
Previous: (5b) A Transportation Problem

Next: (5d) A Facility Location Problem

(5c) A Transshipment Problem

The American Steel Problem

Problem Description

American Steel, an Ohio-based steel manufacturing company, produces steel at its two steel mills located at Youngstown and
Pittsburgh. The company distributes finished steel to its retail customers through the distribution network of regional and field
warehouses shown below:

The network represents shipment of finished steel from American Steel’s two steel mills located at Youngstown (node 1) and
Pittsburgh (node 2) to their field warehouses at Albany, Houston, Tempe, and Gary (nodes 6, 7, 8 and 9) through three regional
warehouses located at Cincinnati, Kansas City, and Chicago (nodes 3, 4 and 5). Also, some field warehouses can be directly
supplied from the steel mills.

The table below presents the minimum and maximum flow amounts of steel that may be shipped between different cities along
with the cost per 1000 ton/month of shipping the steel. For example, the shipment from Youngstown to Kansas City is
contracted out to a railroad company with a minimal shipping clause of 1000 tons/month. However, the railroad cannot ship
more then 5000 tons/month due the shortage of rail cars.

The current monthly demand at American Steel’s four field warehouses is as follows:

From node To node Cost Minimum Maximum

Youngstown Albany 500 – 1000

Youngstown Cincinnati 350 – 3000

Youngstown Kansas City 450 1000 5000

Youngstown Chicago 375 – 5000

Pittsburgh Cincinnati 350 – 2000

Pittsburgh Kansas City 450 2000 3000

Pittsburgh Chicago 400 – 4000

Pittsburgh Gary 450 – 2000

Cincinnati Albany 350 1000 5000

Cincinnati Houston 550 – 6000

Kansas City Houston 375 – 4000

Kansas City Tempe 650 – 4000

Chicago Tempe 600 – 2000

Chicago Gary 120 – 4000

Field Warehouses Monthly Demand

Page 1 of 4A Transshipment Problem — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ATransshipmentProblem

The Youngstown and Pittsburgh mills can produce up to 10,000 tons and 15,000 tons of steel per month, respectively. The
management wants to know the least cost monthly shipment plan.

Formulation

1. Identify the Decision Variables

The decision variables for this problem are the same as for the transportation problem, the Flow of goods (cases of beer
in The Beer Distribution Problem, tons of steels here) through the network. In A Transportation Problem all arcs from
the supply nodes to the demand nodes existed (although in Forestry Management we used upper bounds to removes
some arcs). In The American Steel Problem, the network has transshipment nodes and arcs don't exist between all
nodes. To cater for this, we explicitly name all our arcs - these are our decision variables.

2. Formulate the Objective Function

The objective of transshipment problems in general and The American Steel Problem in particular is to minimise the
cost of shipping goods through the network:

3. Formulate the Constraints

All the nodes have supply and demand, demand = 0 for supply nodes, supply = 0 for demand nodes and supply =
demand = 0 for transshipment nodes.

The only constraints in the transshipment problem are flow conservation constraints. These constraints simply state
that the flow of goods into a node must be greater than or equal to the flow of goods out of a node.

Transshipment problems are often presented as a network formulation:

Solution

As always, your file will start with an introduction and the import statement.

A list of all the node names is created. Whilst the nodes are not the problem variables, they are important in formulating
the constraints. A dictionary with each node as the reference key is created, and a list containing the supply and demand
of that node is the stored data.

Albany, N.Y. 3000

Houston 7000

Tempe 4000

Gary 6000

"""
The American Steel Problem for the PuLP Modeller

Authors: Antony Phillips, Dr Stuart Mitchell 2007
"""

Import PuLP modeller functions
from pulp import *

Page 2 of 4A Transshipment Problem — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ATransshipmentProblem

A list of all the arc names is created, and a dictionary containing; the cost per ton of steel sent on that arc, and the
bounds, is created. The cost values are in $ per ton, since the other quantities are in tonnes, not thousands of tonnes.

The splitDict function is used to create separate dictionaries from the dictionary inputs which had lists as the stored
data. This splits up the lists so that (for example) 'Supply["Youngstown"]' will return 10000, instead of having to use
nodeData["Youngstown"][1] to get the value.

The problem variables are created with the usual parameters. "Route" is the arbitrary name for the category the problem
variables fall into. The names in the list Arcs will form the main part of the problem variable names. It is important to
note that both the lower and upper bounds have been set to None. This is because the bounds on each of the variables is
different and so we cannot express what they individually are, in this line of code. Lastly, we specify that the solution
must be integer, since it is fair to assume that each ton is inseparable. This is a certain degree of rounding which is
appropriate.

The bounds on the variables are created by modifying the property bounds of the objects in Vars. There is no equals
sign required for this. It could also have been done using 'Vars[a].lower([Mins[a])' and 'Vars[a].lower([Maxs[a])'

List of all the nodes
Nodes = ["Youngstown",
 "Pittsburgh",
 "Cincinatti",
 "Kansas City",
 "Chicago",
 "Albany",
 "Houston",
 "Tempe",
 "Gary"]

nodeData = {# NODE Supply Demand
 "Youngstown": [10000,0],
 "Pittsburgh": [15000,0],
 "Cincinatti": [0,0],
 "Kansas City": [0,0],
 "Chicago": [0,0],
 "Albany": [0,3000],
 "Houston": [0,7000],
 "Tempe": [0,4000],
 "Gary": [0,6000]
 }

List of all the arcs
Arcs = [("Youngstown","Albany"),
 ("Youngstown","Cincinatti"),
 ("Youngstown","Kansas City"),
 ("Youngstown","Chicago"),
 ("Pittsburgh","Cincinatti"),
 ("Pittsburgh","Kansas City"),
 ("Pittsburgh","Chicago"),
 ("Pittsburgh","Gary"),
 ("Cincinatti","Albany"),
 ("Cincinatti","Houston"),
 ("Kansas City","Houston"),
 ("Kansas City","Tempe"),
 ("Chicago","Tempe"),
 ("Chicago","Gary")]

arcData = { # ARC Cost Min Max
 ("Youngstown","Albany"): [0.5,0,1000],
 ("Youngstown","Cincinatti"): [0.35,0,3000],
 ("Youngstown","Kansas City"): [0.45,1000,5000],
 ("Youngstown","Chicago"): [0.375,0,5000],
 ("Pittsburgh","Cincinatti"): [0.35,0,2000],
 ("Pittsburgh","Kansas City"): [0.45,2000,3000],
 ("Pittsburgh","Chicago"): [0.4,0,4000],
 ("Pittsburgh","Gary"): [0.45,0,2000],
 ("Cincinatti","Albany"): [0.35,1000,5000],
 ("Cincinatti","Houston"): [0.55,0,6000],
 ("Kansas City","Houston"): [0.375,0,4000],
 ("Kansas City","Tempe"): [0.65,0,4000],
 ("Chicago","Tempe"): [0.6,0,2000],
 ("Chicago","Gary"): [0.12,0,4000]
 }

Splits the dictionaries to be more understandable
(supply, demand) = splitDict(nodeData)
(costs, mins, maxs) = splitDict(arcData)

Creates the boundless Variables as Integers
vars = LpVariable.dicts("Route",Arcs,None,None,LpInteger)

Page 3 of 4A Transshipment Problem — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ATransshipmentProblem

The variable prob is created to store the problem data.

The objective function is added to prob. This is simply the cost of sending a tonne down each arc multiplied by the
number of tonnes sent down.

The constraints are all added in this statement. This ensures that the amount of steel flowing into a node is greater than
or equal to the amount exiting. This caters for the fact that this problem is unbalanced - it has excess supply. There is no
merit, and added cost, in sending steel to a node and not sending is out, so the excess supply will stay at the mills. The
code should read as: The amount of steel the node is creating + the amount of steel on each of the arcs leading into the
node must be greater than or equal to the amount of steel demanded by the node plus the amount of steel on each of the
arcs exiting the node. Since the Arcs are stored as tuples with the "from" and "to" node names stored, when for (i,j)
in Arcs if j==n is written, it says that we only look at the Arcs which have "n" (the node we are currently
constraining) as the "to" node.

Now the formulation is complete, the standard end to the code can be written, starting at the prob.writeLP line. The full
code is available here.

Post-Optimal Analysis

Validation

For our solution to be valid we need it to be integer. Observing the flow values shows that it is in fact integer. In fact, any
network flow problem with integer supplies, demands and arc capacities has naturally integer solutions.

Presentation of Solution and Analysis

There is quite a bit of information to summarise and many ways to present it. Some suggestions include:
1. Summarise the problem as usual and list the shipments that American Steel should make (similar to the

transportation problem);
2. Summarise the problem as usual and present a table of shipments that American Steel should make;
3. Draw the network formulation for the problem (being sure to specify what the labels mean). Then draw the

actual solution on top of the network formulation. You could colour code flows long arcs to show if they are at
their bounds.

Implementation and Ongoing Monitoring

Ongoing monitoring of the supply, demand and bounds will help American Steel to keep making good decisions.

Previous: (5b) A Transportation Problem

Next: (5d) A Facility Location Problem

Creates the upper and lower bounds on the variables
for a in Arcs:
 vars[a].bounds(mins[a], maxs[a])

Creates the prob variable to contain the problem data
prob = LpProblem("American Steel Problem",LpMinimize)

Creates the objective function
prob += lpSum([vars[a] * costs[a] for a in Arcs]), "Total Cost of Transport"

Creates all problem constraints - this ensures the amount going into each node is at least equal to the amount leaving
for n in Nodes:
 prob += (supply[n]+ lpSum([vars[(i,j)] for (i,j) in Arcs if j == n]) >=
 demand[n]+ lpSum([vars[(i,j)] for (i,j) in Arcs if i == n])), "Steel Flow Conservation in Node:%s"%n

Page 4 of 4A Transshipment Problem — Pulp Portal

30/01/2008http://130.216.209.237/engsci392/pulp/ATransshipmentProblem

