
An implementation of the Volume Algorithm

Francisco Barahona and Laszlo Ladanyi

June 7, 2006

1 Introduction

Here we describe an implementation of the Volume algorithm (VA) originally presented in [1]. The
following sub-directories of COIN contain the relevant pieces. The directory COIN/Vol contains the
core of the algorithm. The directory COIN/Examples/VolUfl contains the necessary files for solving
uncapacitated facility location problems. The directory COIN/Examples/Volume-LP contains code
for dealing with combinatorial linear programs. The directory COIN/Examples/VolLp also contains
code for combinatorial linear programs, this implementation relies on other parts of COIN, while
the implementation in COIN/Examples/Volume-LP is self-contained. In COIN/Osi/OsiVol there is
code to call the VA through OSI. The directory COIN/Examples/MaxCut contains code for doing
Branch-and-Cut based on the VA, this is applied to the Max-Cut problem.

Now we give the details of each directory. We hope to receive reports about bugs and/or successful
experiences.

2 COIN/Vol

This directory contains the core of the algorithm, most users should not need to modify any of the files
here. The files are INSTALL, Makefile and VolVolume.cpp. The file INSTALL contains information
on how to compile and build the code, on Linux it is enough to type “make”. The algorithm is in
VolVolume.cpp and the header file is VolVolume.hpp in the directory COIN/Vol/include.

3 COIN/Examples/VolUfl

We focus here on the uncapacitated facility location problem (UFLP) as an example of implementa-
tion, see [3] for some of the theoretical issues. The files here are INSTALL, Makefile, Makefile.ufl,
ufl.cpp, ufl.hpp, ufl.par and data.gz. The file INSTALL contains information on how to compile
and build.

As a first step, a new user should be able to run the code “as is”. This can also be used as a
framework for Lagrangian relaxation. The user would have to modify the files ufl.hpp, ufl.cpp,
ufl.par, and data, to produce an implementation for a different problem.

Now we present the linear program used in [3]. This is

1

min
∑

cijxij +
∑

fiyi (1)
∑

i

xij = 1, for all j, (2)

xij ≤ yi, for all i, j, (3)

xij ≥ 0, for all i, j, (4)

yi ≤ 1, for all i. (5)

Here the variables y correspond to the locations, and the variables x represent connections
between customers and locations. Let uj be a set of Lagrange multipliers for equations (2). When
we dualize equations (2), we obtain the lagrangian problem

L(u) = min
∑

c̄ijxij +
∑

f̄iyi +
∑

uj ,

xij ≤ yi, for all i, j,

xij ≥ 0, for all i, j,

yi ≤ 1, for all i.

Where the reduced costs c̄ij = cij−uj , and f̄i = fi. We apply the VA to maximize L(·) and to produce
a primal vector (x̄, ȳ) that is an approximate solution of (1)-(5). Using this primal information we
run a heuristic that gives an integer solution.

In what follows we describe the different files in this directory.

3.1 ufl.par

This file contains a set of parameters that control the algorithm and contain some information about
the data. Each line has the format

keyword=value

where keyword should start in the first column. If we add any other character in the first column,
the line is ignored or considered as a comment. The file looks as below

fdata=data

*dualfile=dual.txt

dual_savefile=dual.txt

int_savefile=int_sol.txt

h_iter=100

printflag=3

printinvl=5

heurinvl=10

greentestinvl=1

yellowtestinvl=4

redtestinvl=10

lambdainit=0.1

2

alphainit=0.1

alphamin=0.0001

alphafactor=0.5

alphaint=50

maxsgriters=2000

primal_abs_precision=0.02

gap_abs_precision=0.

gap_rel_precision=0.01

granularity=0.

The first group of parameters are specific to the UFLP and the user should define them. fdata
is the name of the file containing the data. dualfile is the name of a file containing an initial dual
vector. If we add an extra character at the beginning (*dualfile) this line is ignored, this means
that no initial dual vector is given. dual savefile is the name of a file where we save the final
dual vector. If this line is missing, then the dual vector is not saved. int savefile is the name of
a file to save the best integer solution found by the heuristic procedure, if this line is missing, then
this vector is not saved. h iter is the number of times that the heuristic is run after the VA has
finished.

The remaining parameters are specific to the VA. printflag controls the level of output, it should
be an integer between 0 and 5. printinvl=k means that we print algorithm information every k

iterations. heurinvl=k means that the primal heuristic is run every k iterations. greentestinvl=k
means that after k consecutive green iterations the value of λ is multiplied by 2. yellowtestinvl=k
means that after k consecutive yellow iterations the value of λ is multiplied by 1.1. redtestinvl=k
means that after k consecutive red iterations the value of λ is multiplied by 0.67. lambdainit is the
initial value of λ. alphainit is the initial value of α. alphafactor=f and alphaint=k mean that
every k iterations we check if the objective function has increased by at least 1%, if not we multiply
α by f.

There are three termination criteria. First maxsgriter is the maximum number of iterations.
The second terminating criterion is as follows. primal abs precision is the maximum primal
violation to consider a primal vector “near-feasible”. Let gap rel precision=g, let z be the value of
the current dual solution, and p be the value of a current near-feasible primal solution. If |z| > 0.0001
and

|z − p|

|z|
< g,

then the algorithms stops. Let gap abs precision=f , if |z| ≤ 0.0001 and |z − p| < f then we stop.
Finally, let granularity=k, and let U be the value of the best heuristic integer solution found. Then
if U − z < k we stop.

3.2 data

The file data has the following format. On the first line we have the number of possible locations
and the number of customers. On the next lines, the cost of opening each location appears, one cost
per line. Then each of the remaining lines is like

i j dij ,

where i refers to a location, j refers to a customer, and dij is the cost of serving customer j from
location i. The indices i and j start from 1. If a pair i, j is missing then the cost dij is set to 107.

3

3.3 ufl.hpp

This file contains C++ classes specific to the UFLP.
First we have a class of parameters specific to the UFLP. The description of these parameters

appears in the preceding section.

class UFL_parms {

public:

string fdata; // file with the data

string dualfile; // file with an initial dual solution

string dual_savefile; // file to save final dual solution

string int_savefile; // file to save primal integer solution

int h_iter; // number of times that the primal heuristic will be

// run after termination of the volume algorithm

UFL_parms(const char* filename);

~UFL_parms() {}

};

Before the next class we should mention the classes VOL dvector and VOL ivector defined in
VolVolume.hpp. The pseudo-code below illustrates their use.

int n=100;

VOL_dvector x(n); // a double vector with n entries

x=0.; // sets to 0. all entries of x

VOL_dvector y; // a double vector, it size remains to be set

y.allocate(n); // size is set

y=x; // copy each entry of x into y

VOL_dvector z(y); // a double vector of the same size as y,

// all entries of y are copied into z

x[0]=-1; // first entry of x is set to -1

y[0]=x[0]; // copy first entry of x into first entry of y

The class VOL ivector is used for vectors of int. One can do the same operations as for
VOL dvector.

Then we have a class containing the data for the UFLP.

class UFL_data { // original data for uncapacitated facility location

public:

VOL_dvector fcost; // cost for opening facilities

VOL_dvector dist; // cost for connecting a customer to a facility

VOL_dvector fix; // vector saying if some variables should be fixed

// if fix=-1 nothing is fixed

int ncust, nloc; // number of customers, number of locations

VOL_ivector ix; // best integer feasible solution so far

double icost; // value of best integer feasible solution

public:

UFL_data() : icost(DBL_MAX) {}

~UFL_data() {}

};

4

Then we have

class UFL_hook : public VOL_user_hooks {

public:

// for all hooks: return value of -1 means that volume should quit

// compute reduced costs

int compute_rc(void * user_data,

const VOL_dvector& u, VOL_dvector& rc);

// solve lagrangian problem

int solve_subproblem(void * user_data,

const VOL_dvector& u, const VOL_dvector& rc,

double& lcost, VOL_dvector& x, VOL_dvector&v,

double& pcost);

// primal heuristic

// return DBL_MAX in heur_val if feas sol wasn’t/was found

int heuristics(void * user_data, const VOL_problem& p,

const VOL_dvector& x, double& heur_val);

};

Here the function compute rc is used to compute reduced costs. In the function solve subproblem

we solve the lagrangian problem. In heuristics we run a heuristic to produce a primal integer so-
lution.

Finally in this file we have UFL parms::UFL parms(const char *filename), where we read the
values for the members of UFL parms.

3.4 ufl.cpp

This file contains several functions that we describe below.
First we have int main(int argc, char* argv[]). In here we initialize the classes described

in ufl.hpp, and read the data. Then volp.psize() is set to the number of primal variables, and
volp.dsize() is set to the number of dual variables. Then we check if a dual solution is provided
and if so we read it.

For the UFLP all relaxed constraints are equations, so the dual variables are unrestricted. In
this case we do not have to set bounds for the dual variables. If we have inequalities of the type
ax ≥ b, then we have to set the lower bounds of their dual variables equal to 0. If we had constraints
of the type type ax ≤ b, then we have to set the upper bounds of their variables equal to 0. This
would be done as in the pseudo-code below.

// first the lower bounds to -inf, upper bounds to inf

volp.dual_lb.allocate(volp.dsize);

volp.dual_lb = -1e31;

volp.dual_ub.allocate(volp.dsize);

volp.dual_ub = 1e31;

// now go through the relaxed constraints and change the lb of the ax >= b

// constrains to 0, and change the ub of the ax <= b constrains to 0.

for (i = 0; i < volp.dsize; ++i) {

if ("constraint i is ’<=’ ") {

volp.dual_ub[i] = 0;

}

5

if ("constraint i is ’>=’ ") {

volp.dual_lb[i] = 0;

}

}

The function volp.solve invokes the VA. After completion we compute the violation of the
fractional primal solution obtained. This vector is psol. Then we check if the user provided the
name of a file to save the dual solution. If so, we save it. Then we run the primal heuristic using
psol as an input. Notice that this heuristic has also been run periodically during the execution of
the VA. Then if the user has provided the name of a file to save the integer heuristic solution, we
do it. Finally the values of the solutions and some statistics are printed.

The next function is void UFL read data(const char* fname, UFL data& data), where we
read the data. data.nloc is the number of locations, data.ncust is the number of customers.
data.fcost is a vector containing the cost of opening each location. data.dist is a vector containing
the cost of serving customers from facilities. All entries are initialized to 107 and then particular
entries are being set with the statement

dist[(i-1)*ncust + j-1]=cost;

where i is the index of a location and j is the index of a customer. Here the indices start from 1.
Finally we have a vector data.fix associated with the locations. A particular entry is set to 0 if
the location should be closed, it is set to 1 if it should be open, and it is set to -1 if this variable is
free. Initially all entries are set to -1.

In the function
double solve it(void * user data, const double* rdist, VOL ivector& sol)

we solve the lagrangian problem. We receive the data and reduced costs as input and return a primal
vector. The solution is in the vector sol. Its first n entries correspond to the locations, then all
remaining entries correspond to connections between locations and customers.

In the function
int UFL hook::compute rc(void * user data, const VOL dvector& u, VOL dvector& rc)

we compute the reduced costs. They will be used to solve the lagrangian problem.
In the function

int

UFL_hook::solve_subproblem(void *user_data,

const VOL_dvector& u, const VOL_dvector& rc,

double& lcost, VOL_dvector& x,

VOL_dvector& v, double& pcost)

we compute the lagrangian value, we call solve it, we compute the objective value and the vector
v defined as follows. If x̂ is the primal solution given by solve it, and Ax ∼ b is the set of relaxed
constraints, then the difference v is

v = b − Ax̂.

The last function in this file is

int

UFL_hook::heuristics(void * user_data, const VOL_problem& p,

const VOL_dvector& x, double& icost)

where we run the following simple heuristic. Given a fractional solution (x̄, ȳ), let ȳi be the variable
associated with location i. We pick a random number r ∈ [0, 1] and if r < ȳi facility i is open, and

6

closed otherwise. We repeat this for every facility, then given the set of open facilities we find a
minimum cost assignment of customers. This function is invoked periodically in the VA and by the
main program after the VA has finished.

4 COIN/Examples/Volume-LP

Here we focus on Combinatorial Linear Programs, these are linear programs where the matrix has
0, 1, -1 coefficients and the variables are bounded between 0 and 1. The VA has been very effective
at producing fast approximate solutions to these LPs, see [2]. As a first step, a new user should be
able to run our code “as is”. The input should be an MPS file.

Initially this directory contains the files: README, Makefile, lp.hpp, lp.cpp, lp.par,

data.mps.gz, lpc.h, lpc.cpp, reader.h, reader.cpp. On a Unix system one should type
“make”, “gunzip data.mps.gz” and “volume-lp” to run the code. Then the code will run and
produce the files primal.txt and dual.txt that contain approximate solutions to both the primal
and the dual problem.

We assume that we have an LP like

min cx (6)

Ax ∼ b (7)

l ≤ x ≤ u. (8)

Let π be a set of Lagrange multipliers for constraints (7). When we dualize them we obtain the
lagrangian problem

L(u) = min(c − πA)x + πb,

l ≤ x ≤ u.

We apply the VA to maximize L(·) and to produce a dual vector π̄, and primal vector x̄ that is
an approximate solution of (6)-(8).

In what follows we describe the files lp.par and data.mps.

4.1 lp.par

This file contains a set of parameters that control the algorithm and contain information about the
data. Each line has the format

keyword=value

where keyword should start in the first column. If we add any other character in the first column,
the line is ignored or considered as a comment. The file looks as below

fdata=data.mps

*dualfile=dual.txt

dual_savefile=dual.txt

primal_savefile=primal.txt

h_iter=0

var_ub=1.0

7

printflag=3

printinvl=20

heurinvl=100000000

greentestinvl=2

yellowtestinvl=2

redtestinvl=10

lambdainit=0.1

alphainit=0.01

alphamin=0.0001

alphafactor=0.5

alphaint=80

maxsgriters=2000

primal_abs_precision=0.02

gap_abs_precision=0.

gap_rel_precision=0.01

granularity=0.

The first group of parameters are specific to LP and the user should define them. fdata is the
name of the file containing the data. dualfile is the name of a file containing an initial dual vector.
If we add an extra character at the beginning (*dualfile) this line is ignored, this means that
no initial dual vector is given. dual savefile is the name of a file where we save the final dual
vector. If this line is missing, then the dual vector is not saved. primal savefile is the name of a
file to save the primal solution, if this line is missing, then this vector is not saved. h iter is the
number of times that the heuristic is run after the VA has finished. We did not include a heuristic
in this implementation. var ub is an upper bound for all primal variables, for 0-1 problems we set
var ub=1.

The remaining parameters are specific to the VA. printflag controls the level of output, it should
be an integer between 0 and 5. printinvl=k means that we print algorithm information every k

iterations. heurinvl=k means that the primal heuristic is run every k iterations. greentestinvl=k
means that after k consecutive green iterations the value of λ is multiplied by 2. yellowtestinvl=k
means that after k consecutive yellow iterations the value of λ is multiplied by 1.1. redtestinvl=k
means that after k consecutive red iterations the value of λ is multiplied by 0.67. lambdainit is the
initial value of λ. alphainit is the initial value of α. alphafactor=f and alphaint=k mean that
every k iterations we check if the objective function has increased by at least 1%, if not we multiply
α by f.

There are three termination criteria. First maxsgriter is the maximum number of iterations.
The second terminating criterion is as follows. primal abs precision is the maximum primal
violation to consider a primal vector “near-feasible”. Let gap rel precision=g, let z be the value of
the current dual solution, and p be the value of a current near-feasible primal solution. If |z| > 0.0001
and

|z − p|

|z|
< g,

then the algorithms stops. Let gap abs precision=f , if |z| ≤ 0.0001 and |z − p| < f then we stop.

8

Finally, let granularity=k, and let U be the value of the best heuristic integer solution found. Then
if U − z < k we stop. We did not include any heuristic in this implementation.

4.2 data.mps

This is an MPS file that is read with code in reader.cpp. If a different type of input has to be used,
one should change the code in reader.cpp.

5 COIN/Examples/VolLp

This code treats linear programs in a similar way as it is done in COIN/Examples/Volume-LP, the
main difference is that this code uses other components of COIN-OR while the code in

COIN/Examples/Volume-LP is self contained. The files here are INSTALL, Makefile,

Makefile.vollp, vollp.cpp. The INSTALL contains instructions on how to compile and build
the code. The input should be an MPS file.

6 COIN/Osi/OsiVol

In this directory there is the file OsiVolSolverInterface.cpp that allows the user to call the VA
through OSI. This is also intended to deal with combinatorial linear programs. The code below reads
an MPS file and calls the VA through OSI.

#include "OsiVolSolverInterface.hpp"

#include <iostream>

int main(int argc, char *argv[])

{

OsiVolSolverInterface osilp;

osilp.readMps("file","mps");

osilp.initialSolve();

const int numCols=osilp.getNumCols();

const double *x=osilp.getColSolution();

for (int j=0; j<numCols; ++j){

std::cout << j << " " << x[j] << "\n";

}

return 0;

}

9

7 COIN/Examples/MaxCut

This directory contains code for doing Branch-and-Cut based on the VA as in [4]. The code is
specialized to the Max-Cut problem.

References

[1] F. Barahona and R. Anbil, The volume algorithm: producing primal solutions with a sub-

gradient method, Math. Program., 87 (2000), pp. 385–399.

[2] , On some difficult linear programs coming from set partitioning, Discrete Appl. Math., 118
(2002), pp. 3–11. Third ALIO-EURO Meeting on Applied Combinatorial Optimization (Erice,
1999).

[3] F. Barahona and F. A. Chudak, Solving large scale uncapacitated facility location problems,
in Approximation and complexity in numerical optimization (Gainesville, FL, 1999), vol. 42 of
Nonconvex Optim. Appl., Kluwer Acad. Publ., Dordrecht, 2000, pp. 48–62.

[4] F. Barahona and L. Ladanyi, Branch-and-cut based on the volume algorithm: Steiner trees

in graphs and max-cut, Report, 2001. available at http://optimization-online.org.

10

