the header file <adolc/checkpointing.h>. This
header is included by the global header file <adolc/adolc.h> automatically. An example
program checkpointing.cpp illustrates the checkpointing facilities. It can be found in the
directory examples/additional_examples/checkpointing.

6.3 Advanced algorithmic differentiation of fixed point iterations

Quite often, the state of the considered system denoted by x ∈ IRn depends on some design
parameters denoted by u ∈ IRm. One example for this setting forms the flow over an aircraft
wing. Here, the shape of the wing that is defined by the design vector u determines the
flow field x. The desired quasi-steady state x∗ fulfills the fixed point equation

x∗ = F (x∗, u) (10)

for a given continuously differentiable function F : IRn× IRm → IRn. A fixed point property
of this kind is also exploited by many other applications.

Assume that one can apply the iteration

xk+1 = F (xk, u) (11)

to obtain a linear converging sequence {xk} generated for any given control u ∈ IRn. Then
the limit point x∗ ∈ IRn fulfils the fixed point equation (10). Moreover, suppose that
‖dFdx (x∗, u)‖ < 1 holds for any pair (x∗, u) satisfying equation (10). Hence, there exists a
differentiable function φ : IRm → IRn, such that φ(u) = F (φ(u), u), where the state φ(u) is
a fixed point of F according to a control u. To optimize the system described by the state
vector x = φ(u) with respect to the design vector u, derivatives of φ with respect to u are
of particular interest.

To exploit the advanced algorithmic differentiation of such fixed point iterations ADOL-
C provides the special functions fp iteration(...). It has the following interface:

int fp iteration(sub tape num,double F,adouble F,norm,norm deriv,eps,eps deriv,
N max,N max deriv,x 0,u,x fix,dim x,dim u)

short int sub tape num; // tape identification for sub tape
int *double F; // pointer to a function that compute for x and u

// the value y = F (x, u) for double arguments
int *adouble F; // pointer to a function that compute for x and u

// the value y = F (x, u) for double arguments
int *norm; // pointer to a function that computes

// the norm of a vector
int *norm deriv; // pointer to a function that computes



52 6 ADVANCED ALGORITHMIC DIFFERENTIATION IN ADOL-C

// the norm of a vector
double eps; // termination criterion for fixed point iteration
double eps deriv; // termination criterion for adjoint fixed point iteration
N max; // maximal number of itertions for state computation
N max deriv; // maximal number of itertions for adjoint computation
adouble *x 0; // inital state of fixed point iteration
adouble *u; // value of u
adouble *x fic; // final state of fixed point iteration
int dim x; // dimension of x
int dim u; // dimension of u

Here sub tape num is an ADOL-C identifier for the subtape that should be used for the
fixed point iteration. double F and adouble F are pointers to functions, that compute for
x and u a single iteration step y = F (x, u). Thereby double F uses double arguments and
adouble F uses ADOL-C adouble arguments. The parameters norm and norm deriv are
pointers to functions computing the norm of a vector. The latter functions together with
eps, eps deriv, N max, and N max deriv control the iterations. Thus the following loops
are performed:

do do
k = k + 1 k = k + 1
x = y ζ = ξ
y = F (x, u) (ξT , ūT ) = ζTF ′(x∗, u) + (x̄T , 0T )

while ‖y − x‖ ≥ ε and k ≤ Nmax while ‖ξ − ζ‖deriv ≥ εderiv
and k ≤ Nmax,deriv

The vector for the initial iterate and the control is stored in x 0 and u respectively. The
vector in which the fixed point is stored is x fix. Finally dim x and dim u represent the
dimensions n and m of the corresponding vectors.

The presented driver is prototyped in the header file <adolc/fixpoint.h>. This header
is included by the global header file <adolc/adolc.h> automatically. An example code
that shows also the expected signature of the function pointers is contained in the directory
examples/additional_examples/fixpoint_exam.

6.4 Advanced algorithmic differentiation of OpenMP parallel programs

ADOL-C allows to compute derivatives in parallel for functions containing OpenMP parallel
loops. This implies that an explicit loop-handling approach is applied. A typical situation
is shown in Figure 5, where the OpenMP-parallel loop is preceded by a serial startup
calculation and followed by a serial finalization phase.



6.4 Advanced algorithmic differentiation of OpenMP parallel programs 53

...
...

...
...

function eval. derivative calcul.

Figure 5: Basic layout of mixed function and the corresponding derivation process

Initialization of the OpenMP-parallel regions for ADOL-C is only a matter of adding
a macro to the outermost OpenMP statement. Two macros are available that only differ
in the way the global tape information is handled. Using ADOLC OPENMP, this information,
including the values of the augmented variables, is always transferred from the serial to the
parallel region using firstprivate directives for initialization. For the special case of iterative
codes where parallel regions, working on the same data structures, are called repeatedly
the ADOLC OPENMP NC macro can be used. Then, the information transfer is performed only
once within the iterative process upon encounter of the first parallel region through use
of the threadprivate feature of OpenMP that makes use of thread-local storage, i.e., global
memory local to a thread. Due to the inserted macro, the OpenMP statement has the
following structure:

#pragma omp ... ADOLC OPENMP or
#pragma omp ... ADOLC OPENMP NC

Inside the parallel region, separate tapes may then be created. Each single thread works
in its own dedicated AD-environment, and all serial facilities of ADOL-C are applicable as
usual. The global derivatives can be computed using the tapes created in the serial and
parallel parts of the function evaluation, where user interaction is required for the correct
derivative concatenation of the various tapes.

For the usage of the parallel facilities, the configure-command has to be used with the
option --with-openmp-flag=FLAG, where FLAG stands for the system dependent OpenMP
flag. The parallel differentiation of a parallel program is illustrated by the example program
openmp_exam.cpp contained in examples/additional_examples/openmp_exam.



54 7 TAPELESS FORWARD DIFFERENTIATION IN ADOL-C

7 Tapeless forward differentiation in ADOL-C

Up to version 1.9.0, the development of the ADOL-C software package was based on the
decision to store all data necessary for derivative computation on tapes, where large appli-
cations require the tapes to be written out to corresponding files. In almost all cases this
means a considerable drawback in terms of run time due to the excessive memory accesses.
Using these tapes enables ADOL-C to offer multiple functions. However, it is not necessary
for all tasks of derivative computation to do that.

Starting with version 1.10.0, ADOL-C now features a tapeless forward mode for com-
puting first order derivatives in scalar mode, i.e., ẏ = F ′(x)ẋ, and in vector mode, i.e.,
Ẏ = F ′(x)Ẋ. This tapeless variant coexists with the more universal tape based mode in
the package. The following subsections describe the source code modifications required to
use the tapeless forward mode of ADOL-C.

7.1 Modifying the Source Code

Let us consider the coordinate transformation from Cartesian to spherical polar coordinates
given by the function F : R3 → R3, y = F (x), with

y1 =
√
x21 + x22 + x23, y2 = arctan

(√
x21 + x22/x3

)
, y3 = arctan(x2/x1),

as an example. The corresponding source code is shown in Figure 6. Changes to the source
code that are necessary for applying the tapeless forward ADOL-C are described in the
following two subsections, where the vector mode version is described as extension of the
scalar mode.

The scalar mode

To use the tapeless forward mode, one has to include one of the header files adolc.h or
adouble.h where the latter should be preferred since it does not include the tape based
functions defined in other header files. Hence, including adouble.h avoids mode mixtures,
since adolc.h is just a wrapper for including all public headers of the ADOL-C package
and does not offer own functions. Since the two ADOL-C forward mode variants tape-
based and tapeless, are prototyped in the same header file, the compiler needs to know if
a tapeless version is intended. This can be done by defining a preprocessor macro named
ADOLC TAPELESS. Note that it is important to define this macro before the header file is
included. Otherwise, the tape-based version of ADOL-C will be used.

As in the tape based forward version of ADOL-C all derivative calculations are intro-
duced by calls to overloaded operators. Therefore, similar to the tape-based version all
independent, intermediate and dependent variables must be declared with type adouble.



7.1 Modifying the Source Code 55

#include <iostream>
using namespace std;

int main() {
double x[3], y[3];

for (int i=0; i<3; ++i) // Initialize xi
...

y[0] = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
y[1] = atan(sqrt(x[0]*x[0]+x[1]*x[1])/x[2]);
y[2] = atan(x[1]/x[0]);

cout << ”y1=” << y[0] << ” , y2=” << y[1] << ” , y3=” << y[2] << endl;

return 0;
}

Figure 6: Example for tapeless forward mode

The whole tapeless functionality provided by adolc.h was written as complete inline in-
tended code due to run time aspects, where the real portion of inlined code can be influenced
by switches for many compilers. Likely, the whole derivative code is inlined by default. Our
experiments with the tapeless mode have produced complete inlined code by using standard
switches (optimization) for GNU and Intel C++ compiler.

To avoid name conflicts resulting from the inlining the tapeless version has its own
namespace adtl. As a result four possibilities of using the adouble type are available for
the tapeless version:

• Defining a new type

typedef adtl::adouble adouble;
...
adouble tmp;

This is the preferred way. Remember, you can not write an own adouble type/class
with different meaning after doing the typedef.

• Declaring with namespace prefix

adtl::adouble tmp;



56 7 TAPELESS FORWARD DIFFERENTIATION IN ADOL-C

Not the most handsome and efficient way with respect to coding but without any doubt
one of the safest ways. The identifier adouble is still available for user types/classes.

• Trusting macros

#define adouble adtl::adouble
...
adouble tmp;

This approach should be used with care, since standard defines are text replacements.

• Using the complete namespace

#using namespace adtl;
...
adouble tmp;

A very clear approach with the disadvantage of uncovering all the hidden secrets.
Name conflicts may arise!

After defining the variables only two things are left to do. First one needs to initialize
the values of the independent variables for the function evaluation. This can be done by
assigning the variables a double value. The ad-value is set to zero in this case. Additionally,
the tapeless forward mode variant of ADOL-C offers a function named setValue for setting
the value without changing the ad-value. To set the ad-values of the independent variables
ADOL-C offers two possibilities:

• Using the constructor

adouble x1(2,1), x2(4,0), y;

This would create three adoubles x1, x2 and y. Obviously, the latter remains uninitial-
ized. In terms of function evaluation x1 holds the value 2 and x2 the value 4 whereas
the derivative values are initialized to ẋ1 = 1 and ẋ2 = 0.

• Setting point values directly

adouble x1=2, x2=4, y;
...
x1.setADValue(1);
x2.setADValue(0);

The same example as above but now using setADValue-method for initializing the
derivative values.



7.1 Modifying the Source Code 57

The derivatives can be obtained at any time during the evaluation process by calling the
getADValue-method

adouble y;
...
cout << y.getADValue();

Figure 7 shows the resulting source code incorporating all required changes for the example
given above.

#include <iostream>
using namespace std;

#define ADOLC TAPELESS
#include <adouble.h>
typedef adtl::adouble adouble;

int main() {
adouble x[3], y[3];

for (int i=0; i<3; ++i) // Initialize xi
...

x[0].setADValue(1); // derivative of f with respect to x1
y[0] = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
y[1] = atan(sqrt(x[0]*x[0]+x[1]*x[1])/x[2]);
y[2] = atan(x[1]/x[0]);

cout << ”y1=” << y[0].getValue() << ” , y2=” << y[1].getValue ... ;
cout << ”dy2/dx1 = ” << y[1].getADValue() << endl;
return 0;

}

Figure 7: Example for tapeless scalar forward mode

The vector mode

In scalar mode only one direction element has to be stored per adouble whereas a field of p
elements is needed in the vector mode to cover the computations for the given p directions.
The resulting changes to the source code are described in this section.



58 7 TAPELESS FORWARD DIFFERENTIATION IN ADOL-C

Similar to tapeless scalar forward mode, the tapeless vector forward mode is used by
defining ADOLC TAPELESS. Furthermore, one has to define an additional preprocessor
macro named NUMBER DIRECTIONS. This macro takes the maximal number of directions
to be used within the resulting vector mode. Just as ADOLC TAPELESS the new macro
must be defined before including the <adolc.h/adouble.h> header file since it is ignored
otherwise.

In many situations recompiling the source code to get a new number of directions is at
least undesirable. ADOL-C offers a function named setNumDir to work around this problem
partially. Calling this function, ADOL-C does not take the number of directions from
the macro NUMBER DIRECTIONS but from the argument of setNumDir. A corresponding
source code would contain the following lines:

#define NUMBER DIRECTIONS 10
...
adtl::setNumDir(5);

Note that using this function does not change memory requirements that can be roughly
determined by (NUMBER DIRECTIONS+1)*(number of adoubles).

Compared to the scalar case setting and getting the derivative values, i.e. the directions,
is more involved. Instead of working with single double values, pointer to fields of doubles
are used as illustrated by the following example:

#define NUMBER DIRECTIONS 10
...
adouble x, y;
double *ptr=new double[NUMBER DIRECTIONS];
...
x1=2;
x1.setADValue(ptr);
...
ptr=y.getADValue();

Additionally, the tapeless vector forward mode of ADOL-C offers two new methods for
setting/getting the derivative values. Similar to the scalar case, double values are used but
due to the vector mode the position of the desired vector element must be supplied in the
argument list:



7.2 Compiling and Linking the Source Code 59

#define NUMBER DIRECTIONS 10
...
adouble x, y;
...
x1=2;
x1.setADValue(5,1); // set the 6th point value of x to 1.0
...
cout << y.getADValue(3) << endl; // print the 4th derivative value of y

The resulting source code containing all changes that are required is shown in Figure 8

7.2 Compiling and Linking the Source Code

After incorporating the required changes, one has to compile the source code and link the
object files to get the executable. As long as the ADOL-C header files are not included in
the absolute path the compile sequence should be similar to the following example:

g++ -I/home/username/adolc base/include -c tapeless scalar.cpp

The -I option tells the compiler where to search for the ADOL-C header files. This option
can be omitted when the headers are included with absolute path or if ADOL-C is installed
in a “global” directory.

Since the tapeless forward version of ADOL-C is implemented in the header adouble.h
as complete inline intended version, the object files do not need to be linked against any
external ADOL-C code or the ADOL-C library. Therefore, the example started above could
be finished with the following command:

g++ -o tapeless scalar tapeless scalar.o

The mentioned source codes tapeless scalar.c and tapeless vector.c illustrating the use of the
for tapeless scalar and vector mode can be found in the directory examples.

7.3 Concluding Remarks for the Tapeless Forward Mode Variant

As many other AD methods the tapeless forward mode provided by the ADOL-C package
has its own strengths and drawbacks. Please read the following section carefully to become
familiar with the things that can occur:

• Advantages:

– Code speed
Increasing computation speed was one of the main aspects in writing the tapeless
code. In many cases higher performance can be expected this way.



60 7 TAPELESS FORWARD DIFFERENTIATION IN ADOL-C

#include <iostream>
using namespace std;

#define ADOLC TAPELESS
#define NUMBER DIRECTIONS 3
#include <adouble.h>
typedef adtl::adouble adouble;

ADOLC TAPELESS UNIQUE INTERNALS;

int main() {
adouble x[3], y[3];

for (int i=0; i<3; ++i) {
... // Initialize xi
for (int j=0; j<3; ++j) if (i==j) x[i].setADValue(j,1);

}

y[0] = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
y[1] = atan(sqrt(x[0]*x[0]+x[1]*x[1])/x[2]);
y[2] = atan(x[1]/x[0]);

cout << ”y1=” << y[0].getValue() << ” , y2=” << y[1].getValue ... ;
cout << ”jacobian : ” << endl;
for (int i=0; i<3; ++i) {

for (int j=0; j<3; ++j)
cout << y[i].getADValue(j) << ” ”;

cout << endl;
}
return 0;

}

Figure 8: Example for tapeless vector forward mode

– Easier linking process
As another result from the code inlining the object code does not need to be
linked against an ADOL-C library.

– Smaller overall memory requirements
Tapeless ADOL-C does not write tapes anymore, as the name implies. Loop
”unrolling” can be avoided this way. Considered main memory plus disk space



61

as overall memory requirements the tapeless version can be executed in a more
efficient way.

• Drawbacks:

– Main memory limitations
The ability to compute derivatives to a given function is bounded by the main
memory plus swap size when using tapeless ADOL-C. Computation from swap
should be avoided anyway as far as possible since it slows down the computing
time drastically. Therefore, if the program execution is terminated without error
message insufficient memory size can be the reason among other things. The
memory requirements M can be determined roughly as followed:

∗ Scalar mode: M =(number of adoubles)∗2 +Mp

∗ Vector mode: M =(number of adoubles)*(NUMBER DIRECTIONS+1) +Mp

where the storage size of all non adouble based variables is described by Mp.

– Compile time
As discussed in the previous sections, the tapeless forward mode of the ADOL-C
package is implemented as inline intended version. Using this approach results
in a higher source code size, since every operation involving at least one adouble
stands for the operation itself as well as for the corresponding derivative code
after the inlining process. Therefore, the compilation time needed for the tapeless
version may be higher than that of the tape based code.

– Code Size
A second drawback and result of the code inlining is the increase of code sizes
for the binaries. The increase factor compared to the corresponding tape based
program is difficult to quantify as it is task dependent. Practical results have
shown that values between 1.0 and 2.0 can be expected. Factors higher than 2.0
are possible too and even values below 1.0 have been observed.

8 Traceless forward differentiation in ADOL-C using Cuda

One major drawback using the traceless version of ADOL-C is the fact that several function
evaluations are needed to compute derivatives in many different points. More precisely, to
calculate the Jacobian for a function F : Rn → Rm in M points, M function evaluations
are needed for the traceless vector mode and even M ∗ n for the traceless scalar mode.
Depending on the size of the function this can result in a long runtime. To achieve a better
performance one can use parallelisation techniques as the same operations are performed
during a function evaluation. One possibility is to use GPUs since they are optimized for
data parallel computation. Starting with version 2.3.0 ADOL-C now features a traceless
forward mode for computing first order derivatives in scalar mode on GPUs using the general
purpose parallel computing architecture Cuda.



62 8 TRACELESS FORWARD DIFFERENTIATION IN ADOL-C USING CUDA

The idea is to include parallel code that executes in many GPU threads across processing
elements. This can be done by using kernel functions, that is functions which are executed
on GPU as an array of threads in parallel. In general all threads execute the same code.
They are grouped into blocks which are then grouped into grids. A kernel is executed as a
grid of blocks of threads. For more details see, e.g., the NVIDIA CUDA C Programming
Guide which can be downloaded from the web page www.nvidia.com. To solve the problem
of calculating the Jacobian of F at M points it is possible to let each thread perform a
function evaluation and thus the computation of derivatives for one direction at one point.
The advantage is that the function is evaluated in different points in parallel which can
result in a faster wallclock runtime.

The following subsection describes the source code modifications required to use the
traceless forward mode of ADOL-C with Cuda.

8.1 Modifying the source code

Let us again consider the coordinate transformation from Cartesian to spherical polar co-
ordinates given by the function F : R3 → R3, y = F (x), with

y1 =
√
x21 + x22 + x23, y2 = arctan

(√
x21 + x22/x3

)
, y3 = arctan(x2/x1),

as an example. We now calculate the Jacobian at M = 1024 different points. The source
code for one point is shown in Figure 6. This example has no real application but can still
be used to show the combination of the traceless version of ADOL-C and Cuda.

For the use of this mode a Cuda toolkit, which is suitable for the grafic card used, has
to be installed. Furthermore, it is important to check that the graphic card used supports
double precision (for details see e.g. NVIDIA CUDA C Programming Guide). Otherwise
the data type employed inside of the adouble class has to be adapted to float. To use
the traceless forward mode with Cuda, one has to include the header files adoublecuda.h

and cuda.h. The first one contains the definition of the class adouble and the overloaded
operators for this version of ADOL-C. As in the other versions all derivative calculations
are introduced by calls to overloaded operators. The second header file is needed for the
use of Cuda.

One possibility to solve the problem above is the following. First of all three double
arrays are needed: x for the independent variables, y for the dependent variables and deriv
for the values of the Jacobian matrices. The independent variables have to be initialised,
therefore the points at which the function should be evaluated are saved in a row in the
same array of length 3∗M . For the computation on GPUs one also has to allocate memory
on this device. Using the syntax in Cuda one can allocate an array of length 3∗M (number
of independent variables times number of points) for the independent variables as follows:



8.1 Modifying the source code 63

double * devx;
cudaMalloc((void**)&devx, 3*M*sizeof(double));

The arrays for the dependent variables and the values of the Jacobian matrices are allocated
in the same way. Then the values of the independent variables have to be copied to the
GPU using the following command

cudaMemcpy(devx, x, sizeof(double)*3*M, cudaMemcpyHostToDevice);

The argument cudaMemcpyHostToDevice indicates that the values are copied from the host
to the GPU. In this case the values stored in x are copied to devx.

Now all required information has been transferred to the GPU. The changes in the
source code made so far are summarized in Figure 9.

In the next step the user has to specify how many blocks and threads per block will
be needed for the function evaluations. In the present example this is done by the call of
the function kernellaunch, see Figure 10. In this case the blocks are two dimensional: the
x-dimension is determined by the number of points M at which the Jacobian matrix has to
be calculated while the y-dimension is given by the number of independent variables, i.e.,
3. Since a block cannot contain more than 1024 threads, the x-dimension in the example
is 64 instead of M = 1024. Therefore 1024/64 = 16 blocks are needed. The described
division into blocks is reasonable as each thread has to perform a function evaluation for
one point and one direction, hence M ∗3 threads are needed where 3 denotes the number of
independent variables corresponding to the number of directions needed for the computation
of the Jacobian in one point.

We can now perform the function evaluations together with the calculation of the Ja-
cobians. The corresponding code is illustrated in Figure 11. Since the function evaluations
should be performed on a GPU a kernel function is needed which is defined by using the

global declaration specifier (see Figure 11). Then each thread executes the operations
that are defined in the kernel.

In this example each thread is assigned the task of calculating the derivatives in one
point with respect to one independent variable. Therefore some indices are needed for the
implementation. Each thread has a unique thread ID in a block consisting of an x and an
y-dimension. The blocks have an ID as well. In the example the following indices are used.

• index = threadIdx.x denotes the x-dimension of a thread (ranges from 0 to 63 in the
example)

• index1 = threadIdx.y denotes the y-dimension of a thread (ranges from 0 to 2 in the
example)

• index2 = blockIdx.x denotes the block index (ranges from 0 to 15 in the example)



64 8 TRACELESS FORWARD DIFFERENTIATION IN ADOL-C USING CUDA

#include <iostream>
#include <cuda.h>
#include <adoublecuda.h>
using namespace std;

int main() {
int M=1024;
double* deriv = new double[9*M];
double* y = new double[3*M];
double* x = new double[3*M];

// Initialize xi
for (int k=0; k<M; ++k){

for (int i=0; i<3; ++i)
x[k*3+i] =i + 1/(k+1);}

// Allocate array for independent and dependent variables
// and Jacobian matrices on GPU
double * devx;
cudaMalloc((void**)&devx, 3*M*sizeof(double));
double * devy;
cudaMalloc((void**)&devy, 3*M*sizeof(double));
double * devderiv;
cudaMalloc((void**)&devderiv, 3*3*M*sizeof(double));

// Copy values of independent variables from host to GPU
cudaMemcpy(devx, x, sizeof(double)*3*M, cudaMemcpyHostToDevice);

// Call function to specify amount of blocks and threads to be used
kernellaunch(devx, devy, devderiv,M);

// Copy values of dependent variables and Jacobian matrices from GPU to host
cudaMemcpy(y, devy, sizeof(double)*3*M,cudaMemcpyDeviceToHost);
cudaMemcpy(deriv, devderiv, sizeof(double)*3*3*M, cudaMemcpyDeviceToHost);

}

Figure 9: Example for traceless scalar forward mode with Cuda

• index3 = blockDim.x denotes the x-dimension of a block (always 64 in the example)

• index4 = blockDim.x*blockDim.y denotes the size of a block (always 64 ∗ 3 = 192 in



8.1 Modifying the source code 65

cudaError t kernellaunch(double* inx, double* outy, double* outderiv, int M) {
// Create 16 blocks
int Blocks=16;
// Two dimensional (M/Blocks)×3 blocks
dim3 threadsPerBlock(M/Blocks,3);

// Call kernel function with 16 blocks with (M/Blocks)×3 threads per block
kernel <<< Blocks, threadsPerBlock >>>(inx, outy, outderiv);
cudaError t cudaErr = cudaGetLastError();

return cudaErr;
}

Figure 10: Example for traceless scalar forward mode with Cuda

the example)

For the calculation of derivatives the function evaluation has to be performed with
adoubles. Therefore the dependent and the independent variables have to be declared as
adoubles as in the other versions of ADOL-C (see, e.g., Section 7). Similar to the traceless
version without Cuda the namespace adtlc is used. Now each thread has to read out
the point at which the function evaluation is then performed. This is determined by the
blockindex and the x-dimension of the thread, therefore the independent variables in a
thread have the values

x[i]=inx[index2*index4+index*3+i];

for i=0,1,2 where inx corresponds to the vector devx. The direction for the derivatives is
given by index1.

x[index1].setADValue(1);

The functions for setting and getting the value and the derivative value of an adouble are
the same as in the traceless version of ADOL-C for first order derivatives (see Section 7).
The function evaluation is then performed with adouble x on GPU and the results are saved
in adouble y. The function evaluation itself remains unchanged (see Figure 11). Then we
store the values of the function evaluations in each point in a row in one array:

outy[(index2*index3+index)*3+i]=y[i].getValue();

for i=0,1,2. The values of a Jacobian are stored column by column in a row:



66 8 TRACELESS FORWARD DIFFERENTIATION IN ADOL-C USING CUDA

global void kernel(double* inx, double* outy, double* outderiv) {
const int index = threadIdx.x ;
const int index1 = threadIdx.y;
const int index2 = blockIdx.x;
const int index3 = blockDim.x;
const int index4 = blockDim.x*blockDim.y;

// Declare dependent and independent variables as adoubles
adtlc::adouble y[3], x[3];
// Read out point for function evaluation
for(int i=0; i < 3; i++)

x[i]=inx[index2*index4+index*3+i];
// Set direction for calculation of derivatives
x[index1].setADValue(1);

// Function evaluation
y[0] = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
y[1] = atan(sqrt(x[0]*x[0]+x[1]*x[1])/x[2]);
y[2] = atan(x[1]/x[0]);

for(int i=0; i < 3; i++)
outy[(index2*index3+index)*3+i]=y[i].getValue();

for(int i=0; i < 3; i++)
outderiv[(index2*index4+index*3+index1)*3+i]=y[i].getADValue();

}

Figure 11: Example for traceless scalar forward mode with Cuda

outderiv[(index2*index4+index*3+index1)*3+i]=y[i].getADValue();

for i=0,1,2.

Now there is one thing left to do. The values calculated on the GPU have to be copied
back to host. For the dependent variables in the example this can be done by the following
call:

cudaMemcpy(y, devy, sizeof(double)*3*M,cudaMemcpyDeviceToHost);

see Figure 9. The argument cudaMemcpyDeviceToHost determines that the values are copied
from GPU to host.



8.2 Compiling and Linking the Source Code 67

8.2 Compiling and Linking the Source Code

After incorporating the required changes, one has to compile the source code and link the
object files to get the executable. For the compilation of a Cuda file the nvcc compiler is
needed. The compile sequence should be similar to the following example:

nvcc -arch=sm 20 -o traceless cuda traceless cuda.cu

The compiler option -arch=sm_20 specifies the compute capability that is assumed, in this
case one that supports double precision.

The mentioned source code traceless cuda.cu illustrating the use of the forward traceless
scalar mode with Cuda and a further example liborgpu.cu can be found in the directory
examples. The second example is an adaption of the OpenMP example to the traceless
version with Cuda.

9 Installing and Using ADOL-C

9.1 Generating the ADOL-C Library

The currently built system is best summarized by the ubiquitous gnu install triplet

configure - make - make install .

Executing this three steps from the package base directory </SOMEPATH/adolc-2.5.1> will
compile the static and the dynamic ADOL-C library with default options and install the
package (libraries and headers) into the default installation directory <$HOME/adolc base>.
Inside the install directory the subdirectory include will contain all the installed header
files that may be included by the user program, the subdirectory lib will contain the 32-
bit compiled library and the subdirectory lib64 will contain the 64-bit compiled library.
Depending on the compiler only one of lib or lib64 may be created.

Before doing so the user may modify the header file usrparms.h in order to tailor the
ADOL-C package to the needs in the particular system environment as discussed in Sec-
tion 2.2. The configure procedure which creates the necessary Makefiles can be customized
by use of some switches. Available options and their meaning can be obtained by executing
./configure --help from the package base directory.

All object files and other intermediately generated files can be removed by the call
make clean. Uninstalling ADOL-C by executing make uninstall is only reasonable after
a previous called make install and will remove all installed package files but will leave the
created directories behind.



68 9 INSTALLING AND USING ADOL-C

The sparse drivers are included in the ADOL-C libraries if the ./configure com-
mand is executed with the option --enable-sparse. The ColPack library available at
http://www.cscapes.org/coloringpage/software.htm is required to compute the sparse
structures, and is searched for in all the default locations. In case the library and its headers
are installed in a nonstandard path this may be specified with the --with-colpack=PATH

option. It is assumed that the library and its header files have the following directory struc-
ture: PATH/include contains all the header files, PATH/lib contains the 32-bit compiled
library and PATH/lib64 contains the 64-bit compiled library. Depending on the compiler
used to compile ADOL-C one of these libraries will be used for linking.

The option --disable-stdczero turns off the initialization in the adouble default con-
structor. This will improve efficiency but requires that there be no implicit array initializa-
tion in the code, see Section 2.3.

Support for MPI and the AdjoinableMPI API (see
http://www.mcs.anl.gov/~utke/AdjoinableMPI/AdjoinableMPIDox/index.html ) may
be enabled using the option --enable-ampi. This requires the presence of MPI compiler
wrappers mpicc and mpicxx in the $PATH and the AdjoinableMPI libraries in the stan-
dard locations. If MPI is installed in a nonstandard path one may specify this using the
--with-mpi=PATH option. Similarly if the AdjoinableMPI libraries are in an nonstandard
path this may be specified using the --with-ampi=PATH option. When MPI and Adjoin-
ableMPI support is compiled into ADOL-C the generated library will be unsuitable for
linking with non-MPI programs and is called libadolc_ampi. Therefore the user pro-
grams should use the flag -ladolc_ampi instead of -ladolc in this case. An advanced
user may infact specify whatever name the resulting ADOL-C library should have using the
--with-soname=SONAME option.

9.2 Compiling and Linking the Example Programs

The installation procedure described in Section 9.1 also provides the Makefiles to compile
the example programs in the directories <adolc-2.5.1>/ADOL-C/examples and the ad-
ditional examples in <adolc-2.5.1>/ADOL-C/examples/additional_examples. However,
one has to execute the configure command with appropriate options for the ADOL-C
package to enable the compilation of examples. Available options are:

--enable-docexa build all examples discussed in this manual
(compare Section 10)

--enable-addexa build all additional examples
(See file README in the various subdirectories)

Just calling make from the packages base directory generates all configured examples
and the library if necessary. Compiling from subdirectory examples or one of its subfolders
is possible too. At least one kind of the ADOL-C library (static or shared) must have been
built previously in that case. Hence, building the library is always the first step.



9.3 Description of Important Header Files 69

For Compiling the library and the documented examples on Windows using Visual Stu-
dio please refer to the <Readme_VC++.txt> files in the <windows/>, <ThirdParty/ColPack/>
and <ADOL-C/examples/> subdirectories.

9.3 Description of Important Header Files

The application of the facilities of ADOL-C requires the user source code (program or
module) to include appropriate header files where the desired data types and routines are
prototyped. The new hierarchy of header files enables the user to take one of two possible
ways to access the right interfaces. The first and easy way is recommended to beginners: As
indicated in Table 5 the provided global header file <adolc/adolc.h> can be included by any
user code to support all capabilities of ADOL-C depending on the particular programming
language of the source.

<adolc/adolc.h>

→ global header file available for easy use of ADOL-C;
• includes all ADOL-C header files depending on whether the

users source is C++ or C code.

<adolc/usrparms.h>

→ user customization of ADOL-C package (see Section 2.2);
• after a change of user options the ADOL-C library libadolc.*

has to be rebuilt (see Section 9.1);
• is included by all ADOL-C header files and thus by all user

programs.

Table 5: Global header files

The second way is meant for the more advanced ADOL-C user: Some source code in-
cludes only those interfaces used by the particular application. The respectively needed
header files are indicated throughout the manual. Existing application determined depen-
dences between the provided ADOL-C routines are realized by automatic includes of headers
in order to maintain easy use. The header files important to the user are described in the
Table 6 and Table 7.

<adolc/adouble.h>
→ provides the interface to the basic active scalar data type of

ADOL-C: class adouble (see Section 1);

<adolc/taputil.h>

→ provides functions to start/stop the tracing of active sections
(see Section 1.3) as well as utilities to obtain tape statistics
(see Section 2.1);

• is included by the header <adolc/adouble.h>.

Table 6: Important header files: tracing/taping



70 9 INSTALLING AND USING ADOL-C

<adolc/interfaces.h>

→ provides interfaces to the forward and reverse routines as basic
versions of derivative evaluation (see Section 5);

• comprises C++, C, and Fortran-callable versions;
• includes the header <adolc/sparse/sparsedrivers.h>;
• is included by the header <adolc/drivers/odedrivers.h>.

<adolc/drivers.h>

→ provides “easy to use” drivers for solving optimization prob-
lems and nonlinear equations (see Section 3.1);

• comprises C and Fortran-callable versions.

<adolc/sparse/

sparsedrivers.h>

→ provides the “easy to use” sparse drivers to exploit the sparsity
structure of Jacobians (see Section 3.3);

→ provides interfaces to C++-callable versions of forward and re-
verse routines propagating bit patterns (see Section 5.3);

• is included by the header <adolc/interfaces.h>.
<adolc/sparse/

sparse_fo_rev.h>

→ provides interfaces to the underlying C-callable versions of for-
ward and reverse routines propagating bit patterns.

<adolc/drivers/

odedrivers.h>

→ provides “easy to use” drivers for numerical solution of ordi-
nary differential equations (see Section 3.2);

• comprises C++, C, and Fortran-callable versions;
• includes the header <adolc/interfaces.h>.

<adolc/drivers/

taylor.h>

→ provides “easy to use” drivers for evaluation of higher order
derivative tensors (see Section 3.4) and inverse/implicit func-
tion differentiation (see Section 3.5);

• comprises C++ and C-callable versions.

<adolc/adalloc.h>
→ provides C++ and C functions for allocation of vectors, ma-

trices and three dimensional arrays of doubles.

Table 7: Important header files: evaluation of derivatives

9.4 Compiling and Linking C/C++ Programs

To compile a C/C++ program or single module using ADOL-C data types and routines
one has to ensure that all necessary header files according to Section 9.3 are included. All
modules involving active data types as adouble have to be compiled as C++. Modules that
make use of a previously generated tape to evaluate derivatives can either be programmed
in ANSI-C (while avoiding all C++ interfaces) or in C++. Depending on the chosen
programming language the header files provide the right ADOL-C prototypes. For linking
the resulting object codes the library libadolc.* must be used (see Section 9.1).

9.5 Adding Quadratures as Special Functions

Suppose an integral

f(x) =

x∫
0

g(t)dt

is evaluated numerically by a user-supplied function



9.5 Adding Quadratures as Special Functions 71

double myintegral(double& x);

Similarly, let us suppose that the integrand itself is evaluated by a user-supplied block of C
code integrand, which computes a variable with the fixed name val from a variable with the
fixed name arg. In many cases of interest, integrand will simply be of the form

{ val = expression(arg) } .

In general, the final assignment to val may be preceded by several intermediate calculations,
possibly involving local active variables of type adouble, but no external or static variables
of that type. However, integrand may involve local or global variables of type double or int,
provided they do not depend on the value of arg. The variables arg and val are declared
automatically; and as integrand is a block rather than a function, integrand should have no
header line.

Now the function myintegral can be overloaded for adouble arguments and thus included
in the library of elementary functions by the following modifications:

1. At the end of the file <adouble.cpp>, include the full code defining
double myintegral(double& x), and add the line

extend quad(myintegral, integrand);

This macro is extended to the definition of adouble myintegral(adouble& arg). Then
remake the library libadolc.* (see Section 9.1).

2. In the definition of the class ADOLC DLL EXPORT adouble in <adolc/adouble.h>,
add the statement

friend adouble myintegral(adouble&).

In the first modification, myintegral represents the name of the double function, whereas
integrand represents the actual block of C code.

For example, in case of the inverse hyperbolic cosine, we have myintegral = acosh. Then
integrand can be written as { val = sqrt(arg*arg-1); } so that the line

extend quad(acosh,val = sqrt(arg*arg-1));

can be added to the file <adouble.cpp>. A mathematically equivalent but longer represen-
tation of integrand is

{ adouble temp = arg;
temp = temp*temp;
val = sqrt(temp-1); }

The code block integrand may call on any elementary function that has already been defined
in file <adouble.cpp>, so that one may also introduce iterated integrals.



72 10 EXAMPLE CODES

10 Example Codes

The following listings are all simplified versions of codes that are contained in the example
subdirectory <adolc-2.5.1>/ADOL-C/examples of ADOL-C. In particular, we have left out
timings, which are included in the complete codes.

10.1 Speelpenning’s Example (speelpenning.cpp)

The first example evaluates the gradient and the Hessian of the function

y = f(x) =
n−1∏
i=0

xi

using the appropriate drivers gradient and hessian.

#include <adolc/adouble.h> // use of active doubles and taping

#include <adolc/drivers/drivers.h> // use of "Easy to Use" drivers

// gradient(.) and hessian(.)

#include <adolc/taping.h> // use of taping

...

void main() {

int n,i,j;

size_t tape_stats[STAT_SIZE];

cout << "SPEELPENNINGS PRODUCT (ADOL-C Documented Example) \n";

cout << "number of independent variables = ? \n";

cin >> n;

double* xp = new double[n];

double yp = 0.0;

adouble* x = new adouble[n];

adouble y = 1;

for(i=0;i<n;i++)

xp[i] = (i+1.0)/(2.0+i); // some initialization

trace_on(1); // tag =1, keep=0 by default

for(i=0;i<n;i++) {

x[i] <<= xp[i]; y *= x[i]; }

y >>= yp;

delete[] x;

trace_off();

tapestats(1,tape_stats); // reading of tape statistics

cout<<"maxlive "<<tape_stats[2]<<"\n";

... // ..... print other tape stats

double* g = new double[n];



10.2 Power Example (powexam.cpp) 73

gradient(1,n,xp,g); // gradient evaluation

double** H=(double**)malloc(n*sizeof(double*));

for(i=0;i<n;i++)

H[i]=(double*)malloc((i+1)*sizeof(double));

hessian(1,n,xp,H); // H equals (n-1)g since g is

double errg = 0; // homogeneous of degree n-1.

double errh = 0;

for(i=0;i<n;i++)

errg += fabs(g[i]-yp/xp[i]); // vanishes analytically.

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

if (i>j) // lower half of hessian

errh += fabs(H[i][j]-g[i]/xp[j]); } }

cout << yp-1/(1.0+n) << " error in function \n";

cout << errg <<" error in gradient \n";

cout << errh <<" consistency check \n";

} // end main

10.2 Power Example (powexam.cpp)

The second example function evaluates the n-th power of a real variable x in log2 n multipli-
cations by recursive halving of the exponent. Since there is only one independent variable,
the scalar derivative can be computed by using both forward and reverse, and the results
are subsequently compared.

#include <adolc/adolc.h> // use of ALL ADOL-C interfaces

adouble power(adouble x, int n) {

adouble z=1;

if (n>0) { // recursion and branches

int nh =n/2; // that do not depend on

z = power(x,nh); // adoubles are fine !!!!

z *= z;

if (2*nh != n)

z *= x;

return z; } // end if

else {

if (n==0) // the local adouble z dies

return z; // as it goes out of scope.

else

return 1/power(x,-n); } // end else

} // end power



74 10 EXAMPLE CODES

The function power above was obtained from the original undifferentiated version by simply
changing the type of all doubles including the return variable to adoubles. The new version
can now be called from within any active section, as in the following main program.

#include ... // as above

int main() {

int i,n,tag=1;

cout <<"COMPUTATION OF N-TH POWER (ADOL-C Documented Example)\n\n";

cout<<"monomial degree=? \n"; // input the desired degree

cin >> n;

// allocations and initializations

double* Y[1];

*Y = new double[n+2];

double* X[1]; // allocate passive variables with

*X = new double[n+4]; // extra dimension for derivatives

X[0][0] = 0.5; // function value = 0. coefficient

X[0][1] = 1.0; // first derivative = 1. coefficient

for(i=0;i<n+2;i++)

X[0][i+2]=0; // further coefficients

double* Z[1]; // used for checking consistency

*Z = new double[n+2]; // between forward and reverse

adouble y,x; // declare active variables

// beginning of active section

trace_on(1); // tag = 1 and keep = 0

x <<= X[0][0]; // only one independent var

y = power(x,n); // actual function call

y >>= Y[0][0]; // only one dependent adouble

trace_off(); // no global adouble has died

// end of active section

double u[1]; // weighting vector

u[0]=1; // for reverse call

for(i=0;i<n+2;i++) { // note that keep = i+1 in call

forward(tag,1,1,i,i+1,X,Y); // evaluate the i-the derivative

if (i==0)

cout << Y[0][i] << " - " << y.value() << " = " << Y[0][i]-y.value()

<< " (should be 0)\n";

else

cout << Y[0][i] << " - " << Z[0][i] << " = " << Y[0][i]-Z[0][i]

<< " (should be 0)\n";

reverse(tag,1,1,i,u,Z); // evaluate the (i+1)-st derivative

Z[0][i+1]=Z[0][i]/(i+1); } // scale derivative to Taylorcoeff.

return 1;

} // end main



10.3 Determinant Example (detexam.cpp) 75

Since this example has only one independent and one dependent variable, forward and reverse
have the same complexity and calculate the same scalar derivatives, albeit with a slightly
different scaling. By replacing the function power with any other univariate test function,
one can check that forward and reverse are at least consistent. In the following example the
number of independents is much larger than the number of dependents, which makes the
reverse mode preferable.

10.3 Determinant Example (detexam.cpp)

Now let us consider an exponentially expensive calculation, namely, the evaluation of a
determinant by recursive expansion along rows. The gradient of the determinant with
respect to the matrix elements is simply the adjoint, i.e. the matrix of cofactors. Hence the
correctness of the numerical result is easily checked by matrix-vector multiplication. The
example illustrates the use of adouble arrays and pointers.

#include <adolc/adouble.h> // use of active doubles and taping

#include <adolc/interfaces.h> // use of basic forward/reverse

// interfaces of ADOL-C

adouble** A; // A is an n x n matrix

int i,n; // k <= n is the order

adouble det(int k, int m) { // of the sub-matrix

if (m == 0) return 1.0 ; // its column indices

else { // are encoded in m

adouble* pt = A[k-1];

adouble t = zero; // zero is predefined

int s, p =1;

if (k%2) s = 1; else s = -1;

for(i=0;i<n;i++) {

int p1 = 2*p;

if (m%p1 >= p) {

if (m == p) {

if (s>0) t += *pt; else t -= *pt; }

else {

if (s>0)

t += *pt*det(k-1,m-p); // recursive call to det

else

t -= *pt*det(k-1,m-p); } // recursive call to det

s = -s;}

++pt;

p = p1;}

return t; }

} // end det



76 10 EXAMPLE CODES

As one can see, the overloading mechanism has no problem with pointers and looks exactly
the same as the original undifferentiated function except for the change of type from double
to adouble. If the type of the temporary t or the pointer pt had not been changed, a compile
time error would have resulted. Now consider a corresponding calling program.

#include ... // as above

int main() {

int i,j, m=1,tag=1,keep=1;

cout << "COMPUTATION OF DETERMINANTS (ADOL-C Documented Example)\n\n";

cout << "order of matrix = ? \n"; // select matrix size

cin >> n;

A = new adouble*[n];

trace_on(tag,keep); // tag=1=keep

double detout=0.0, diag = 1.0; // here keep the intermediates for

for(i=0;i<n;i++) { // the subsequent call to reverse

m *=2;

A[i] = new adouble[n]; // not needed for adoublem

adouble* pt = A[i];

for(j=0;j<n;j++)

A[i][j] <<= j/(1.0+i); // make all elements of A independent

diag += A[i][i].value(); // value() converts to double

A[i][i] += 1.0; }

det(n,m-1) >>= detout; // actual function call

printf("\n %f - %f = %f (should be 0)\n",detout,diag,detout-diag);

trace_off();

double u[1];

u[0] = 1.0;

double* B = new double[n*n];

reverse(tag,1,n*n,1,u,B);

cout <<" \n first base? : ";

for (i=0;i<n;i++) {

adouble sum = 0;

for (j=0;j<n;j++) // the matrix A times the first n

sum += A[i][j]*B[j]; // components of the gradient B

cout<<sum.value()<<" "; } // must be a Cartesian basis vector

return 1;

} // end main

The variable diag should be mathematically equal to the determinant, because the matrix
A is defined as a rank 1 perturbation of the identity.



10.4 Ordinary Differential Equation Example (odexam.cpp) 77

10.4 Ordinary Differential Equation Example (odexam.cpp)

Here, we consider a nonlinear ordinary differential equation that is a slight modification of
the Robertson test problem given in Hairer and Wanner’s book on the numerical solution
of ODEs [11]. The following source code computes the corresponding values of y′ ∈ IR3:

#include <adolc/adouble.h> // use of active doubles and taping

#include <adolc/drivers/odedrivers.h> // use of "Easy To use" ODE drivers

#include <adolc/adalloc.h> // use of ADOL-C allocation utilities

void tracerhs(short int tag, double* py, double* pyprime) {

adouble y[3]; // this time we left the parameters

adouble yprime[3]; // passive and use the vector types

trace_on(tag);

for (int i=0; i<3; i++)

y[i] <<= py[i]; // initialize and mark independents

yprime[0] = -sin(y[2]) + 1e8*y[2]*(1-1/y[0]);

yprime[1] = -10*y[0] + 3e7*y[2]*(1-y[1]);

yprime[2] = -yprime[0] - yprime[1];

yprime >>= pyprime; // mark and pass dependents

trace_off(tag);

} // end tracerhs

The Jacobian of the right-hand side has large negative eigenvalues, which make the ODE
quite stiff. We have added some numerically benign transcendentals to make the differen-
tiation more interesting. The following main program uses forode to calculate the Taylor
series defined by the ODE at the given point y0 and reverse as well as accode to compute
the Jacobians of the coefficient vectors with respect to x0.

#include ....... // as above

int main() {

int i,j,deg;

int n=3;

double py[3];

double pyp[3];

cout << "MODIFIED ROBERTSON TEST PROBLEM (ADOL-C Documented Example)\n";

cout << "degree of Taylor series =?\n";

cin >> deg;

double **X;

X=(double**)malloc(n*sizeof(double*));

for(i=0;i<n;i++)

X[i]=(double*)malloc((deg+1)*sizeof(double));

double*** Z=new double**[n];



78 10 EXAMPLE CODES

double*** B=new double**[n];

short** nz = new short*[n];

for(i=0;i<n;i++) {

Z[i]=new double*[n];

B[i]=new double*[n];

for(j=0;j<n;j++) {

Z[i][j]=new double[deg];

B[i][j]=new double[deg]; } // end for

} // end for

for(i=0;i<n;i++) {

py[i] = (i == 0) ? 1.0 : 0.0; // initialize the base point

X[i][0] = py[i]; // and the Taylor coefficient;

nz[i] = new short[n]; } // set up sparsity array

tracerhs(1,py,pyp); // trace RHS with tag = 1

forode(1,n,deg,X); // compute deg coefficients

reverse(1,n,n,deg-1,Z,nz); // U defaults to the identity

accode(n,deg-1,Z,B,nz);

cout << "nonzero pattern:\n";

for(i=0;i<n;i++) {

for(j=0;j<n;j++)

cout << nz[i][j]<<"\t";

cout <<"\n"; } // end for

return 1;

} // end main

The pattern nz returned by accode is

3 -1 4

1 2 2

3 2 4

The original pattern nz returned by reverse is the same except that the negative entry −1
was zero.

Acknowledgements

Parts of the ADOL-C source were developed by Andreas Kowarz, Hristo Mitev, Sebastian
Schlenkrich, and Olaf Vogel. We are also indebted to George Corliss, Tom Epperly, Bruce
Christianson, David Gay, David Juedes, Brad Karp, Koichi Kubota, Bob Olson, Marcela
Rosemblun, Dima Shiriaev, Jay Srinivasan, Chuck Tyner, Jean Utke, and Duane Yoder for
helping in various ways with the development and documentation of ADOL-C.



REFERENCES 79

References

[1] Christian H. Bischof, Peyvand M. Khademi, Ali Bouaricha and Alan Carle. Efficient
computation of gradients and Jacobians by dynamic exploitation of sparsity in auto-
matic differentiation. Optimization Methods and Software 7(1):1-39, 1996.

[2] Bruce Christianson. Reverse accumulation and accurate rounding error estimates for
Taylor series. Optimization Methods and Software 1:81–94, 1992.

[3] Assefaw Gebremedhin, Fredrik Manne, and Alex Pothen. What color is your Jacobian?
Graph coloring for computing derivatives. SIAM Review 47(4):629–705, 2005.

[4] Assefaw Gebremedhin, Alex Pothen, Arijit Tarafdar and Andrea Walther. Efficient
Computation of Sparse Hessians: An Experimental Study using ADOL-C. Tech. Rep.
(2006). To appear in INFORMS Journal on Computing.

[5] Assefaw Gebremedhin, Alex Pothen, and Andrea Walther. Exploiting Sparsity in Ja-
cobian Computation via Coloring and Automatic Differentiation: a Case Study in a
Simulated Moving Bed Process. In Chr. Bischof et al., eds., Proceedings AD 2008 con-
ference, LNCSE 64, pp. 327 – 338, Springer (2008).

[6] Assefaw Gebremedhin, Arijit Tarafdar, Fredrik Manne, and Alex Pothen, New Acyclic
and Star Coloring Algorithms with Applications to Hessian Computation. SIAM Jour-
nal on Scientific Computing 29(3):1042–1072, 2007.

[7] Andreas Griewank, On stable piecewise linearization and generalized algorithmic dif-
ferentiation. Optimization Methods and Software 28(6):1139–1178, 2013.

[8] Andreas Griewank and Andrea Walther: Evaluating Derivatives, Principles and Tech-
niques of Algorithmic Differentiation. Second edition. SIAM, 2008.

[9] Andreas Griewank, Jean Utke, and Andrea Walther. Evaluating higher derivative ten-
sors by forward propagation of univariate Taylor series. Mathematics of Computation,
69:1117–1130, 2000.

[10] Andreas Griewank and Andrea Walther. Revolve: An Implementation of Checkpointing
for the Reverse or Adjoint Mode of Computational Differentiation, ACM Transaction
on Mathematical Software 26:19–45, 2000.

[11] Ernst Hairer and Gerhard Wanner. Solving Ordinary Differential Equations II.
Springer-Verlag, Berlin, 1991.

[12] Donald E. Knuth. The Art of Computer Programming. Second edition. Addison-Wesley,
Reading, 1973.

[13] Andrea Walther. Computing Sparse Hessians with Automatic Differentiation. Trans-
action on Mathematical Software, 34(1), Artikel 3 (2008).


	Preparing a Section of C or C++ Code for Differentiation
	Introduction
	Declaring Active Variables
	Marking Active Sections
	Selecting Independent and Dependent Variables
	A Subprogram as an Active Section
	Overloaded Operators and Functions
	Reusing the Tape for Arbitrary Input Values
	Conditional Assignments
	Step-by-Step Modification Procedure

	Numbering the Tapes and Controlling the Buffer
	Examining the Tape and Predicting Storage Requirements 
	Customizing ADOL-C
	Warnings and Suggestions for Improved Efficiency

	Easy-To-Use Drivers
	Drivers for Optimization and Nonlinear Equations
	Drivers for Ordinary Differential Equations
	Drivers for Sparse Jacobians and Sparse Hessians
	Higher Derivative Tensors
	Derivatives of Implicit and Inverse Functions

	Basic Drivers for the Forward and Reverse Mode
	Drivers for Abs-Normal Form

	Overloaded Forward and Reverse Calls
	The Scalar Case
	The Vector Case
	Dependence Analysis

	Advanced algorithmic differentiation in ADOL-C
	Differentiating external functions
	Advanced algorithmic differentiation of time integration processes
	Advanced algorithmic differentiation of fixed point iterations
	Advanced algorithmic differentiation of OpenMP parallel programs

	Tapeless forward differentiation in ADOL-C
	Modifying the Source Code
	Compiling and Linking the Source Code
	Concluding Remarks for the Tapeless Forward Mode Variant

	Traceless forward differentiation in ADOL-C using Cuda
	Modifying the source code
	Compiling and Linking the Source Code

	Installing and Using ADOL-C
	Generating the ADOL-C Library
	Compiling and Linking the Example Programs
	Description of Important Header Files
	Compiling and Linking C/C++ Programs
	Adding Quadratures as Special Functions

	Example Codes
	Speelpenning's Example (speelpenning.cpp)
	Power Example (powexam.cpp)
	Determinant Example (detexam.cpp)
	Ordinary Differential Equation Example (odexam.cpp)


