
Previous: (5g) Column Generation  
 
 
 

(5h) Column Generation 2  
All LP's we have solved so far have been using row-wise modelling: the variables have been created and given bounds, 
the complete objective function has been entered on one line, and each of the constraints has been entered one line at a 
time (sometimes in a for loop) stating how the pre-created variables must relate to each other. 
This means that it is easy to add a new constraint to the existing prob object, as was done in the Sudoku Problem. 
However, when a new variable (a pattern in the Cutting Stock Problem) is added, a new prob object must be created so 
that the different objective function and different constraints can be added. This was done on the first Column 
Generation page, but the entire process can be made much more efficient by using column-wise modelling. 
In column-wise modelling, the problem data is added as columns (one column would be all the coefficients on any 
particular variable, across the objective function and all the constraints). This makes it much easier to add more 
variables. 
 
A simple example of the familiar row-wise modelling: 

This same problem can be modelled using column-wise modelling:  

The main tricky part to columnwise modelling is entering the last parameter of the variable definitions correctly. Note 
that for constraint a, it has a coefficient of "+1" in the x and y variable definitions and is earlier specified to be less than 
or equal to 5. Therefore, all the information is specified to create "x+y <= 5" as was entered in full in row-wise 
modelling. Also note that a, b & c are all added to prob before the variables are created, and no more statements relating 
to prob need to made before the LP is solved. This is because obj, a, b & c are already added to prob. 
 
Using this column-wise modelling, the Sponge Roll Problem can be solved more efficiently again. It is still in two files: A 
main file and a function file. 

Main File 

from pulp import * 
prob = LpProblem("test", LpMinimize) 
x = LpVariable("x", 0, 4) 
y = LpVariable("y", -1, 1) 
z = LpVariable("z", 0) 
prob += x + 4*y + 9*z, "obj" 
prob += x+y <= 5, "c1" 
prob += x+z >= 10, "c2" 
prob += -y+z == 7, "c3" 
prob.solve()

from pulp import * 
prob = LpProblem("test", LpMinimize)

 

obj = LpConstraintVar("obj") 
prob.setObjective(obj)      # the obj variable is initialised in this standard way 
 

a = LpConstraintVar("Ca", LpConstraintLE, 5)    # each constraint is created, but only the sign and R.H.S are specified 
b = LpConstraintVar("Cb", LpConstraintGE, 10) 
c = LpConstraintVar("Cc", LpConstraintEQ, 7) 
 

prob += a   # each constraint is added to prob 
prob += b 
prob += c 
 

x = LpVariable("x", 0, 4, LpContinuous, obj + a + b)      # each variable is added with it's bounds, category/type,  
y = LpVariable("y", -1, 1, LpContinuous, 4*obj + a - c)   # and it's coefficient in the objective function and each 
z = LpVariable("z", 0, None, LpContinuous, 9*obj + b + c) # of the constraints 
 

prob.solve() 

Page 1 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2



After the standard introduction, a function called createMaster() is called. This will set up all aspects of the problem 
except for the pattern variables. i.e. it creates obj and assigns it to prob, it creates the constraints and adds them to prob 
(as above, when the constraints are created the only required specification is the R.H.S), it creates the surplus variables 
since they will not change. (It may be worthwhile scrolling down to see the createMaster function in the functions file) 

A set of initial patterns which will make the problem solvable (not optimal) are required. 

The newPatterns list will continue to be altered as more patterns are required to be added. Eventually the newPatterns 
list will be empty which will end the while loop 

The addPatterns function will create the patterns in newPatterns as LpVariables. 

The masterSolve function is passed prob which is ready to solve, and the duals are passed out. 

The subSolve function is still formulated as before (row-wise), receiving only the input of duals and returning the 
newPatterns list. 

Once the newPatterns list is returned empty, the loop will end and one final solve of the problem is required which has 
non-relaxed integer constraints. The masterSolve function is designed to take the relax input and relax the variables, 
whilst still being able to use the same prob variable. 

The solution is printed. 

""" 
The Sponge Roll Problem with Columnwise Column Generation for the PuLP Modeller

 

Authors: Antony Phillips,  Dr Stuart Mitchell  2008 
""" 
 

# Import Column Generation functions 
from CGcolumnwise import * 

# The Master Problem is created 
prob, obj, constraints = createMaster()

# A list of starting patterns is created 
newPatterns = [[1,0,0],[0,1,0],[0,0,1]]

# New patterns will be added until newPatterns is an empty list 
while newPatterns:

    # The new patterns are added to the problem 
    addPatterns(obj,constraints,newPatterns)

    # The master problem is solved, and the dual variables are returned  
    duals = masterSolve(prob)

    # The sub problem is solved and a new pattern will be returned if there is one 
    # which can reduce the master objective function 
    newPatterns = subSolve(duals)

# The master problem is solved with Integer Constraints not relaxed 
solution, varsdict = masterSolve(prob,relax = False)

Page 2 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2



The main file is avialable here. 

Function File CGcolumnwise.py 

The start to the function file is the same as before except there is a class variable called numPatterns which is 
incremented each time the init function runs. 

createMaster  

The createMaster function sets up the constraints and surplusVars so the rollData dictionary is required. The prob 
object is initialised.  

# Display Solution 
for i,j in varsdict.items(): 
    print i, "=", j

 

print "objective = ", solution 

""" 
Columnwise Column Generation Functions

 

Authors: Antony Phillips,  Dr Stuart Mitchell  2008 
""" 
 

# Import PuLP modeler functions 
from pulp import * 
 

class Pattern: 
    """ 
    Information on a specific pattern in the SpongeRoll Problem 
    """ 
    cost = 1 
    trimValue = 0.04 
    totalRollLength = 20 
    lenOpts = ["5", "7", "9"] 
    numPatterns = 0 

    def __init__(self, name, lengths = None): 
        self.name = name 
        self.lengthsdict = dict(zip(self.lenOpts,lengths)) 
        Pattern.numPatterns += 1 
 

    def __str__(self): 
        return self.name 
 

    def trim(self): 
        return Pattern.totalRollLength - sum([int(i)*int(self.lengthsdict[i]) for i in self.lengthsdict]) 

def createMaster():

    rollData = {#Length Demand SalePrice 
              "5":   [150,   0.25], 
              "7":   [200,   0.33], 
              "9":   [300,   0.40]} 
 

    (rollDemand,surplusPrice) = splitDict(rollData) 
 

    # The variable prob is created 
    prob = LpProblem("MasterSpongeRollProblem",LpMinimize) 

    # The variable obj is created and set as the LP's objective function 
    obj = LpConstraintVar("Obj") 
    prob.setObjective(obj)

Page 3 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2



Each constraint is logically named, given a sign and a R.H.S value. Each constraint is then added to prob and the 
constraints remain saved in a dictionary for use later when defining variables. 

The surplus variables are created. The last parameter means that: the negative of the surplus price * surplus variable for 
each of the lenOpts, occurs in the objective function. It also means that the negative of the surplus variable for each of 
the length options is in the constraint for that length option. This column-wise variable definition is important to 
understand. The coefficient in front of the obj or the constraint is multiplied by the surplus variable and occurs in that 
respective constraint or the objective function. Note that this loop makes all three surplusVars in the objective function 
but only one in each constraint. 

addPatterns  

The addPatterns function is the first call inside the while loop. It's task is to create the patterns as LpVariable instances. 
 
A for loop is used so that i becomes each of the pattern lists in newPatterns. (Since newPatterns is a list of lists)  

Each pattern is checked that it does not use more cms of roll than are available 

Each pattern that is about to be added, is printed along with it's name. Pattern.numPatterns is a class variable that 
will increment each time the Pattern.__init__ function is run (i.e. when a new pattern is created as an instance of the 
Pattern class). Each of the patterns in newPatterns is created as a Pattern instance and added to the Patterns list. 

The pattern variables are created. The lpSum term here just saves us from writing 'i.lengthsdict["5"]*constraints["5"] + 
i.lengthsdict["7"]*constraints["7"] + i.lengthsdict["9"]*constraints["9"]'. The last parameter of the LpVariable init 
function works the same as before, it just has more terms in this case. This is the end of the function - there is no output 
since the creation of LpVariable instances, referenced to obj and the constraints, adds the variables. 

    # The constraints are initialised and added to prob 
    constraints = {} 
    for l in Pattern.lenOpts: 
        constraints[l]= LpConstraintVar("Min" + str(l), LpConstraintGE, rollDemand[l]) 
        prob += constraints[l]

    # The surplus variables are created 
    surplusVars = []     
    for i in Pattern.lenOpts: 
        surplusVars += [LpVariable("Surplus "+ i,0,None,LpContinuous, -surplusPrice[i] * obj - constraints[i])]

    return prob,obj,constraints 

def addPatterns(obj,constraints,newPatterns):

    # A list called Patterns is created to contain all the Pattern class 
    # objects created in this function call 
    Patterns = [] 
    for i in newPatterns: 

        # The new patterns are checked to see that their length does not exceed 
        # the total roll length 
        lsum = 0 
        for j,k in zip(i,Pattern.lenOpts): 
            lsum += j * int(k) 
        if lsum > Pattern.totalRollLength: 
            raise "Length Options too large for Roll"

        # The number of rolls of each length in each new pattern is printed           
        print "P"+str(Pattern.numPatterns),"=",i

        # The patterns are instantiated as Pattern objects 
        Patterns += [Pattern("P" + str(Pattern.numPatterns),i)] 

    # The pattern variables are created 
    pattVars = [] 
    for i in Patterns:         
        pattVars += [LpVariable("Pattern "+i.name,0,None,LpContinuous, (i.cost - Pattern.trimValuei.trim())  obj\ 
         + lpSum([constraints[l]*i.lengthsdict[l] for l in Pattern.lenOpts]))]

Page 4 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2



masterSolve  

The masterSolve works the same as in Column Generation, except it is already passed prob and so does not have to do 
so many steps. 
 
If the relax parameter is passed as False, the variables will be set to Integer. This will only occur on the last run.  

If the problem is relaxed then the call is from within the while loop and a duals dictionary is returned. 

If the problem is not relaxed then the variable names, and their values (in varsdict), and the objective function value are 
returned. 

subSolve  

The subSolve function searches for more patterns that would reduce the objective function of the masterSolve further. 
 
Most of this function is the same as it was in Column Generation.  

def masterSolve(prob,relax=True):

    # Unrelaxes the Integer Constraint 
    if not relax: 
        for v in prob.variables(): 
            v.cat = LpInteger 

    # The problem is solved using CPLEX, with no message output and rounded 
    prob.solve(CPLEX(msg=0)) 
    prob.roundSolution()

    if relax: 
        # A dictionary of dual variable values is returned 
        duals = {} 
        for i,name in zip(Pattern.lenOpts,["Min5","Min7","Min9"]): 
            duals[i] = prob.constraints[name].pi         
        return duals

    else: 
        # A dictionary of variable values and the objective value are returned 
        varsdict = {} 
        for v in prob.variables(): 
            varsdict[v.name] = v.varValue

        return value(prob.objective), varsdict 

def subSolve(duals):

    # The variable prob is created 
    prob = LpProblem("SubProb",LpMinimize) 
 

    # The problem variables are created 
    vars = LpVariable.dicts("Roll Length", Pattern.lenOpts, 0, None, LpInteger) 
 

    trim = LpVariable("Trim", 0 ,None,LpInteger) 
 

    # The objective function is entered: the reduced cost of a new pattern 
    prob += (Pattern.cost - Pattern.trimValue*trim) - lpSum([vars[i]*duals[i] for i in Pattern.lenOpts]), "Objective" 
 

    # The conservation of length constraint is entered 
    prob += lpSum([vars[i]*int(i) for i in Pattern.lenOpts]) + trim == Pattern.totalRollLength, "lengthEquate" 
 

    # The problem is solved using CPLEX 
    prob.solve(CPLEX(msg=0)) 
 

    # The variable values are rounded 
    prob.roundSolution() 

Page 5 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2



This is again similar to before, except the output is a list containing another list. The if statement is set to < -10**-5 
since otherwise some very small negative values which are meant to be zero (except became slightly negative due to 
floating point error) will cause a new pattern to be found. 

The full function file is available here. 

Previous: (5g) Column Generation  

 
 

    newPatterns = [] 
    # Check if there are more patterns which would reduce the master LP objective function further 
    if value(prob.objective) < -10**-5: 
        varsdict = {} 
        for v in prob.variables(): 
            varsdict[v.name] = v.varValue 
        # Adds the new pattern to the newPatterns list 
        newPatterns += [[int(varsdict["Roll_Length_5"]),int(varsdict["Roll_Length_7"]),int(varsdict["Roll_Length_9"])]]

    return newPatterns 

Page 6 of 6Column Generation 2 — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ColumnGeneration2


